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Auger widths of core levels in metallic sodium and lithium
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The Auger decay rates of the 1s level in lithium and 2p level in sodium are calculated using a diagrammatic
many-body technique. The lowest-order nonvanishing contribution to the self-energy of these core states gives

Auger widths of the order of 10 eV for Li and 10 " eV for Na. However, higher-order terms are found to
diverge showing that a renormalized theory must be used for such calculations. We find that for systems with

low-lying excitations, there is a many-body mechanism which enhances the Auger width. Using a self-

consistent renormalized theory, we find widths of the order of 20 meV for both Li and Na. The sodium result

is consistent with predictions based on observed soft-x-ray spectra, but for lithium it is still one order of
magnitude. too small to be able to attribute the observed threshold behavior as purely due to an Auger core-
level width.

I. INTRODUCTION

Core-level spectroscopies have evoked much in-
terest recently as probes of the electronic struc-
ture and surface composition of solids. Soft-x-ray
emission and absorption, appearance-potential
spectroscopy, x-ray photoemission, etc. , make
use of the spectra associated with electron transi-
tions between a localized core state and the con-
duction band. In each case the assumption that the
width of the core energy level is negligible simpli-
fies the theoretical interpretation of the spectrum.
However, there are features of the spectra, even
for simple metals, which are difficult to explain
without invoking a finite core lifetime. For ex-
ample, Dow and co-workers' have stressed the
importance of core width for explaining the thresh-
old behavior of lithium soft-x-ray spectra. An ef-
fective core width can arise from processes such
as phonon interactions and nonradiative (Auger)
deexcitation. In this paper we reconsider Auger
broadening and show that in systems with low-ly-
ing excitations there is a many-body mechanism
which can enhance the Auger width. For sodium
and lithium the width is increased by more than an
order of magnitude over that found from a direct
Auger calculation.

In 1940, Skinner' in his classic study of x-ray
spectra proposed a natural core width of the order
Qf 10 ' eV for sodium and 10 ' eV for lithium.
These values were derived from the experimental
spectra interpreted with a one-electron model of
the transition. Later, McAlister' showed that the
shape of both emission and absorption thresholds
of lithium could be explained entirely in terms of
one-electron band theory if a Gaussian broadening
function were convoluted with the theoretical spec-
tra. Bitsko et a/. 4 determined the Gaussian broad-
ening function by convoluting with a step discon-

tinuity at the threshold energy. Both estimated that
the full width at half maximum of the 1s level in
lithium is about 0.5 eV. However, calculations of
the Auger width to lowest order' give a width which
is two orders too small to explain the lithium spec-
tra.

An alternative approach was developed by Mahan'
and by Nozieres and co-workers' who studied
many-body effects on the x-ray spectra. Nozieres
and de Dominicis8 (ND) considered the effect of
switching on or off the localized core-hole poten-
tial and found that perturbation theory was inade-
quate to describe the process. A nonperturbative
solution valid near the threshold but neglecting
lifetime effects showed that the x-ray intensity
was enhanced for I spectra and was diminished for
K spectra at the threshold. These results are
qualitatively correct. ' But the falloff of the Li
spectrum is not so rapid as the many-body theory
suggests.

The ND theory is only valid very close to the
threshold. Longe" used a first-order theory to
study the ND effect away from the edge and found
that the edge singularity was not strong enough
to explain the premature peak observed in the
emission K bands of Li and Be. He suggested that
the p-scattering resonance discussed by Allotey"
was the dominant factor. Mahan" suggested that
the ND theory could be extended over the whole
spectrum by means of a convolution with a broad-
ening function, and that the Li data could be fit if
the core width was on the order of 0.2-0.3 eV.
However, his theory leaves out conduction-electron
lifetimes which are important away from the
edge

Dow eI; al. ' claimed that the Li threshold be-
havior can be attributed to an indirect interaction
of the 1s core level with the lattice which gives the
core an effective width of 0.46 eV. Bergersen et
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al. ' questioned their result, claiming that the Dow
process is no different than the direct interaction
of the core level with the lattice vibration. The
latter process" gives an insufficient width of the
order of 50 meV at zero temperature for Li and
Na. They attributed the larger width found by Dow
et al. to an overestimation of the amplitude of the
local dilation and compression fluctuations. He-
din" in a recent recalculation of the phonon effect
claims that there is an enhancement due to Friedel
oscillations in the electron-phonon interaction.
Using an Ashcroft-type pseudopotential, he finds
temperature-dependent widths on the order of
tenths of an electronvolt.

