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Numerical simulations of the Hall effect in inhomogeneous materials*
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The Hall effect in microscopically inhomogeneous disordered materials was simulated by numerical

calculations of the magnetoconductivity tensor in cubic resistor networks with correlated bonds. The
numerical data were utilized for a quantitative fit of the Hall coefficient and the Hall mobility in metal-

ammonia solutions and in alkali-tungsten bronzes.

I. INTRODUCTION

Hall-effect data in some disordered materials
undergoing a metal-nonmetal transition have been
of considerable importance in interpreting the
electronic structure and transport properties in
terms of a continuous transition via the inhomo-
geneous transport regime. ' ' The effective-medi-
um theory (EMT) generalized by Cohen and Jort-
ner' for the Hall effect has been invoked for the
analysis of the Hall data in a variety of micro-
scopically inhomogeneous systems. A comparison
of the EMT for the electrical conductivity with the
results of numerical simulation on correlated
resistor networks reveals that the EMT is valid
for metallic volume fraction, C, well above the
percolation threshold C*=0.145 + 0.005, and that
the EMT is not reliable in the transition region
for C& 0.4.""As a theoretical treatment of the
magnetoconductivity tensor which goes beyond
the EMT is not yet available, it is important to
generalize the numerical simulation methods,
previously applied for the conductivity, ' "to han-
dle the case of a nondiagonal-magnetoconductivity
tensor. In this paper we present such a general-
ized numerical simulation scheme for the Hall
effect together with applications for some two-
component microscopically inhomogeneous sys-
tems.

II. NUMERICAL SCHEME

We have recently shown"" that numerical si-
mulations of the conductivity in correlated resis-
tor networks properly account for the continuous
percolation problem in inhomogeneous materials
characterized by a finite correlation length for the
fluctuation in the state of the material. In the case
of diagonal conductivity, the main effect of the
correlations between bonds is to shift the percola-
tion threshold from C"=0.25, the bond-percolation
threshold in a cubic lattice, down to C"=0.145
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Each bond connecting the lattice sites r, and r& is
assigned a pair of parameters g, , and k,.&

specify-
ing the values of the diagonal and of the off-dia-
gonal element of a at the point & (r,.+ r~) in the me-
dium. For the case of a binary inhomogeneous
medium, each bond is assigned either of the two
pairs of values g;&= 1 and h&&= ho, with probability
C; g, , =x and h;,.=Ay'y, with probability 1 —C.
x is the ratio of the conductivity at C =0 to the
conductivity at C = 1 and y is the ratio of the Hall
mobility at C=0 to the Hall mobility at C=1. We
chose k, «1 to avoid magnetoresistance effects.

The finite-difference representation of Eq. (l),
with o given by Eq. (2), can be recast into the
following generalized form of the Kirchoff vertex
equation for a resistor network, which is displayed
ln Flg. 1;

for the point r„where Eo,. represents the com-
ponent of the electrical field at 2(r, +r&) perpen-

+ 0.005, the critical metallic volume fraction for
percolation in a continuous system. '" We shall
now present an extended scheme for the numerical
simulation of the magnetoconductivity tensor in
correlated networks.

The numerical simulations of the magnetocon-
ductivity tensor are based on a finite-difference
solution of the continuity equation for an inhomo-
geneous medium;

&'l.o(r) &4(r)l=o, (l)

where o(r) is the conductivity tensor and P(r) is
the potential, both given at the point r. The con-
ductivity tensor will be written in the explicit form
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elude that convergence to the continuous percola-
tion limit has been achieved at ~= 9. The sizes
of cubic networks used for our numerical compu-
tations were 20&& 20& 20 and 30&& 30&& 30. Bound-
ary conditions in the y direction are cyclic, while
in the z direction reflecting boundary conditions"
were imposed in order to assure that no current
flows out of the simulated sample in this direction.
The Hall voltage was derived by averaging the
potential difference between opposite sites on the
xy faces of the lattice. The final Hall voltage was
determined by taking the difference between the
voltage evaluated with a finite magnetic field and
that evaluated with the field switched off. Finally,
the Hall mobility and the Hall coefficient are given
by

FIG. 1. Basic unit of the cubic lattice employed for
solution of the finite difference representation, Eq. 4'2),

of the continuity equation, Eq. (1).

dicular to both the bond Oj and to the magnetic
field H. E,'& can be expressed in terms of the po-
tentials at the nearest neighbors and the next-
nearest neighbors of the site 0 (see Fig. 1), so
that

(4)

