
PHYSICAL REVIEW B VOLUME 15, NUMBER 4 15 FEBRUARY 1977

Some static and dynamical properties of a two-dimensional Wigner crystal*
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The static ground-state energy of a two-dimensional Wigner crystal has been obtained for each of the five two-
dimensional Bravais lattices. At constant electron number density the hexagonal lattice has the lowest energy.
Phonon dispersion curves have been calculated for wave vectors along the symmetry directions in the first
Brillouin zone for the hexagonal lattice. In the long-wavelength limit one of the two branches of the
dispersion relation vanishes with vanishing two-dimensional wave vector q asq, the secondas q'". The
coefficient of q in the former branch is pure imaginary for certain directions of propagation in the square
lattice, implying a dynamical instability of this lattice; the hexagonal lattice is stable. The vibrational zero-
point energy and low-temperature thermodynamic functions have been obtained for the hexagonal lattice. The
dielectric susceptibility tensor of a two-dimensional Wigner crystal y ~(q) has been determined in the long-

wavelength limit, in the presence of a static magnetic field perpendicular to the crystal, and the result has
been used to obtain the dispersion relation for plasma oscillations in the electron crystal.

I. INTRODUCTION

The possibility that a system of electrons in the
presence of a compensating background of positive
charge will crystallize in the low-density limit was
first pointed out by Wigner in 1934.' Since that
time a considerable body of work has been created
devoted to one or another property of the three-
dimensional Wigner crystal. ' Becently, Chaplik'
applied this idea to electrons or holes in inversion
layers near the surface of a semiconductor. He
pointed out that in a strong electric field at low
temperatures the charge carriers can crystallize
into a two-dimensional crystal and execute small
vibrations about the resulting equilibrium position.

Alternatively, it has been proposed by Crandall
and Williams' that a two- dimensional electron
crystal can be created by the application of a
strong electric field perpendicular to the free
surface of liquid helium. In this case, the electron
crystal resides just above the liquid surface. Re-
cently, calculations of the frequency spectrum of
such a system have been carried out. "'

In the case that the system of inversion-layer
electrons is a two-dimensional gas, the response
of the gas to a longitudinal electric field was first
calculated by Stern' using the self-consistent-field
approximation. These results were used to obtain
the plasmon dispersion relation for a two-dimen-
sional electron gas embedded in a three-dimen-
sional dielectric. Chiu and Quinn' generalized
this work by calculating the response of a two-
dimensional electron gas in the presence of a
strong constant magnetic field applied in a direc-
tion normal to the plane of the gas. These results

were used to obtain the dispersion relation of a
magnetoplasma wave of a two-dimensional electron
gas which occupies the plane z = 0 in a medium
whose dielectric constant is &,.

In this paper, we assume the existence of a two-
dimensional Wigner lattice and present the results
of a study of several static and dynamical proper-
ties of such a lattice.

In Sec. II we calculate the static ground-state
energy of the two-dimensional electron crystal for
each of the five two-dimensional Bravais lattices.
Phonon dispersion curves are obtained for wave
vectors along the symmetry directions in the first
Brillouin zone for the hexagonal lattice in Sec. III,
and the vibrational zero-point energy is calculated
for this lattice in Sec. IV.

In Sec. V, the phonon dispersion relation is ob-
tained in the long-wavelength limit for the square
and hexagonal lattices. The low- temperature
thermodynamic functions are presented in Sec. VI
for the hexagonal lattice. In Sec. VII, the dielec-
tric susceptibility tensor is determined in the long-
wavelength limit, in the presence of a static mag-
netic field perpendicular to the crystal, and in
Sec. VIII, this result is used to obtain the disper-
sion relation for plasma oscillations in the elec-
tron crystal. Dispersion curves for several va1,—

ues of the cyclotron frequency are calculated, and
the conclusions of our study of these dynamic pro-
perties are presented in Sec. IX.

Very recently, a paper by Meissner, Namai-
zawa, and Voss' appeared which is devoted to
some of the properties of a two-dimensional Wig-
ner crystal treated in this paper. The differences
between the contents of these two works are that
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Meissner et al. have calculated the static ground-
state energy for only the triangular and square
lattices, while it has been calculated for each of
the two-dimensional Bravais lattices in the pres-
ent work; Meissner et al. have obtained the dis-
persion curves for a three-layer structure, viz. ,
metal-insulator-semiconductor, in which a tri-
angular electron crystal is imbedded in the insu-
lator- semiconductor interface, while we have
ignored the metal layer in our work; in this paper
we have obtained the dielectric susceptibility of a
two-dimensional Wigner Bravais crystal, and have
used the result to study the plasma oscillations of
such a system.

II. STATIC GROUND-STATE ENERGY OF A WIGNER
BRAVAIS CRYSTAL

When a two-dimensional electron gas crystal-
lizes into a two-dimensional crystal it is natural
to inquire about the structure this crystal pos-
sesses. In principle, this question can be an-
swered by calculating the Helmholtz free energy
at the absolute zero of temperature, at constant
electron number density, for every possible
structure the two-dimensional crystal can assume,
and determining in this way the structure with the
lowest energy. This is clearly an impossible task.
In this section we pursue a much more limited
goal. We calculate the static ground-state energy
of a two-dimensional Wigner crystal, at constant
electron number density, for each of the five two-
dimensional Bravais lattices. The free energy of
a Wigner crystal at the absolute zero of tempera-
ture is the sum of the static ground-state energy
and the vibrational zero-point energy. A calcula-
tion of the latter, in the harmonic approximation,
will be carried out in Sec. IV.

The lattice points of a two-dimensional Bravais
lattice assumed to be in the xy plane, are given by
the vectors

x(l) = l,a, + l,a, , (2.1)

where a, and a, are the primitive translation vec-
tors of the lattice; and E, and E, are any two inte-
gers, positive, negative, or zero, to which we
refer collectively as l.

We also define a lattice reciprocal to the direct
lattice defined by Eq. (2.1) as the set of points
given by the vectors

G(h) =h, b, +h,b, , (2.2)

where b, and b„are the primitive translation
vectors of the reciprocal lattice. The primitive
translation vectors a„a„b„b„and the area
a, of the primitive unit cell of the direct lattice
are given in Table I for each of the five two-
dimensional Bravais lattices.

