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Jellium-metal surface energies for the infinite and finite step-potential barrier models have been obtained both
by application of the Vannimenus-Budd theorem and by the determination of the individual components of
the energy within the local exchange-correlation approximation. These two different methods for obtaining
surface energies are then compared in light of their dependence on different physical properties. The barrier
height in the step model is determined in each case either by the requirement of self-consistency of the surface
dipole barrier or by application of the Budd-Vannimenus theorem, the metal surface position being fixed by
the charge neutrality condition. An analytic expression for the derivative of the surface energy with respect to
the Wigner-Seitz radius is also derived for the infinite-barrier model by use of the Vannimenus-Budd theorem.
Finally a variational calculation of the surface energy within the local-density approximation is performed for
the step model, the results closely approximating those of Lang and Kohn for medium and low densities.

I. INTRODUCTION

The surface energy of a metal, which is defined!
as the energy required per unit area of new sur-
face formed to split the crystal intwo along a plane,
is usually obtained by the determination of the
individual components of the energy. These com-
ponents are comprised of the kinetic, electro-
static, exchange, and correlation contributions.
The original work®'® on surface energies consid-
ered only the kinetic and electrostatic terms and
that too in an approximate manner. More recently
Lang and Kohn* (LK), employing the density-
functional formalism,®*® have obtained surface
energies including the contributions due to ex-
change and correlation in the so-called local-
density approximation (LDA). It has been shown’
that this approximation is meaningful provided it
is made for the combined exchange and correla-
tion contributions. The latter contributions to the
surface energy have also been obtained®'® in the
random-phase approximation as applied to the
infinite-potential-barrier model and although the
results for the exchange and correlation terms
taken separately are quite different from those of
a local-density calculation, their sum is a fair
approximation to the values obtained locally.”

A sum rule, whereby the surface energy of a
jellium metal may be obtained without the deter-
mination of the individual components of the ener-
gy, has recently been derived by Vannimenus and
Budd.® The Vannimenus-Budd theorem (VBT) re-
lates the derivative of the surface energy with
respect to the Wigner-Seitz radius 7, in the bulk
to the electrostatic potential inside the metal.

The application of this sum rule thus simply re-
quires the accurate determination of the total
charge density inside the metal. In order to better
understand this method for the determination of
surface energies, it would therefore be of interest
to compare the results of its application to a model
potential of a metal surface to those obtained by
the determination of the separate energy compo-
nents. These calculations would also help in
determining whether it is possible, by employing
such model potentials with constraints, to obtain
metal-surface properties comparable to those of
other more complex formalisms.**8

In a recent paper' we attempted to answer this
question by studying the step-potential model of a
metal surface with respect to the surface dipole
barrier and work function. The constraints em-
ployed there were the requirement of the self-
consistency of the surface dipole barrier and the
satisfaction of a sum rule due to Budd and Van-
nimenus® relating the difference in electrostatic
potential between that at the metal surface and
that in the bulk to the energy per particle of a
uniform electron gas. The results for the work
function obtained!! by application of the Budd-
Vannimenus theorem®? (BVT) proved generally
superior to those obtained by the self-consistency
condition and for 7;=3-6 were within 0.28 eV of
the results of LK.*

In Sec. ITA we obtained metal-surface energies
in the infinite- and finite-potential-barrier models
by application of the VBT. For the infinite-barrier
model an analytic expression for the derivative of
the surface energy with respect to the Wigner -
Seitz radius has been obtained. The constraints on
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the barrier height in the step-model calculation
are the same as those of Ref. 11 mentioned above,
the metal-surface position being determined by
the charge-neutrality condition.!* These results
are then compared to those of a local exchange-
correlation calculation of the surface energy for
these models presented in Sec. II B, where again
the same constraints have been applied to define
the effective potential. Model potentials, such as
the step potential, parametrized by the barrier
height and metal-surface position, also lend them-
selves naturally to variational'*: 1¢: 17 calculations
of the energy. The results of such a calculation in
the LDA are also given' in Sec. II B together with
the results of the application of the VBT for these
variationally obtained values of the barrier height.
Finally we discuss conclusions about these dif-
ferent methods of determining the surface energy
and the limitations of the step and infinite-poten-
tial-barrier models with regard to each of these
methods.