Franceschetti and Dow" calculated the Auger
width for atomic Li and found that orbital relaxa-
tion could enhance the width by a factor of 16.
They proposed that this effect could also enhance
the Auger width for metallic Li. We used a simple
model to study the Auger widths for atomic Li and

19
Na and found similar results to theirs. However,
when we apply the same technique to the metallic
cases, the Auger widths for both metallic Li and
Na are not appreciably affected by orbital relaxa-
tion.

In summary it appears that there is still no gen-
erally accepted explanation for the core-level
widths inferred from observed soft-x-ray spectra.
In the present paper we consider the nonradiative
or Auger width of the core level and go beyond the
lowest-order calculations of Bergersen et al. ' and
Kobayashi and Morita. " We use a Feynman dia-
grammatic technique to calculate the self-energies
of the 1s level in Li and 2P level in Na. The low-
est-order contribution to the imaginary part of the
self-energy is found to depend strongly on the be-
havior of the conduction-electron wave function in
the neighborhood of the core hole. We then pro-
ceed to a higher-order graph and find it to be di-
vergent. Thus perturbation theory is not valid and
a renormalized theory is necessary. A renormal-
ized core-hole propagator is introduced which in
itself depends on the lifetime which we are trying

II. LOWEST-ORDER CALCULATIONS

The half-width of the core state is simply related
to the imaginary part of its self-energy evaluated
on the energy shell

I" = ImZ(ua),

where eB contains the shift from the unperturbed
energy E~ due to the real part of the self-energy,
i.e., e~ is the solution of

ua =Ea+ ReZ(wa). (2)

In terms of Feynman-type diagrams, the lowest-
order nonradiative contributions to the self-energy
are shown in Figs. 1(a)-1(c). The dashed lines
represent Coulomb interaction between electrons.
Upward-directed single lines represent conduction
electrons in states above the Fermi level and
downward single lines represent holes in the filled
portion of the conduction band. A downward-di-
rected double line represents a hole in the local-
ized core level whose self-energy we are attempt-
ing to calculate.

Figure l(a) represents the excitation of a parti-
cle-hole pair due to polarization of the electron
gas by the core hole. However, it is usually ar-
gued that since the core hole does not change en-
ergy in the transition to the intermediate state,
energy can not be conserved. Thus this graph rep-
resents a virtual process which can give rise to an
energy shift, but not to a lifetime. We will recon-
sider this argument in Sec. III.

Figure 1(b) is the usual Auger process and Fig.
1(c) is an exchange term which differs in sign and
lacks a factor of 2 which enters the direct term
due to spin. These two terms give rise to a core-
s tate s elf -ener gy Z „(v):

to calculate. Treating the half-width as a param-
eter, we seek a self-consistent solution and find an
enhanced width of 20 meV for both Li and Na. Sec-
tion IV contains a discussion of the results and
summary.

Z~, ((g) = — Q~ .' ."v(k„)f,(k„—k„) [2v(k„)f,(k„—k„) —v(k, +k„—k~)f,(k„—k, —k„+k,)]
j k k k

1 2 V

X G (k (g + +) G (ki~ (8i) G(kg + k„~ Q)
g + (0~)gl

where the vertex function

f,.(k„k„)=(u,'. (r) ~e'" '~u; (r)) (4)

represents a transition from a conduction state of
momentum k, to a core state which is /-fold de-
generate. j is a degeneracy index (j =1, 2, 3 for the
2p state and we neglect spin-orbit splitting). The

core wave functions were constructed using Sla-
ter's rules. " Three sets of conduction states were
considered in evaluating Eq. (4): (i) simple plane
waves, (ii) plane waves orthogonalized to the core
states, and (iii) plane waves orthogonalized to a
relaxed set of core states; i.e., core states con-
structed to account for the reduction in screening
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FIG. 1. Core-state self-energy diagrams: (a) lowest order; (b) Auger self-energy; (c) exchange graph.