The energy of interaction of a given electron
(assumed to be at the origin of coordinates) with
all the other electrons in the crystal can be ex-
pressed in the form

(e) 2 ~
1 I

+r —-e limg, fx-x(lj f fxf
(2 2)

where e is the magnitude of the electronic charge.
In the case that the electron crystal is imbedded in
a dielectric medium of dielectric constant e, the
electron's charge in this equation and in the re-
sults that follow from it should be replaced by
e/e', ~'. With the aid of the integral representation

dt t-~/2e-

tlat-f(r)

I2 (2.4)

and the two-dimensional form of Ewald's gener-
alized theta function transformation

g e~[- fix.- x(f) I'- ia'(f)]

=—g exp(iG x) exp—,(2.5)
f q+Gf'

a,t 4t

TABLE I. Five two-dimensional Bravais lattices.
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we can reexpress EI" in the form

(e) 2~8 1 28 lt'E(e)
a, G 6 0 a,

+—— p ( ——28

G(%)
1/t'2

+ e' — Q (p, /, (ex'(I)). (2.6)
l40

(p„(z) = df f"e ".
1

(2 't)

The singular first term on the right-hand side of
Eq. (2.6) has its origin in the lack of charge neu
trality in the electron lattice considered thus far.

To make our system electrically neutral, we
assume that the two-dimensional Wigner crystal
is embedded in a uniform two-dimensional back-
ground of positive charge, whose charge density
is p, =e/a, . The energy of interaction of our ref
erence electron with this neutralizing ba, ckground
is

In this result & is the usua, l separation pa, rameter
in the Ewald method, "and the right-hand side of
Eq. (2.6) is independent of the value of this param-
eter. The {(p„(z))are the Misra functions"

which is finite. The total static ground-state en-
ergy of the two-dimensional Wigner crystal is

1
E~ = 2NEi, (2.12)

2 7T2

4q qa2 2 1 1 2 1,(h', a', —2h, h, a,, a, +h', a',),
ex'(I) = e(l', a', +2l,l,a, a, +I'2a', ) .

(2.14a)

(2.14b)

Consequently, if we choose e = m/a„and change
the dummy summation variables A„h2 into -l„l„
respectively, we obtain the simple result

z, = — „, ) — P (' „,—x'(()), (2.(5)

which is valid for any two-dimensional Wigner
Bravais crystal. We consider each of these lat-
tices in turn.

where f(/=I, '/a, is the number of electrons in the
crystal, and the factor of 2 accounts for the double
counting of interactions in the calculation of E~.
The ground-state energy per electron is therefore
I2E ~

The result (2.12) can be simplified considerably.
If we use Eqs. (2.1), (2.2), and the results of
Table I, we find tha, t

(b) d X
Eg = —8P

txJ
(2.8) A. Oblique lattice

If we use the two-dimensional Fourier expansion
of ix[-',

271~ 1
Jx) 12 ~

k

where

(2 9)

k=(2))/I. )(n„,n ), n„, n, =0, +1,+2, . . . (2.10)

and L,' is the area of the two-dimensional Wigner
crystal, we obtain for Erb',

From Eq. (2.15) and Table I we find that the
expression for the interaction energy for this lat-
tice can be written

28
E/(x, y) =—,,/,(a,)

7rx 2 g' y, /, —[(I,+fg)'+f,x']
ll l2

(2.16)

@(() )g d 2x e()(r'
a, I.' . k'

k

—27T8
(2.11)

where x = b/a, y = c/a, and 0&y & 1. Rather than
evaluate this expression for all possible values of
the parameters x and y, we consider the special
cases which constitute the remaining two-dimen-
sional lattices, starting with the most symmetric.

The total interaction energy is therefore given by

E = E(e) + E(b)I I I
B. Square lattice

The interaction energy of the square lattice is
given by

5(4 0)

—28 — + 8 — P„1(2 gX

l(A 0)

(2.12)

82
= —3.900 265-,--,112 .ia i], /2 (2.17)

28z, = — 2 — F,'
y „,(w(( , +)',)))'

0



1962 LYNN BONSALL AND A. A. MARADUDIN

C. Hexagonal lattice

For the hexagonal lattice, we find that

-2)/2, 2v 3
I 31/4g Q ~ 1/2 3 ( 1 +1+2++g)

tip /l2

e'
= —3.921 034

(Q~/
(2.18)

D. Primitive rectangular lattice

For the case of the primitive rectangular lattice

2

E (X)=,q, 2 — Q' rP, g, ( (1)', \ ')',))),

(2 19)

where A. = a, /a, . Note that for this lattice
Ez(X) =Ez(l/X). Thus we need to consider only
the range 0&X ~1. If we choose A. =0.95, the in-
teraction energy is given by

III. PHONON DISPERSION CURVES FOR A TWO-

DIMENSIONAL WIGNER CRYSTAL

e2 1
2 ~ (z(//')+u(//') I

' (3.1)

where we have used the notation

After the discussion of the static properties of
a two- dimensional Wigner Bravais crystal in
Sec. II we turn to a consideration of a dynamical
property, viz. , to a determination of the normal
modes of vibration of such a crystal.

Whereas a three- dimensional Wigner crystal
requires the presence of a uniform compensating
background of positive charge for dynamical
stability, 2~" this is not the case for a two-
dimensional Wigner crystal. For these crystals
such a background makes no contribution to the
dynamical matrix, and we will ignore it in what
follows.

When each electron is given an arbitrary dis-
placement u(l) from its equilibrium position
x(l), the potential energy of the crystal is given by

E (0.95) = —3.8985978 /(a )' ' (2.20)
x(//') = x(l) —x(/'), u(ll') = u(l) —u(l') . (3.2)

which is higher than that of the square lattice.
The lowest value of the energy for the primitive
rectangular lattice is obtained for the limiting
case X = 1, when the rectangular lattice becomes
a square lattice.

We now expand the potential energy in powers
of the atomic displacements to second order:

C =4,+—Q QC, ~(//')u (/)u~(/')+ ~ . (3.3)
ge &'8

E. Centered rectangular lattice

For this structure, the interaction energy be-
comes

—2e
E,(z)= .„,(2 —p'g „,(a,)

x-,', (pz, z, )'~ ~ )*,~ ')),

E/(0. 95) = —3.900647e /(a, ) (2.22)

which is lower than that of the square lattice. A
minimum in the interaction energy occurs at
X= 1/v 3=0.57735. . . . For this value of X the
centered rectangular lattice becomes the hexag-
onal lattice.

Thus, from the results of these calculations,
we conclude that the hexagonal lattice has the
lowest energy of all the five two-dimensional
Bravais lattices.