II. CALCULATION OF SURFACE ENERGIES

The step model of a metal surface for which the
effective potential Vg (¢) at the surface is Vg (Z)
=WoO(¢) [where W is the barrier height and 6(¢)
the step function] is defined fully in Ref. 11. We
proceed here directly to the different calculations
of the surface energies within this approximation.
The results presented’® are in terms of the param-
eter B =k,/p, where ky is the Fermi momentum
and p®>=2W. The permissible range of g in this
model thus lies between zero and one.

A. Use of the Vannimenus-Budd theorem

According to the VBT, the derivative of the
surface energy E, with respect to the Wigner-
Seitz radius ¥, is given as

-a
e [ -V @1, @

where —a is the metal-surface position at which
the jellium background begins and V. (¢) the elec-
trostatic potential. The surface energy may then
be obtained by integration over v, together with a
suitable choice for the constant of integration.

We first consider the infinite-potential-barrier
model for which W - « and the parameter g3=0.
The total charge density and electrostatic poten-
tial are given as

1 3cosz 3sin
P’:siz)=§n_2_(1+ - ;Bz-e(-z-b)), @)
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where

Si(z)=f S du, z=2kpt, b:i—”,

0 u

and where V(z) is obtained by solution of Pois-
son’s equation with the boundary conditions

Vi (=0)=V,(=»)=0. Performing the integration
of Eq. (1) we obtain'®

dE 9 1 bs T 1, .
420 - T —+ L
v @ T 411[: 3 2+2(smb+bcosb)

+ (1 + I;—2> Si(b)] =~0.0090304 .
(4)

Thus the surface energy E, in erg/cm? in the in-
finite-potential-barrier model is obtained as

E,=(4.689x10%/7% +59.990 (5)

where we fixed the constant of integration10 by
matching E, to the LK result for »;=5. The results
for dE /dr, and E, are given in the left half of
Table I together with the results (dE, /d7,) vp

and (E,) .y Obtained® by application of the VBT

to the LK electrostatic potential. We observe that
dE, /dr is negative and that thus E; is positive for
all #, in this model. On the other hand (dE,/
drg)ixvp 18 negative for medium- and low-density
metals but is positive and large for high-density
metals, thus leading to positive surface energies
for the former and negative energies for the latter.
For 7, 2 3.0 the results for E, are fair approxima-
tions to those of (E,),, vy, the values being poorer
for very-high-density metals. However, over the
entire metallic range these results are vastly su-
perior to those of a LDA calculation as discussed
in Sec. IIB. In addition the results for dE,/dv, also
confirm another conclusion arrived at in Ref. 11,
that this model is most valid for low-density metals
only. It had been shown there that for this infinite-
potential model the BVT is most closely approxi-
mated only in this range of »,. In this case the
shape of the two dE,/dr, curves are similar again
only in the range 7,2 4.3 (see Fig. 2).

We next consider the application of the VBT to the
finite-step model of a metal surface. In this mod-
el most properties of interest may be written!! in
terms of universal functions of the parameter 8.
The universal functions for the quantities kpa =g(8)
and A¢/kg, where A¢ is the surface dipole bar-
rier, are given in Ref, 11. Expressions for the
universal functions p(z)/k2and V, (z)/kare given
below:



15 METAL SURFACE ENERGIES IN THE INFINITE AND... 1931
TABLE I. Surface energies in erg/cm? for the infinite-potential-barrier model.
Calculation via the Calculation in the
Vannimenus-Budd theorem local-density approximation

v, dE /dv, (@E /Aoyt By (Eg)iyp E, (Eg)yy °
2.0 —-879 4447 646 -980 4077 -1008
2.5 -360 755 360 49 1832 36
3.0 -174 79 234 197 964 199
3.5 - 94 —-54 169 191 565 194
4.0 - 55 -71 133 157 359 158
4.5 - 34 —-67 111 122 242 124
5.0 - 23 —-34 97.5 97.5 170 98
5.5 - 15 =37 88 80 124 7
6.0 - 11 -33 82 62 94 60

2 These are the results of the application of the VBT to the Lang-Kohn electrostatic potentials.

See Ref. 10,

b See Ref. 4.
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where z=2ky{, 2, = 2kya, siny(q) =Bq. Thus the inte-
gral of the electrostatic potential inside the metal
is a universal function of 8 and we may write Eq.
(1) as