Numerical simulations were carried out on
correlated cubic networks which consist of re-
gions of constant conductivity extending over sev-
eral lattice distances. Since the transverse field
Eo& at a bond Oj is determined mainly by neigh-
boring bonds which are orthogonal to it, these
bonds must usually have the same conductivity
value as the bond Oj except at the region bound-
aries. Correlations are therefore essential in
the present case. The correlated networks were
derived from a cubic network by means of a pro-
cedure which can be iterated to yield a sequence
of progressively correlated networks. " The
numerical calculations of conductivity on such
networks" resulted in a series of functions
a„(x,C), where n is the order of correlation. We
have found that a„(x,C) converges rapidly to the
limit a„(x,C) and that a, (x, C) provides an excel-
lent approximation to o in the large n limit. In
the present work we have chosen n= 9 as a rep-
resentation of the continuous random medium.
We have performed several calculations of the
Hall coefficient and the Hall mobility for n= 4 and
n=6. While these transport properties were
found to be more sensitive to the topology of the
lattice and to the order of correlation than the
conductivity, the results for n= 9 was found to be
very close (within 2%) to those for n= 6. We con-

III. NUMERICAL RESULTS FOR THE HALL EFFECT

Plots of the Hall coefficient R for various val-
ues of x and y are presented in Fig. 2. A com-
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FIG. 2. Results of numerical simulation for the Hall
coefficient of a two-component inhomogeneous medium.

g(x, y, C) = p (x, y,C) / po = V„(x,y, C )/Vz (x, y, l ),

h(x, y, C)=R(x, y, C)/Ro=g(x, y, C)/f(x, C), (5)

f(x, C}= cr(x, C }/cr, .
o„p,, and R, are the values of the electrical con-
ductivity, Hall mobility, and Hall coefficient at
C=1.
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parison of our numerical results for 8 with the
EMT are presented in Fig. 3. The results for
small values of x~ 10 ' are characterized by the
following interesting features. First, C —0.4R is
practically independent of y for small values of
x —10 '. Second, for C «0.5 the numerical results
are in good agreement with the EMT for R for all
values of x and y. For high values of both x and

y, i.e. , x~0.1 and y~O. I the EMT' is adequate
throughout the entire range, as expected. Third,
just above the continuous percolation threshold
0.25 & C & C *,8 exhibits a pronounced rise as
C-C*. For high values of x~0.1, R(x, C) inter-
polates smoothly between R (x, C = 1) and R (x, C = 0).

Numerical data for the Hall mobility, together
with the EMT results, are displayed in Fig. 4. We
note that for high values of both x and y, i.e. ,
x&0.05 and y-1, p, exhibits a weak dependence on
C throughout the entire range. For x=0.05 and

y=1, p(C) varies only between 1.0 and 0.70, a
change which is somewhat smaller than predicted
by the EMT. ' These numerical results are of
interest for a quantitative determination of the
Hall mobility in high-temperature inhomogeneous
materials undergoing a metal-semiconductive
transition, such as expanded liquid Hg, and liquid
Te.' Next, we also note that for low values of
x~10 ' and for C~0.4, p, is independent of y with-
in the statistical spread of our numerical results.
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X= l,2xjQ Y=BxfQ

0 NS.
--- EMT

FIG. 3. Hall coefficient of an inhomogeneous medium
evaluated by numerical simulation (NS) (dots) and by the
effective-medium theory (EMT) (curves).
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FIG. 4. Results of the numerical simulation (dots) and
of the EMT (curves) for the Hall mobQity of an inhomo-
geneous medium. (a) @=10 4, y=1, (b) x=1.2x 10 ~,
y=8 x 10 3, (c) @=10 4, y =10 4, (d) x=0,1, y =0.6,
(e) x=1, y=0.05.

IV. ANALYSIS OF HALL DATA IN SOME
MICROSCOPICALLY INHOMOGENEOUS MATERIALS

%'e now apply the data obtained herein froxn
numerical simulations to (i) metal-ammonia solu-
tions" "and (ii) alkali-tungsten bronzes, "which
undergo a continuous metal-nonmetal transition
via the inhomogeneous-transport regime.