(2.21)

where A=a/b, and again E/(X) =E,(1/X). For /(. =1,
the energy of the centered rectangular lattice is
equal to that of the square lattice. For X=0.95,
we find

3x (//')x~(//') 5 8
x'(/l') x'(ll')

l'(4 l)

(3.4b)

The Fourier transformed dynamical matrix
C,8(q), whose eigenvalues are the squares of the
normal mode frequencies, is defined by

(~) p @ (//z)&-ig %(l)')

E'

(3.5)

where m* is the mass of an electron. In terms
of the matrix

3x (ll )x()(// ) 5 (g, )((11~ )
(// )l'(& l)

(3.6)

In this expression a, P=x. y label the Cartesian
axes. The first-order term in this expansion
vanishes because every electron is at a, center of
inversion. The atomic force constants (41 z(//')j
are given explicitly by

3x (//')x~(//') b„8
x'(/l') x'(/l')

(3.4a)
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we can express C„a(q) as

C.,(q) = (8't~*)l'S.,(q) S.„P)] .

We find that we can rewrite Eq. (3.6) equivalently as

e-f"fI [%-x(l)]

., Bx.sx, ~ ix-%(l)l Ix~1)
'

With the aid of Eqs. (2.4) and (2.5) we can transform this expression into the rapidly convergent form

w "'i
G

1/2

g e'~'"'" I'4e'x (l)x~(l)q1, &,(ex'(1))- 2&5 ~y, &,(ex'(1))].
t(oo)

The dynamica]. matrix C„~(q) is obtained from S,z(q) according to Eq. (3.7). In this way we obtain

2ze2q q 2me2q q q q,(q) mt' q pQ4p q 2(pe)1/2 1/2

e2+ 1/2, ~~(q+G[2G2
+ g (q+G)„(q+G)8', ), —G G~q1, ~, —

ma & - 4c 4&
C G(A o)—

(3.8)

(3.9)

e2 ~ 1/2

Q [I—cosy. x(l)][4&'x (l)xa(l)y, (,(ex'(1))- 2&5 Bq1,(,(ex'(1))].
rn*

l(& 0)

(3.10)

In writing this expression we have used the fact
that every site is at a center of inversion in a
Bravais lattice. We have also separated the
dominant contribution to C,~(q) in the limit of
small q from the terms of higher order and have
written it explicitly as the first term on the right-
hand side of Eq. (3.10).

Ea,rlier calculations of the phonon dispersion
curves of two-dimensional Wigner lattices either
did not transform the slowly convergent lattice
sums S ~(q) which enter the expression for the
dynamical matrix C 8(q) into rapidly convergent
expressions, ' or where this was done by means
of the Ewald transformation, the results applied
only to one Bravais lattice and contained typo-
graphical errors in the published expressions for
C„,(q).'

The norma, l mode frequencies of a, two-dimen-
sional Bravais crystal (~,(q)] are obtained from
the solutions of the eigenvalue problem

Bravais lattice.
We have solved Eq. (3.11) for the hexagonal lat-

tice for values of the wave vector q along the
boundary of the irreducible element of the corre-
sponding Brillouin zone depicted in Fig. 1. The
dispersion curves so obtained are plotted in Fig.
2. We note that while the dispersion curves for
the lower- frequency transverse branch vary lin-
early with the magnitude of the wave vector q in

the limit as q-0, the dispersion curves for the
higher- frequency longitudinal branch tend to zero
as q' ' in the limit as q-0. The latter behavior
has been noted previously, "and is shown in Sec.
V to be a general property of the long-wavelength
longitudina, l modes of a two- dimensional Wigner
Bravais crystal, independent of the particular

g C.,(q)e, (qj) = e&(q) (qj), (3.11)

where j= 1, 2 labels the two solutions of Eq. (3.11)
for each value of q. Because C z(q) is a, real,
symmetric matrix the eigenvectors le (q j)] can be
assumed to be orthonormal and complete. The
values of the wave vector q can be restricted to
lie inside the irreducible element of the two-
dimensional first Brillouin zone of the crystal,
from which the entire zone is generated by appli-
cation of the operations of the point group of the

FIG. 1. First Brillouin zone for the two-dimensional,
hexagonal lattice. The heavily outlined region is the
irreducible element of this zone.
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(4.5)

(~;(q)& = g a;~,(q;),

because an efficient method has been developed
recently for the evaluation of averages such a,s
(u&,.(q)& of functions which possess the periodicity
of the two- dimensional reciprocal lattice. " This
method expresses (ra,.(q)& in the form

Bravais lattice under consideration. The results
depicted in Fig. 2 will be discussed further in
Sec. IX.

IV. ZERO-POINT ENERGY

We have already remarked that the first cor-
rection to the ground-state energy of a two-dimen-
sional electron crystal comes from the zero-point
energy of its vibrational motion. This is given by

E,=-,'h P ~,(q), (4 1)

where the sum on q is over the values in the two-
dimensional first Brillouin zone allowed by peri-
odic boundary conditions. W'e now replace sum-
mation over q by integration t;o obtain

E,=—g ~,(q) d'q,Nk 1

BZ BZ

where N is the number of primitive unit cells in
the crystal, and

(4.2)

aez = (2w)'/a, (4.3)

is the area of the Brillouin zone. The integral
over q is taken over the area of this zone.

The quantity

(~,(q)& = — ~~(q) d'q
~BZ BZ

(4.4)

FIG. 2. Phonon dispersion curves for wave vectors
along the boundary of the irreducible element of the first
Brillouin zone for the two-dimensional hexagonal lattice.
The frequency (do is defined by cu02 ——He /m*a03= 8{4/47(')Mp.

where the weights (o.',] and the special values of
the wave vector q, (q,]., are tabulated in Ref. 12.

We have used this method, with N = 6, to eval-
uate the zero-point energy of the hexagonal crys-
tal, using the results of Sec. III for the evaluation
of the frequencies {vz(q,)]. The result is

Eo= DNA(e /m*ao)'~ (4 28) .. (4.7)

Greater accuracy in the evaluation of the zero-
point energy is achievable through the use of a,

larger number of special points (q;]. It was not
felt to be called for in the present work.

V. LONG-WAVELENGTH LIMIT

The results of Sec. III enable the normal mode
frequencies of an arbitrary two-dimensional
Wigner Bravais crystal to be obtained for an ar-
bitrary wave vector q in the two-dimensional
first Brillouin zone of the crystal. The somewhat
complicated expressions for the elements of the
dynamical matrix C,~(q) simplify in the long-
wavelength limit, i.e. , in the limit a,s q-0. This
is an interesting limit to consider because it
yields the speed of sound for the transverse
branch of the phonon spectrum, which provides
information about the dynamical stability of the
corresponding lattice, and beca.use the results
obtained in this limit a.re useful in determining
the dielectric susceptibility of a. two- dimensional
Wigner crystal (see Sec. Vil). In this section we
obtain the forms of the phonon dispersion curves
to O(q') for an arbitrary two-dimensional Wigner
Bravais crystal.