+4dE, 9
etk (8)
It has not been possible to obtain a closed-form
analytic expression for f(B) as was the case for the
infinite-potential-barrier model. However, a nu-
merically obtained plot of f(g8) is given in Fig. 1.
Note that f(B) is negative for all 8 and that there-
fore dE, /dr, will be negative for all »,. The de-
termination of dE, /drthus only requires an ap-
propriate choice for the parameter 8 for each value
of r,. We fix the parameter g by the two separate
criteria indicated in Ref. 11. First for each value
of 7, B is obtained by ensuring that the surface
dipole barrier A¢ is obtained self-consistently.

A plot of dE, /dr, for 2 <, <6, with this criterion
for the choice of B, is shown as curve 2 of Fig. 2.
The second method for the determination of 8 is to

ensure that the electrostatic potential V either
satisfies the BVT or approximates it as closely as
possible.!* The plot of dE, /dr, with this choice of
B is shown as curve 3 of Fig. 2. The (dE,/dr,) y s
results are indicated by crosses on the graph.
Comparison of the different curves for dE, /dr,
indicates that curve 3 over the range over which it
is nonzero more closely approximates the
(dE/dr, )u(-vs results than does curve 1. We
further note that application of the same BVT cri-
terionalso led to generally superior results for the
surface dipole barrier. Thus these dE/dr, plots
reconfirm the importance of the BVT in such mod-
el calculations of metal-surface properties. Both
dE, /dr, curves 2 and 3 for the step model, how-
ever, are better approximations to (dE,/dr, ) xvs
for small and medium densities than the infinite-
barrier results (curve 1) which progressively be-
come more negative over this range as 7, is de-
creased. The fact that neither curve 2 nor 3 be-
comes positive for small 7, is one of the limitations
of the step model.
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FIG. 1. Plot of the universal function f(fB), the inte-
gral of the electrostatic potential inside the metal, vs
the barrier-height parameter S.

The surface energy E; in each case is then ob-
tained by integration over », with the constant of
integration being chosen'® such that the E,’s match
those due to LK at »,=5. The results for E; ob~
tained from curves 2 and 3 are given in Table II.
With the exception of 7, =3.5 where the two sets of
results are approximately the same, and »,=3.0
where the E; obtained from curve 2 is superior
since E; is still rising, the results for the surface
energy obtained by the BVT criteria are consis-
tently better for all other densities. The fact that
E, obtained by this condition is constant for 7,
=2-3 and does not turn over and become negative
for small 7, is again a consequence of the limita-
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FIG. 2. Plots of the derivative of the surface energy
E withrespect to the Wigner-Seitz radius s vs 5. Curve 1
is the result for the infinite-barrier model. Curves 2, 3,
and 4 are the plots for the step-potential model as deter-
mined by the different criteria described in the text.

The crosses represent the Lang-Kohn results as obtained
by Vannimenus and Budd.

tion of this model with regard to this method for
obtaining surface energies.

B. Local-density approximation

The determination of the surface energy via the
VBT depends only on the electrostatic potential
inside the metal and hence on the total charge den-

TABLE II. Surface energies E; in erg/cm? for the finite step-potential model as obtained by
application of the Vannimenus- Budd theorem (VBT) and the local-density approximation (LDA).
For the set of results I, the barrier-height parameter § is determined by the self-consistency
requirement of the surface dipole barrier; for the set II by the application of the BVT, and for
the set III by variational minimization of the energy. The numbers in parentheses are the values

of g for which the energy is a minimum.

Calculation via the Vannimenus-Budd

Calculation in the Local-density

theorem approximation

7, I Il Il  Lang-Kohn? I 11 P Lang-Kohn ¢
2.0 287 148 137 —-980 —341 =390  (1.00) -390 ~1008
2.5 235 148 137 49 261 164  (1.00) 164 36
3.0 183 148 133 197 293 240  (0.980) 235 199
3.5 147 146 123 191 239 207 (0.946) 207 194
4,0 124 130 113 157 183 183 (0.904) 165 158
45 108 ‘41l 104 122 141 (0.864) 130 124
5.0 9§/ 98 98 98 109 (0.824) 102 98
5.5 90 88 92 80 85 (0.786) 81 77
6.0 85 82 88 62 67 (0.751) 65 60
2 See Ref. 10.