Jortner and Cohen' have recently proposed that
in Li-NH3 solutions the metallic propagation re-
gime is separated from a nonmetallic regime by
a microscopically inhomogeneous regime where
the metal concentration fluctuates locally about
either of two well-defined values M, and M„where
Mo&M„ the local concentration remaining near
Mo or My over radii which are approximate ly
equal to the Debye short correlation length for
concentration fluctuations. This physical pic-
ture is supported by concentration fluctuation
determinations based on chemical potential mea-
surements in Li and Na solutions, "and by small
angle x-ray and neutron scattering'"" data in Li
solutions. The limits of the inhomogeneous re-
gime were determined by a combination of con-
centration fluctuation measurements, electrical
conductivity, Hall effect and paramagnetic sus-
ceptibility data resulting in M, = 9 mole % metal
and I,= 2.3 mole /g metal for both Li-NH, at
223 K and Na-NH, at 240 K, resulting in the C
scale, C= ~, (3cV4 —7).' In Fig. 5 we have com-
pared the experimental Hall effect data of Li-NH,
solutions at 223 K,""with the results of the
numerical simulations for x = 1.2 ~ 10 ' and y = 8
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FIG. 5. Comparison of the results of numerical sim-
ulation (solid curve and full circles) and the EMT
(dashed curve) with the Hall coefficient data of Li-NH3
at 223 K.

FIG. 6. Analysis of the Hall mobility data of Li-NH3 at
223 K in terms of the results of numerical simulation
(solid curve) and with boundary scattering corrections
(dashed curve).

& 10 '. The fit of the numerical results for R to
the experimental data is very good except at
C=0.1, where our numerical result for R is
higher than the experimental result by a factor of
-2. At this low value of metallic-volume frac-
tion, statistical fluctuations between numerical
results calculated for different lattices are very
pronounced, and averaging over a larger number
of results may improve this fit. The calculated
Hall mobility (Fig. 6) lies systematically above
the experimental Hall-mobility data for Li-NH, .
This discrepancy results from the decrease in
the local values of metallic conductivity with de-
creasing C due to scattering from region bound-
aries. '~ A similar effect is encountered in the
case of electrical conductivity. ' The Hall coeffi-
cient, however, is not as sensitive to boundary
scattering, since R= p/a, so that boundary-scat-
tering corrections cancel out at least for C ~ 0.4.
Boundary-scattering effects were accounted for
with the parameter z = 2b/l, where b is the Debye
correlation length and l is the mean free path.
The fit of the experimental data with z = 2.5 be-
comes excellent. This value z was previously
found to give the best fit of the experimental con-
ductivity to the results of numerical simulations
for a for Li-NH, solutions. '

We have recently accounted for the electrical-
transport properties of alkali-tungsten bronzes
M~WO„' in terms of a cluster model for the in-

homogeneous medium consisting of metallic re-
gions where the local metallic volume fraction is
&=1, and of semiconducting regions. Figure 7
displays the experimental R data ' "for alkali-
tungsten bronzes at T= 300 K,"together with the
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FIG. 7. Analysis of the Hall coefficient data of sodium
tungsten bronzes at 300 K in terms of the results of
numerical simulation (solid curve) and the EMY (dashed
curve) .
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numerical results for x = 10 ' and y = 0.5. The
good fit of the available Hall data in the entire
range 0.2&C&0.8 and, in particular, in the range
C = 0.2-0.3 where the EMT fails, provides addi-
tional support for the cluster model.

V. CONCLUDING COMMENTS

The numerical simulations of the magnetocon-
ductivity tensor reported herein are useful for
establishing the validity of the inhomogeneous-
transport picture in some disordered materials.
While this work is in progress Swenumson and
Thompson" have performed numerical simulations
of the Hall effect on 7 && 7 x 21 networks. In their
simulation algorithm they assign a conductivity
tensor to groups of three orthogonal bonds at each
site. Our studies of electrical conductivity show
that the percolation threshold C* is shifted from
C*=0.25, for a noncorrelated network, down to
C *=0.15, for a correlated network which simulates
a continuous medium. We believe that for an
accurate simulation of the Hall effect in a random
medium by a finite-difference solution of Eq. (1),
one should also have large zones of bonds posses-
sing the same conductivity value. This is achieved
by our correlation procedure. Another significant

difference between our work and the work of Swen-
umson and Thompson is related to the choice of
the transverse electrical field. While the longi-
tudinal electric field E,', at a bond such as 01
(Fig. 1) is obviously given by (P, —P,)/Ax the
transverse field at the midpoint of this bond should
be given by (Q„—Qs)/&r where A and B are the
midpoints of the squares 0173 and 0184, respec-
tively (see Fig. 1). This leads to the expression
given by Eq. (4) for the transverse field. Swenum-
son and Thompson" chose to express the trans-
verse field at the bond 01 by (P, —P,)/4x. It is
apparent that their expression is not symmetric
with respect to the segment 01 as it should be.
We thus believe that the results of the present
work are more reliable. We concur with the con-
clusion of Swenumson and Thompson that the
Hall effect data for Li-NH, solutions are compati-
ble with the physical picture of metal-nonmetal
transition intermediated by concentration fluctua-
tions.
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