We begin by writing the elements of the dynami-
cal matrix C ~(q) in the form

is the average of to&(q) over the Brillouin zone.
We have chosen to express the zero-point energy
in the form

27Te

C

where, from Eq. (3.10),

(5.1)

I

~ g(q) = „-
2 iran-yg2 g~

—1 + „a ~ Q (q+G) (q+G)gP- g
—

4
—G ~g9'. y

B(80) '

1/2

g [1—cosq x(l)][4@'x (l)xs(l)y, &,(&x'(1))- 2&5 8y, &,(ex'(I))]= V ~(-q) .
l(8 0)

(5 2)
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We now use the results that for small q

q), q, (q'/4c) = 2(we)'~'/q —2+ -,'q'/4z —-', q'/16&'+ ~ ~ ~, (5.8a)

+ p( ———Q( —+pg (5.3b)

to expand V z(q) in powers of the components of the wave vector q:

V,~(q) = C(2~)(q) + C,(4~)(q) + ~ (5.4)

where the superscripts denote the order of the corresponding terms in the components of q. (The terms
of odd order vanish identically because each lattice site is a center of inversion in a Bravais lattice. ) The
elements of the matrix C(2~)(q), which is the only term in the expansion (5.4) with which we will be con-
cerned here, are given by

C'„'()'(q) = QA~()»q, q» (5.5)

where

e' n'" G' e' m
"' Q2

e(~v=-4, si2 ~v I (&i&2 4
——2, — (~a, ~()v+5m. ~(),) — Q &-ii2 44m~a, & I a, L

5(A 0) G(co)

e 7 G2

Q (G G~5q, +G~G„5q„+GAG„5 „+GAG„5 „)(()),g,
G(It o)

e' n'" G2+,~2 G~GgG„G„P3(28m*a, & 4&
G (40)

Q [4g'x, (l)x~(l)x„(l)x„(l)q),g, (ex'(I)) —2&6,~ x(l) (xl)q)),(cx'(1))].
2m+ m'

i(w o)

(5.6)

A ~„„—-Ag~„„=A ~„„. (5.7)

Furthermore, if B ~ is a 2 ~ 2 real, orthogonal
matrix representative of a proper or improper
(active) rotation in the xy plane that sends the
two-dimensional Bravais lattice into itself, then

A~&„„ is invariant under such a rotation in the
sense that

The elements of the tensor A ~„„possess the fol-
lowing symmetry properties under interchanges
of their subscripts:

We pause to note that the results given by Eqs.
(5.10) have a general character in the sense that
they are independent of the particular Bravais
lattice for which the dispersion curves are being
calculated. This is not true of the corrections to
these results of higher order in the components
of q, which differ depending on the Bravais lat-
tice being studied. First- order nondegenerate
perturbation theory suffices to obtain the correc-
tions to these eigenvalues arising from the matrix
C"~)(q). Indeed, we have

(gtglp I@I
R„„,RBB,Rg,Rvv &n g, u v, .

(5 8)
and

1
~J(q) 2 Q ! IJ()V()(lqq())ql( 4

& eg~v
(5.11)

We now regard the matrix C„'"z'(q) as a pertur-
bation on the matrix A(d,'(q) = QA, „„q„q„—n(d', (q). (5.12)

(5.9)C(',)(q) = (2ve'/m*a, )q q, /q.

The eigenvalues and (normalized) eigenvectors of
this matrix are readily found to be

This is about as far as one can go, in general.
We now specialize these general results to the
square and hexagonal lattices.

2pe'(t()= e, &(()=(—',~);
Q~

~l. ta) = o, &(2) = (~,——*)

(5.10a)

(5.10b)

A. Square lattice

In this case, Eqs. (5.8) and (5.9), together with
the operations of the point group C4„, lead to the
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A„„„„=(e'/m*ao) (-0.828 777), (5.13)

(5.14)A, = (e2/m*ao) (—0.146 289),

A„„=(e /m*ao)(-1. 121356) .

The elements of the matrix C,"8'(q) are therefore
given by

(5 15)

C„"„'(q)= (-'e'/m*a, )

x (0.828 777q„'+ 0.146 289q'),

C(2)(q~) C(2&(q~)

= (-e /m*ao)(2. 242 712q„q ), (5.16b)

C('~(q) = (-e'/m*ao)(0. 146289q'„+0.828777q ) .
(5.16c)

(5.16a)

From these results and Eqs. (5.11)-(5.12) we
find for the corrections to the normal mode fre-
quencies of O(q'),

n(d', (q) = —(d', (a,q)'

x (0.131904+ 0.496 635q„'q,), (5.17a)

&(d2(q) = ~0(a,q)'

x ( 0.023 282 6+ 0.496 635q', q '„),

(5.17b)

result that there are only three independent non-
zero elements of the tensor A z„„. These are
A.„„„„,A„„„,and A„,„„. If we use Eqs. (2.1), (2.2),
(2.23), (2.24), and the results in Table I, we ob-
tain, for these coefficients,

have established is the two-dimensional analog
of that result.

B. Hexagonal lattice

For the hexagonal lattice, Eqs. (5.8) and (5.9)
together with the operations of the point group
C,„, lead to the result that there are only two in-
dependent nonzero elements of the tensor A z„„.
These are A„„„„andA„„„,with A„,„,
= —,'(A„„„„—A„„,). If we use Eqs. (2.1)-(2.5),
(2.23), (2.24), and the results in Table I, we find
we can write these coefficients as

A„„„„=[e'/m*(a, )'~'](-1.225 323),

A„„=[e /m*(a, )' '](0.245 065) .

The elements of the matrix C"8'(q) are therefore
given by

(5.19)

(5.20)

C(„"(q)= [e'/m*(a, )'~ )

x ( 1.225 323q„'+ 0.245 065q ), (5.21a)

C.",'(q) = C,".'(q)

= [e /m*(a, )' ](—1.470388q„q,), (5.2lb)

C,',"(q) = [e'/m*(a, )' ']
x (0.245 065q„' 1.225 323q,') . (5.21c)

From these results and Eqs. (5.11) and (5.12),
we find, for the corrections to the normal mode
frequencies of O(q'),

where we have introduced the notation ~~
=2ve2/m*ao3. If we add these results to those
given by Eq. (5.10), we find that through terms of
o(q'),

(d,'(q) = (o', (a,q) (u,'(a,q)'

«o', (q) = —(d~(0. 181483) (aoq)',

n(d2(q) = (d~(0. 036 296 7)(a,q)',

where we have defined

2we'/m*a, = (o~2a, .