when one core electron is absent. The appendix
contains explicit expressions for the wave func-
tions and matrix elements. For v(k), the electron-
electron interaction, we used a Thomas-Fermi
screened Coulomb potential. G(k, &u) is a bare
propagator for a conduction electron in a state of
momentum k and energy E„=k'/2m:

G (k +) 8) Ik(
(d —Ep + $X (0 —E& —lA.

where

0 otherwise

gg) —1 —'gg&i

is an infinitesimal positive number.
To find the lifetime resulting from these graphs

we must evaluate Z~, (u) on the energy shell &u

= ms where (us is determined from Eq. (2). To find

(d~ we need the complete self-energy. Now Fig.
l(a) cannot be neglected. Its contribution to the
self- ener gy is

E (~) = —ggg .' ."Iv(k„)g, ,(k„) I' Gs((d+ (d„)G(k„&u,)G(k, +k„, &u+ ru„),
et jf g s. tlat 7JZ

1
I

(6)

where

g, ,(k„)=(usj(r) Ie'" 'Ius(r))

is a core-core vertex function and

Gs((u) =i/((u —E, —iX)

is the bare core-state propagator, where Es (&0)
is the unperturbed core-state energy. The matrix

elements g, ,(k„) and f,(k„k„) are given in the Ap-
pendix. For both lithium and sodium one finds that
the g, ,(k„) are much larger than the f~(k„k„) due to
poor overlap of conduction and core wave func-
tions. Consequently the contribution from Fig. 1(a)
is larger by a factor of 10' than those from Figs.
1(b) and 1(c). After integrating over frequencies,
Eq. (6) becomes

The real part and the imaginary part of the self- energy are then

ReZ ((d) I
ZZg 'l7k &I)k k ) Iv(k )g '(k ) I E E E (9)

and

1m', (~) =
I ~~ ~&k,())i,.i„)I"(k )g „(k ) I 6(Ei, +Ea —~ —Ei,.i).

edkgk
(10)

Equation (9) was evaluated numerically as a func-
tion of frequency with the aid of the UNIVAC 1108
computer of the University of Maryland. The re-
sults are summarized in Figs. 2 and 3. A simple

graphical method can be used to find the root of
equation (d= EsR+eZ, (v). In Figs. 2 and 2, II

=ReZ, (&u) is plotted as a function of (m —Es) for the
case of lithium and sodium, respectively. The re-
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W'ave function
Orthogonalized Relaxed

Yes Yes

No

No No

I'0 {eV)=ImZ~{~z)
Na Li

0.67x 10 ' 0.90x 10

0.44x 10-' 0.16x 10-'

0.13x 10-2 0 23x ].0-2

TABLE I. Auger half-width of the core levels in sodi-
um (2p state) and lithium (ls state) for different choices
of conduction-electron wave functions used in Eq. (4).

In x-ray emission and absorption, certain high-
er-order graphs are singular and have a strong
effect on the shape of the spectrum. There are
higher-order Auger graphs which have a struc-
ture similar to those graphs. We now show that in
the next order there is a term of this type which
diverges, showing that the Auger calculation pre-
sented above is not complete. Then. we will be led
to a renormalized calculation which gives an en-
hanced Auger width.

a much weaker effect. Indeed, even the direction
of the relaxation effect is not apparent a priori.
Relaxation broadens the sodium level but narrows
the level in lithium. These results can be under-
stood by noting that k, is restricted by the 6 func-
tion in Eq. (3) to take values two or three times
the Fermi wave number. The oscillations of the
conduction wave function in the core region, ac-
counted for by the orthogonalization terms, re-
duce the matrix element significantly, but small
changes in the phase of the oscillation introduced
by relaxation apparently have little effect when k„
is so large. For the atomic case where k, and k2
are replaced by localized levels, k„ is not restrict-
ed to large values. [Note that here we can neglect
orthogonalization corrections to conduction-elec-
tron-conduction-electron vertices since such cor-
rections are of higher order in the vertex func-
tions f;(k„k„)and are small. j