(5.22a,)

(5.22b)

(5.23)

x (0.131904+ 0.496 635q„'q',),
~,'(q) = ~',(a,q)'

(5.18a) When we add these results to those given by Eq.
(5.10), we find that through terms of O(q'),

x (-0.023 282 6+ 0.496 635q~q2) . (5.18b)

We see that (d', (q) is negative for certain direc-
tions of q (e.g. , the [10] direction). Thus we have
the result that for small q the frequency of the
transverse branch &d, (q) is pure imaginary for
these directions of q, implying an instability of
the two- dimensional square Wigner crystal.
This result is in disagreement with that of earlier
work' which showed that (d, (q) is real for q along
the [10] direction.

The fact that the two-dimensional square lattice
is unstable is not too surprising. It is known"
that a simple cubic lattice in three dimensions in
which the particles in'teract with central forces
only is unstable against shear. The result we

(d', (q) = &u&(aoq) —v&(0. 181483)(a q)2, (5.24a)

~', (q) = &o~(0.036 296 7)(a,q)'. (5.24b)

We see that for the hexagonal lattice the fre-
quency of the transverse branch is real in the
long-wavelength limit. Consequently, the hexag-
onal lattice, unlike the square lattice, is stable
in this limit. In addition, these frequencies are
isotropic, in the sense that they depend on q„and
q, only in the combination (q'„+q2)'~'.

VI. LOW-TEMPERATURE THERMODYNAMIC FUNCTIONS

OF A TWO-DIMENSIONAL WIGNER CRYSTAL

The frequency distribution function (frequency
spectrum) g(&o) of a two-dimensional Wigner
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Bravais crystal can be written"

g(~) =—g 6(&u —&eJ(q)),
1

(6.1)

where N is the number of electrons, and the sum
on q is over the values in the two-dimensional
Brillouin zone allowed by periodic boundary con-
ditions.

The results of Sec. V enable us to obtain g(~) in
the limit of small ~ for the hexagonal lattice,
which suffices for a calculation of the thermody-
namic functions of this lattice in the low-tempera-
ture limit. From Eqs. (5.25) we find that for this
lattice

VII. DIELECTRIC SUSCEPTIBILITY OF A TWO-

DIMENSIONAL WIGNER CRYSTAL

B= (O, O, B), (7.1)

the equations of motion of the two-dimensional
Wigner crystal become (n, P=x, y)

In this section we obtain the dielectric suscep-
tibility of the two- dimensional Wigner crystal. It
is straightforward to carry out this determination
for the case that a static, external magnetic field
is present, directed normal to the plane of the
crystal, and we make this assumption here.

If we assume for the external magnetic field the
form

&u, (q) = (u~(a,q)'~'[1 —0.09074(aoq)],

v, (q) = re~(0. 1905)(a,q) .

(6.2a)

(6.2b)

m*u„(l) = —Q 4 8(ll')u~(l')

The dominant contribution to g(~) in the limit as
&u-0 comes from the branch ~,(q) in the present
case, because the frequency of this branch van-
ishes with vanishing q according to the largest
power of this wave vector. Thus, if we replace
summation over q in Eq. (6.1) by integration, and
use Eq. (6.2b), we find that

g(~) =—' dq q6(&u —0.1905&v~(a,q))+ O(v )

—Q e ~,u~(l) .eB
(7.2)

u, (l) = [W, (kur)/Wm*]e" r'" '"'

and obtain as the equations for the amplitudes
(W (k&u)],

(7.3)

In these equations e ~, is the I evi-Civita tensor.
We assume a solution of the form

1 0 3

4 (O. 19O5)' (6.3)
&u'W„(k~) = g C 8(k) WB(k&o)

Ql1

C„(T)= 2Nke d~g(~)
0 pT

x sinh' (6.4)

where the estimate of the remainder is made on
the basis of the leading term neglected in the ex-
pression for &o, (q) [of O(q')] and of the leading
term in &o, (q) [of O(q' ')]. This result is exact
in the limit of small e.

Use of Eq. (6.3) enables us to obtain the leading
term in the low-temperature expansion of the
thermodynamic functions of the electron crystal.
For example, the specific heat at constant volume
is given by

—2&d(d Q e~s~W~(k(0),
8

(7.4)

where the dynamical matrix C ~(k) has been de-
fined formally by Eq. (3.5), and a rapidly con-
vergent expansion for it is given by Eq. (3.10).
The frequency ~, is the cyclotron frequency
(eB/m*c). If we substitute Eq. (5.1) into Eq.
(7.4), and rearrange terms, we can write the
result as

2 2

'W, (k~). (7.5)
C g

~'W„(k&u) —g 6 8(k) W~ (4)) + iu&&o, p e ~, W(ke)

where ~~ is the largest normal mode frequency
of the crystal. In the low-temperature limit this
expression becomes

C.(7')= 01905 2~ @
&(3)+O(7')

&
(6 5)

3+k, a, k,T '

where g(3) is the Hiemann zeta function. This
result has the proportionality to T' characteristic
of the low- temperature specific heat of a two-
dimensional vibrational system. '

Our reason for writing the equations of motion in
this fashion is that the right-hand side of this
equation can be identified as arising from the
force exerted on each electron by the macroscopic
electric field in our system. This field, in fact,
is established by the long-wavelength vibrations
of the two-dimensional Wigner crystal.

To see this we note that the Coulomb field at
the point x due to the presence of a dipole at each
lattice site of a two-dimensional Bravais lattice
is given by
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a2 1~s s [ (I')[P
g 0! g

(7.6)
cd2W (flu) —g C' z(f) Wz(kct&)

where p(E) is the dipole moment at the lth lattice
site. If we assume that the dipole moment varies
from site to site and with time according to

p (I) p (f~) ei &tR cl &-input (7.7)

~ (R+Q) (k+G), ;c&...5&.g

(7.8)

In the limit of small jk~, which is the case of
interest here, the term with 6= 0 in this expres-
sion gives the contribution to the electric field in
the crystal which varies very slowly from unit
cell to unit cell, while the terms with GAO give
the contributions to the field which vary rapidly
over the area of each unit cell. Their spatial
average over the area of any unit cell also van-
ishes in the small- ~f j

limit. The macroscopic
electric field in the crystal is therefore given by

and use the two-dimensional Fourier expansion of
jx~ ', Eq. (2.9), we can rewrite the Coulomb field
in the form

+ i&urn pe z WB(fcd)=~ E (fcd). (7.14)

where

( cd V,(f) V„,(f) —i +cd,)
xi

C„,(k) + i cdcd, cd' V„„(k) f
f E„(fcd))

xl
E,(fco

(7.15)

D(fcd) = ~'- cd'[C„„(f)+V„(f)+&o', ]