III. HIGHER-ORDER DIVERGENCE AND

SELF-CONSISTENT CALCULATION

Singularities in core-level spectroscopy arise
as a transient response to the disappearance of the
impurity-like potential associated with the core
hole. Low-energy electron-hole pairs are created
virtually by scattering off the localized potential.
When a conduction electron falls into the core state
the potential disappears and the electron-hole
pairs are left in real excited states. If sufficient
phase space is available these excitations can give
rise to peaks in the spectra. This mechanism is
the source of the threshold singularities in soft
x-ray spectra. ''" Analogous terms which can
contribute to the Auger width are shown in Fig. 4.
Through fourth order in the Coulomb interaction,
only Fig. 4(d) exhibits a divergence of this type.

Applying Feynman's rules the contribution of
this graph is

Z„(~)=—gPgZ ZZ .' .' ." . G(k» ~,)G(k, +k„, ~, +w„)
y»~ »» q

x G(k„&u,) G(k, + q, &u, + 0) G(k„v+ 0+ ur„)[Ga(ur + 0)]'
x ~g, ,.(q)f,.(k„, -k, ) ~' ~v(q)zr(k„) ~'. (15)

After integrating over frequencies,

4d( B) I ~~~~~~ ~k (~k +k+1)k ( Uk +k &r)l ( lg .(q)f (k —kp) U(q) U(k )
~

e, j»»» g»
V

The integral in Eq. (16) is divergent for E;;. '3"
=E» . Thus perturbation theory is not valid. To

3
incorporate such terms completely in the calcula-
tion it would appear to be necessary to use a theo-
ry analogous to that of Nozieres and de Dominicis. '
Natta and Joyes" studied the Auger process from
this point of view, but in their solution, as well as
the ND solution for the soft-x-ray case, one only
obtains an asymptotically valid solution for a
threshold energy, here equivalent to E» =E~, the

'2.
Fermi energy. In Eqs. (13) and (16) an integra. l

over E» is required.
Rather than attempt a full solution to the ND

problem we note that Fig. 4(d) ca.n be viewed in
two ways. Above we considered it to be a correc-
tion to Fig. 1(b). It can also be viewed as a cor-
rection to Fig. 1(a), in which the intermediate-
bound-state propagator has a self-energy inser-
tion. When the self-energy of the core state is
taken into account this term's contribution to the
Auger width no longer vanishes, indeed it is singu-
lar. Thus perturbation theory is not valid and a
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FIG. 4. Selected higher-order terms contributing to
the Auger width. All of these graphs contain electron-
hole pair creation due to scattering by the core hole.
Graph (d) gives a divergent contribution.

renormalized theory is necessary. We therefore
sum all self-energy processes as shown in Fig. 5.
This procedure is equivalent to recalculating the
contribution to the self-energy from the lowest-
order graph as shown in Fig. 1(a) except that now

the core-state propagator contains a self-energy
which we denote by ReZs(ar)+ir

r = r, + Imz."(~„r), (20)

where I'o = ImZ', (u&s).
The final expressions for ImZ, for Li and Na

were obtained by numerical calculations and are
plotted in Figs. 6 and 'l. By solving Eq. (20)

We evaluate ImZ," as a function of I' and then
require self-consistency so that I' is obtained from
the equation

GB(~)
&u —Es —ReZs(ar) —ir e —es —ir '

where &os =Es+ ReZ, (vs) and I' is treated as a
parameter. Similar to Eq. (10) we have now

~ ~
V

I

~(I

(Z)

U

UJ

FO

io

FIG. 5. Schematic representation of the Dyson's equa-
tion satisfied by the renormalized core propagator.
Double shaded line represents the renormalized core-
hole propagator. Double line without shading represents
the noninteracting propagator. Z represents the sum
of all proper self-energy parts, of which the lowest-or-
der terms are shown.

FIG. 6. Imaginary part of the core self-energy due to
Fig. 1(a) with renormalized core propagator, plotted
against F for Li. Intersection of the ImZ curve and the
straight line gives the solution of the equation I'= Ip
+ Im~ where I p

= Im~y q (g) ~
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FIG. 7. Imaginary part of the core self-energy due to
Fig. l(a) with renormalized core propagator, plotted
against I" for Na. Intersection of the ImZ curve and the
straight line gives the solution to the equation I" —. I'p

+ImZ, where I'p ——ImZ& (vz). Straight solid line is I p

calculated using orthogonalized and relaxed conduction-
electron wave functions. Dashed line is I'p calculated
with simple free-el. ectron wave functions.

graphically, we find that:

I' = 0.37 x 10 'E~ = 17 me V for I.i,
I =0.60x10 'E~=19 meV for Na,

(21)

where we have used E~=4.7 eV for Li and E~= 3.1
eV for Na. These results are not very sensitive to
I;. Inthecaseof sodium, where the difference be-
tween the calculated values of l, with and without
orthogonalized wave functions is so large (see Ta-
ble I), neglect of orthogonalization would shift the
I' —I „curve to the dashed line in Fig. 7. Our re-
sult for I' with this omission is I =0.81 x 10 Z~
=25 meV. Thus the renormalization theory gives
a level half-width which is one order larger than
previously found for lithium and several orders
larger than the best Auger value for sodium. For
both materials we find half-widths on the order of
20 meV.

IV. CONCLUSIONS

As noted in Sec. I, the rounded thresholds of
soft-x-ray absorption and emission spectra suggest

that the linewidth of the 1s level in Li is about 0.5
eV. We evaluated the contribution of the Auger de-
cay rate to the core-level width of Li. In the
meantime, we calculated the Auger rate for the
2P level of Na for the purpose of comparison.
Soft-x-ray spectra indicate that L-shell widths are
an order of magnitude smaller than comparable
E widths.

The lowest-order diagram as shown in Fig. 1(a)
contributed a small correction to the bound-state
energy, however it didn't give any contribution to
the imaginary part of the self-energy. Then we
calculated the other lowest-order graphs as shown
in Figs. 1(b) and 1(c) and found half-widths that are
smaller by three orders of magnitude than the ex-
perimentally inferred values for both Li and Na.
We then considered higher-order graphs and found
some terms to be singular. Perturbation theory
is therefore not valid. Returning to the lowest-
order graph shown in Fig. 1(a) we introduced a re-
normalized core-hole propagator to account for
the instability of the system to low-energy parti-
cle-hole creation. The half-width I' was treated
as a parameter to be determined self-consistently
from the equation I' = I', +ImZ(F). In this way I'
was found to be ]..7 x 1p eV for Li and 1.9 x 10-'
eV for Na. Thus this calculation does not account
for the observed difference between the threshold
widths of E and J spectra. For Na, the result is
consistent with observed x-ray spectra. However,
for Li it is still one order less than would be nec-
essary to explain the soft-x-ray anomalies.

In our calculation we neglected vertex correc-
tions except insofar as the use of relaxed wave
functions is equivalent to introducing a vertex re-
normalization. In the ND theory of x-ray thresh-
oMs'*' the vertex plays a crucial role in distin-
guishing K and L spectra. For the x-ray case the
relevant operator causing the transition is the
electric dipole moment. For the Auger width it is
the full exponential operator which mixes partial
waves and hence washes out symmetry differences.
Thus vertex corrections are not expected to change
the conclusion that calculated Auger widths are of
the same order of magnitude for s and P core
states in light metals. As a consequence, it ap-
pears unlikely that a difference of Auger width is
the source of the observed differences between K
and L soft-x-ray spectra.
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to be plane waves orthogonalized to relaxed core
states. They can be written in the form

(r) = (o"/J/)" 'e (Ala. )