+ V„„(k)C (k) —C„~(k), (7.16)

and use has been made of the symmetry relation

v„,(f) = V„(f).
The polarization in the two-dimensional crystal

due to the electronic displacements is

These are the time-independent equations of mo-
tion of a two-dimensional crystal composed of
charges driven by an external electric field, in the

presence of a static external magnetic field.
Equation (7.14) is readily solved to yield the

relation between the amplitudes W (fv) and
E (fcd):

fW„(fed)&
v m*D(k~)

with

Ee(x) =E (f(u)et" (7.9)

(V. 10)

P (x) = gP (l)5(x- x(l))

p (f(g)ei't'x tet Q et6'&t

C

(7.17)

p, (I) = —eu„(l)

= —e[W (kct&)/am*]e'"'" " '"' (7.11)

Comparison of Eqs. (7.7) and (7.11) shows that in

this case

p, (fcd) = —eW, (fcc&)/~m*. (7.12)

The amplitude of the macroscopic field E (fcd),
Eq. (7.10), established by the atomic motions is
therefore

Now, if the lth electron is given a displacement
u (l) from its equilibrium position, the dipole
moment induced at that site is

In the limit of small ~f
~

it is the 6= 0 term in

this sum which gives the macroscopic polarization
in the crystal

P (x) = P„( fc)de
"t (V. 18)

where

P (fcd) =—p, (fed) =— (V. 19)
at m*a,

and where the latter expression applies to the
amplitude of the macroscopic polarization created
by the displacements of the electrons from their
equilibrium positions.

If we substitute the expressions for W, (fcd)

given by Eq. (7.15) into Eq. (7.19), the result can
be written in the form

k~k~E,(f~)= ~ p ' 'W~(fcd). (V. 13) P, (f~) = g &i,"J (f&o)E, (E&), (7.20)

We now return to Eq. (7.5) and use the result
expressed by Eq. (7.13) in it to obtain

where the elements of the susceptibility tensor
&t"~'(f&u) are given explicitly by
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(,) )
e' (O'- V„(k)

m+a~ D(k(d)

~(e) (k&) ~(e)(k&) s

e' V„,(k) —i(d(d,
82+a~ D(k(())

(~)(~ )
e (d —V„„(k}

D(k&u)

(V. 2 la)

(7.21b)

(7.2 lc)

We can use these expressions, together with the
results of Sec. V, to write out explicitly the ele-
ments of the susceptibility tensor for a hexagonal
crystal in the long-wavelength limit. For this we
approximate the elements of the matrix P,,s(k} by
the elements of the matrix C„"~)(k), which are given
for this case by Eqs. (5.21). In this way we obtain

(,) (&~ao (d —(()~(0.036 297$„—0.18148$', )
2r &d'+ (d'(0. 14524)'$' —(d') —0.006587(dp'$' '

(d~a, —(d~(0. 217 780) $„$,—i+&(),
2~)) (d'+ &v'(0 1452(d'$' —u&') —0.006 587(d'$' '

(,) ~ (dqao (() —(d~2(-0. 18148@+0.36297)~)
2' (()'+ (d'(0. 1452(d'$' (()') —O. OO6 587(0'$' '

(7.22a)

(7.22b)

(7.22c)

where we have defined

$, =a,k„, ),=a@,. (7.23)

aF)(q) = &o, + (d&(aoq) —(d&(0. 145 186)(a q)'

—((d~/v,')(0.036 296 7)(a,q)'+ O(q'), (7.23a}

(d2(q) = ((o~/(d', )(0.036 296 7)(a,q)'+O(q') . (7.23b)

On comparing these results with the corresponding
ones obtained in the absence of the magnetic field
and given by Eqs. (5.24), we see that the fre-
quencies are still isotropic to this order in q.
The principal effects of the magnetic field are the
raising of the frequency of the higher-frequency
longitudinal branch so that it tends to the nonzero
limit co, as q - 0, and the replacement of the
linear dependence on q of the frequency of the
lower frequency, transverse branch by a q' ' de-
pendence. These results are in agreement with
those recently obtained by Fukuyama. '7

VIII. PLASMA OSCILLATIONS OF A TWO-DIMENSIONAL

WIGNER CRYSTAL

The results of Sec. VII enable us to obtain the
dispersion relation for the plasma oscillations of
a two-dimensional Wigner crystal. The necessary
theory has been worked out by Chiu and Quinn, '
who assume that a two-dimensional electron gas
occupies the plane z = 0 in a medium whose dielec-
tric constant is qo. A constant magnetic field
normal to this plane is present. They look for

We conclude this section by pointing out that if
we substitute the sum of Eqs. (5.9) and (5.21) into
Eq. (7.4), we obtain for the frequencies of the nor-
mal modes of vibration of the hexagonal Wigner
crystal, in the long-wavelength limit and in the
presence of the magnetic field (7.1),

solutions of Maxwell's equations for an electro-
magnetic field which propagates in the y direction
and whose amplitude decays exponentially with
increasing distance from the plane z = 0. They
find that such a solution exists provided that the
following dispersion relation is satisfied:

)„",'(ka)-, (y„",'(fa)+ '
)

(8 2)

where c is the speed of light.
In the case that there is no external magnetic

field, Eq. (8.1) reduces to the pair of equations

cd ap 0
2g 0.036 297{d2) —v 2na v

(8.3a)

2 2 -i/2
co~ao

0.].83.48m&$'+ (o' 2w ' c
(8.3b)

where we have used the results given by Eqs.
(7.22) for the elements of the dielectric suscep-
tibility tensor, and have set aP, =).

Equation (8.3b) can be solved analytically, with
the result that 0 —= (d/(d~ is given by

n'= ———+ 0.362 96('
2 &o

~4 ~Z 4
—1/2

+ —,+ 0.72592—+~ $'
&o &o

(8.4)

where for convenience we have set X = a,&o()/c.

This dispersion curve is plotted in Fig. 3, as the

y„',"(k(d)y,"„'(k(d) = 0. (8.1)

In this equation, k=(o, k,) and

I3 =k,'—&,~'/c'&0,
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value of the background dielectric constant &,
assumed in these calculations. Indeed, we have
carried out calculations of this dispersion curve
for smaller values of &0, e.g. , 2, and find that 0'
remains positive for values of $ out to the
Brillouin zone boundary. " In this regard it
should be kept in mind that because we have used
only the leading term in the small g expansion of
the matrix elements C z(k) entering the definition
of y'z'(k&u), the dispersion curves we present are
probably not reliable for values of $ much larger
than a few tenths.