APPENI3IX: VERTEX CONTRIBUTIONS ff.(k,q) AND gf/(q)

A. Sodium

The core wave functions are the same as used
previously. ' They are constructed from hydro-
genic-type functions with parameters determined
according to Slater's rules" and orthonormalized;

u (F) =e'"'-A*e " B-*2e 6 "—C* k, x, e 2 "
k A

(A2)

where

A3 = 8n*'/(c(*2+ k')' —18(M, /N*) (2o.*)',
&f = BM„*/N*(o/*+ p*)',

32P46/(k2 P62)3

(o. + P)' 6„3(2o.)3
23( )

(4 D)l/2 (4 D)l/2 (A lb)

u»;(r) = (p'/w)'/'(x;/2)2e 6"; i = 1, 2, 3, (Alc)

where 2 = (x2, +x', +x2)'/2 and D= 3( o(+p)6/4p6
—18(2n)'. The parameters (x and p depend on the
actual charge Z on the nucleus and the screening
s by electrons in shells within and up to the one
being considered. For sodium with both electrons
in the shell, a 1s electron has shielding parame-
ter c/=(Z —s)/n~, where n*=1 is the effective
principal quantum number, Z = 11 for sodium and
s =0.30, giving @=11—0.30=10.70 in units of re-
ciprocal Bohr radii a, '. For the 2s and 2P states
n*=2 and s =0.85X 2+0.35 x 7=4.15 due to screen-
ing by two electrons in the 1s state and seven oth-
ers in the n=2 shell. Then p=2(ll —4.15)=3.425.
The conduction-electron wave functions are taken

—8n*'/(n "'+k')',

N =3(n*+P*)6/4P*6 —18(2o.*)3.

The asterisks on n* and je* and on the quantities
which depend on c( and P allow for the difference
in screening when one core state is unoccupied, as
would be the case for the Auger initial state.
Since we are only considering the I » spectrum of
sodium, a* = a is unaffected by a hole in a shell
which is further out. However, states in the sec-
ond shell are affected. Now

P = 2 (11—0.85 x 2 —0.35 x 6) = 3.6.

The vertex contributions can now be evaluated:

f.(k, q) =(u22, (r) ~e"'~u2(r))

3(&;~ s;)»(~*+() )e )),"J&(3+6*)*-e*)q;,6. 6,3, ()e;(k 4)-&;J +( t)+ *)6J)3*
( I &+ ql '+ P')' [(o(*+0)'+ q']' [(f'+ (P+ 0*)']' ' [q'+ (P+ 0*)'J'

For the bound-bound matrix element g, /(q) of Eq. (7), the initial core state is associated with one less
screening electron. Thus with relaxation taken into account

(A4)

Calculations were performed (a) with orthogonal-
ized and relaxed wave functions as listed above,
(b) by neglecting relaxation (setting P*=P =3.425),
and (c) without orthogonalization or relaxation

(settings~~ =8, =C„*=O).

B. Lithium

In this case there is only one core wave function

and the corresponding orthogonalized plane wave is

uf(r) =e'"' —[Bo.*'/(k'+ n*')2]e' ", (A6)

where n= (3 —0.30) for the lithium ls state with an

additional 1s electron present. For the Auger ini-
tial state, one 1s state is unoccupied so that the

conduction states are orthogonalized to the re-
maining 1s electron state, which is unscreened
and has a =3.0. The matrix elements in this case

u„(r) =(n'/w)' 'e (A5)
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f(k, (j}= (ua (r)
~

e"'~u-„(r)) g(q) =(ua (r) ~e"'~ua (r))

2)2(n + Ik-ql
8(n+ n*}n*'

(y2 + n42)2[ (n + n 4)2 +q2]2' (A7)

Again the bound-bound matrix element is partially
relaxed

8(nn*)'~'(n+ n*)
[(n+ n*)'+q']' ' (A8)

Neglecting relaxation in this case means setting
a*= a = 2.70 and neglecting orthogonalization
means dropping the second term in Eq. (A7).
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