Equation (8.3a) is not readily solved analytically.
We have therefore solved it numerically for the
values of the parameters given above. The result
is also plotted in Fig. 3, as the curve labeled 0„,
because it is the solution of the equation
)(„"„'(ke)—Pc'/2v&u'=0, with ar, =0. In the limit of
small $, it has the form

0 —= [0.036 297/(X'+ $)]('. (8.6)
FIG. 3. Dispersion curves for the high (0 ) and low

(0„) frequency branches of the dispersion relation for
the plasma oscillations of a two-dimensional hexagonal
Wigner crystal imbedded in a dielectric medium whose
dielectric constant is eo —16. These curves are com-
puted for zero external magnetic field. The curve la-
beled 0„is the solution of Eq. (8.3a); the curve labeled
0 is the solution of Eq. (8.3b).

curve labeled Q„because it is the solution of the
equation y,',"(k&o)+e,/2vP=0, with &u, =0. The fol-
lowing values of the parameters have been used:
&0 16, ao= 1000 A, m*= m„where m, is the
electronic mass. With these values of the param-
eters ~~ = 4.826 x 10" rad/sec, and X = 1.4297 x 10 '.
In the long-wavelength limit this curve is asymp-
totic to the light line, i7= $/co A. (&o=ck /eo ).

Three comments should be made about the dis-
persion curve given by Eq. (8.4) and plotted as the
curve 0, in Fig. 3. The first is that it is the
analog of the result obtained for a two-dimensional
electron gas by Chiu and Quinn' in the absence of
an external, perpendicular magnetic field, in the
sense that the only solution of Eq. (8.1) for &u, = 0
they found was the solution of the equation

y,',"(k&u)+ e,/2vP= 0. The second is that the bending
over of this curve for (=0.35 is due to spatial
dispersion, i.e. , to the k dependence of the sus-
ceptibility )(,",'(k&o). Indeed, if the k dependence of

y,",'(ken) is neglected, the solution of the equation
(khan)+t /27fp0= 0 is

II' = —,'[-X'/e, + (I/e, )(X'+ 4$')'~'], (8 6)

a monotonically increasing function of $. Finally,
the fact that this curve bends over so sharply
that Q' goes to zero at (= 0.35 is due to the large

It should be pointed out that the equation

)t„„"(kv)—Pc'/2n(u = 0 has a solution for &o, = 0 in

the present case only because of spatial disper-
sion. If the f dependence of the left-hand side of
Eq. (8.3a) were neglected, this equation would

have no solution.
In the presence of a magnetic field it is neces-

sary to solve Eq. (8.1) numerically. We have
carried out these calcul3tions for (d, = 0.1+~,
~, = co~, and co, = 5m~, corresponding to magnetic
fields of 274, 2744, and 13718 6, respectively.
In the presence of the magnetic field the disper-
sion curves change markedly from what they are
in the absence of the field. The curve we have
labeled 0„ in Fig. 3 develops a gap, and now in-
tersects the light line at a frequency close to
&o,(Q= v, /e~), instead of tending to zero with
vanishing g. This branch is depicted for the
three different values of a, in Fig. 4. [Strictly
speaking, it is perhaps incorrect to refer to this
branch of the plasma dispersion curve as the 0„
branch, since in the presence of the external
magnetic field it is a solution of the entire disper-
sion relation (8.1), rather than a zero of the first
factor on the left-hand side of this equation. How-
ever, for very small ~„ the effect of the last
term on the left-hand side of Eq. (8.1) on the so-
lutions of that equation is negligible in first ap-
proximation, so that even in the presence of an
external magnetic field the dispersion curves are
given by the zeros of each of the first two factors
in this limit. This is the basis for our labeling
of the solutions in the presence of the external
field. In our work, however, the entire dispersion
relation (8.1) was solved for nonzero v, to obtain
the curves shown in Figs. 4-6.] The dispersion
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FIG. 4. Form the dispersion curve Q„of Fig. 3 takes
in the presence of a static external magnetic field di-
rected perpendicularly to the two-dimensional Wigner
crystal.

FIG. 6. Enlarged portion of Fig. 5 showing the magnet-
ic field dependence of the lower frequency branch of the

Q~ dispersion curve for values of $ close the critical
value at which the dispersion curve goes to zero.
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FIG. 5. Form the dispersion curve 0 of Fig. 3 takes
in the presence of a static external magnetic field di-
rected perpendicularly to the two-dimensional signer
crystal.

curves shown in Fig. 4 are virtually independent
of $ in the range 0&(~1, and have values close
to the limiting value of +, over this entire range
of $. This is the more pronounced the larger ~,
is. It is due to the fact that the terms +'- (d'~,'
dominate the others in the denominator of
yI'„I(k&u) in the range of f considered, with the
numerator never changing sign in this range.

The curve labeled 0, in Fig. 3 splits into two

branches in the presence of an external magnetic
field. This is shown in Fig. 5, for three different
values of co,. The lower frequency branch can be
thought of as the 0, branch of Fig. 3, depressed
in frequency by the external magnetic field. For
nonzero co, it bends over and goes to zero at the
same value of $ as in the case of no external mag-
netic field. This critical value of $ is determined
by the condition that y,',"(k&u) be larger than

&,/2IIp at +=0, and is independent of co,, The be-
havior of the lower-frequency branch as a function
of $ in the vicinity of this critical value of f is
shown enlarged in Fig. 6, for three values of cd, .

The higher frequency branch which develops in
the 0, dispersion curve for nonzero v, resembles
the curve Q„goes into in the presence of an ex-
ternal magnetic field. It also intersects the light
line at a frequency close to ~„but lies slightly
above the Q„curve. It is largely dispersionless,
particularly for values of ~, & +~. It has the same
origin as that of the gap that develops in the 0„
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branch for nonzero co„ the fact that the denomina-
tor of y,'"(k&u) is dominated by the terms
(o —(o (u, . However, the fact that there is a
second branch in this case is due to the fact that
the numerator of y,",'(k&o) goes through zero at
0 = 0.19(, in addition to the denominator changing
sign at + = +„which affords the possibility of the
factor y,',"(k&o)+ e,/2vP vanishing for two values of
~ for each value of (. The actual root is modified
slightly by the presence of the last term on the
left-hand side of Eq. (8.1), but this does not alter
the qualitative explanation of the existence of two
roots in this case.

IX. CONCLUSIONS

In this paper we have studied several static and
dynamic properties of a two-dimensional Wigner
crystal. By calculating the static ground-state
energy for each of the two-dimensional Bravais
lattices we have determined that the hexagonal
lattice has the lowest energy of all structures of
this type.

We have obtained the phonon dispersion curves
along the symmetry directions in the two-dimen-
sional Brillouin zone for the hexagonal crystal.
In contrast with the dispersion curves for a three-
dimensional Wigner Bravais crystal, in which the
frequency of the longitudinal branch tends to a
nonzero limiting value with vanishing wave vec-
tor, the dispersion curves for both branches of
the spectrum of a two-dimensional Wigner
Bravais crystal vanish with vanishing wave vector,
the longitudinal branch as q', the transverse
branch as q." Our results, in the case of a
hexagonal crystal are qualitatively similar to
those of Platzman and Fukuyama' for the same
crystal, but there are some quantitative differ-
ences between them. These may be due to the
fact that these authors calculated the elements of
the dynamical matrix by evaluating the slowly
convergent sums in Eq. (3.6) by direct summation
over the sites of the direct lattice, rather than by
first transforming them into rapidly convergent
expressions as we have done here. As a result,
numerical inaccuracies may have entered the re-
sults obtained by Platzman and Fukuyama due to
the use of poorly converged values for the ele-
ments of the dynamical matrix. We also find that

the dispersion curve for the transverse branch
along the direction (q„, 0) exhibits an anomalous
upward curvature Bt about half the distance to the
Brillouin-zone boundary, a feature which had not
been noted in previous work. "'

In contrast with the results of earlier calcula-
tions' we have also found that the square lattice is
unstable in the long-wavelength limit.

The results for the normal-mode frequencies
of the hexagonal crystal have been used to obtain
the zero-point energy of the crystal, and the low-
temperature specific heat, as a representative of
the vibrational contribution to the thermodynamic
properties of such a two-dimensional Wigner
crystal. The latter property possesses the pro-
portionality to the square of the absolute tempera-
ture, characteristic of the low-temperature spe-
cific heat of two-dimensional vibrating lattices.

Finally, we have studied the response of a two-
dimensional Wigner crystal to a macroscopic
electric field in the presence of a static, external
magnetic field, and have obtained in this way the
dielectric susceptibility of the crystal as a func-
tion of frequency and wave vector. The general
expressions obtained have been evaluated in the
long-wavelength limit for the hexagonal crystal,
and the result used to obtain the dispersion rela-
tion for the plasma oscillations of the two-dimen-
sional Wigner crystal embedded in a three-dimen-
sional dielectric medium in the presence of an
external magnetic field. The dispersion curves
obtained differ qualitatively from those obtained
for a two-dimensional electron gas by Chiu and
Quinn' in possessing two branches, whose fre-
quencies vanish with vanishing wave vector (jn
zero external magnetic field). The existence of
these two branches may well be the single most
characteristic feature of the two-dimensional
Wigner crystal in comparing it with a two-dimen-
sional electron gas. In the presence of an exter-
nal magnetic field these dispersion curves are
shifted, and new branches appear, which have no
counterpart in the zero-field case, and which
have no obvious counterpart in the dispersion
curve for the plasma oscillations of a two-dimen-
sional electron gas. ' Observation of these fea-
tures in the dispersion curves for a two-dimen-
sional Wigner crystal would provide striking
evidence of the crystallinity of the system.

*A short account of this work was presented at the In-
ternational Conference on Electronic Structure of
Quasi- Two-Dimensional Systems, Brown University,
Providence, R. I., August, 25—28, 1975.
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E. P. Wigner. , Phys. Rev. 46, 1002 (1934).
See, for example, (a} K. Fuchs, Proc. R. Soc. Lond. 151,
585 (1935); (b) E. P. Wign. er, Trans. Faraday Soc. 34,



SOME STATIC AND DYNAMICAL PROPERTIES OF A. . .

678 (1938); (c) C. B. Clark, Phys. Rev. 109, 1133
(1958); {d) R. Brout, ibid. 113, 43 (1959); (e) R. A.
CoMwell-Horsfall and A. A. Maradudin, J. Math. Phys.
1, 395 (1960); (f) W. J. Carr, Jr. , Phys. Rev. 122, 1437
(1961); (g) W. J. Carr, Jr. , R. A. Coldwell-Horsfall,
and A. E. Fein, ibid. 124, 747 (1961); (h) S. J. Laster,
M. S. thesis (Southern Methodist University, 1962) (un-
published); (i) F. W. de Wette, Phys. Rev. 135, A287
(1964); (j) H. M. Van Horn, ibid. 157, 342 (1967); (k)
S. F. Edwards and A. J. Hillel, J. Phys. C 1, 61 {1968);
(l) A. Bagchi, Phys. Rev. 178, 707 (1969); (m) L. L.
Foldy, Phys. Rev. B 3, 3472 {1971); (n) C. K. Majum-
dar and A. Bagchi, ibid. 7, 1850 (1973); (o) W. G.
Kleppmann and R. J. Elliott, University of Oxford re-
port 29/75 (unpublished); (p) R. J. Elliott and W. G.
Kleppmann, University of Oxford report 30/75 (unpub-
lished) .

A. V. Chaplik, Zh. Eksp. Teor. Fiz. 62, 746 (1972) [Sov.
Phys. -JETP 35, 395 (1972)].

R. S. Crandall and R. W. Williams, Phys. Lett. A 34,
404 (1971).

~R. S. Crandall, Phys. Rev. A 8, 2136 (1973).
6P. M. Platzman and H. Fukuyama, Phys. Rev. B 10,

3150 (1974).

VF. Stern, Phys. Rev. Lett. 18, 546 (1967).
8K W Chiu and J. J. Quinn, Phys. Rev. B 9, 4724 (1974).
G. Meissner, H. Namaizawa, and M. Voss, Phys. Rev.
B 13, 1370 (1976).
P. P. Ewald, Ann. Phys. (Leipz. ) 54, 519 (1917); 54,
557 (1917); 64, 253 (1921).

~~R. Dh. Misra, Proc. Gamb. Philos. Soc. 36, 173 {1940).
~ S. I,. Cunningham, Phys. Rev. B 10, 4988 (1974).
~3This result was first pointed out in A. A. Maradudin

and L. Bonsall, Bull. Am. Phys. Soc. 20, 489 (1975).
~4See, for example, M. Born and K. Huang, Dynamical

7.'heory of Cxysta/ Lattices (Oxford U. P. , Oxford,
1954), p. 152.

~~See, for example, A. A. Maradudin, E. W. Montroll,
G. H. Weiss, and I. P. Ipatova, Theory of Lattice Dy-
namics in the Harmonic Approximation (Academic,
New York, 1971), Sec. IV. 2.

~~Reference 15, Sec. IX. 4.
'VH. Fukuyama, Solid State Commun. 17, 1323 (1975).
~ Lynn Bonsall and A. A. Maradudin, in Proceedings of

the International Conference on Electronic Structure of
Quasi- Two Dimensional Systems, Brown University,
Providence, R. I., August, 1975 (unpublished).