b See Ref. 14,

®See Ref. 4.
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sity there. On the other hand, the individual com-
ponents of the total surface energy within the local-
density approximation depend primarily upon the
electronic charge density over all space.’ Com-
ponents such as the kinetic energy have in addition
an explicit dependence on the effective potential
Ve and the phase y(g) of the electronic wave func-
tion. Since the VBT is derived from the density-
functional formalism, the results for the surface
energy as obtained by LK are approximately the
same as those obtained by application of the VBT
to their self-consistent model.!® It is thus of in-
terest to see how these two separate methods for
the determination of the surface energy compare
for the step model and how their dependence on
different physical properties affect the final result.
The individual components of the total surface
energy are comprised of the kinetic, electrostatic,
exchange, and correlation contributions. As with
the other properties, the kinetic energy E, in the
step model may be written in terms of a universal

function of 8 which is given as'™

E=E"-EY, (9)
where
E(l) 1 1
—,fr=2ﬂ—zf <4——7(q)—qg(6)>q(l—q2)dq, (10)
F o
EP 1 [ g( 3 15) -
RE - Teon Ll 7\l-p7tggr)sn P

1 15
-5 (1~ 357) - p97], (11

EI(ZZ) 2-[::0 (Veff[pe; ;] - Veff[pe; _ao])pe(g) dé‘ ) (12)

EP 1 [i<"5' 15>S, u
T 160707 \p2 " 2p Y S P

1 15
e 5-(~10433) - porre]. (13)
For the infinite-potential-barrier model (8=0)
E/ky=E®/kE=1/1601; ER =0, (14)

and for the other limit of the model for which the
barrier height is at the Fermi level (8=1),

B 1 5 E® 1 5 E, 1 5

kZ 1607 4° ki 1607 (2’ ki 1607 4"

(15)

The electrostatic contribution to the surface en-
ergy E . is given as

Eu=g [ 0r0Va(00d, (16)

and it can easily be seen that E /&7 is a universal
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function of B. Within the local-density approxima-
tion for which it has been shown’ that the exchange
and correlation contributions must be taken to-
gether, the exchange and correlation energy is’

E= [ Lelp(0)- € B)p ) dt, (17)
where €, =€, +¢€,; €, and ¢, are the average ex-
change and correlation energies per particle for

a uniform electron gas and where p,=k;/372 is

the mean interior electronic density. For ¢, the
Wigner interpolation formula'® is employed.

The results of the three contributions to the total
energy for the infinite-potential-barrier model are
given in Table I. As with the results obtained via
the VBT, the surface energies determined within
the LDA are positive for all densities. The rea-
son for this is that for this model the highly nega-
tive contribution E® to the kinetic energy vanishes
so that E, is positive for all densities. For me-
dium and high densities the infinite barrier is too
strongly confining, thus leading to very large
values for the kinetic and hence the total energy.
The results for the surface energy as obtained via
the VBT, however, are superior to those obtained
within the LDA for this model. A study of these
results indicates that the LDA values can be as
large as six times the value obtained via the VBT.
This is a consequence of the fact that the LDA
method for obtaining surface energies is particu-
larly sensitive to the vanishing of the electronic
density at the artificial barrier. As a result E®
=0 and E_  and E_, are considerably smaller than
the corresponding values obtained by LK,* these
differences being particularly large for high and
medium densities.

Thus the individual-component method for ob-
taining surface energies should lead to superior
results for any more realistic model which per-
mits a greater degree of electronic spill over. In
Table II we present the results for the surface
energy in the step-potential model, where, as in
Sec. IT A, the barrier-height parameter 8 is deter-
mined either by the requirement of self-consis-
tency of A¢ (column I) or by the satisfaction of
the BVT (column II). The latter results are given
only for » =2-4, since for 7,>4 the BVT is most
closely approximated by the infinite-potential-bar-
rier model which as we have seen leads to quite
unrealistic results for the surface energy as ob-
tained by the individual-component method. These
results, however, do appear in Table I. A study
of the values for E of column I indicates their
similarity to the results of LK, even becoming
negative for »,=2. However, the model is too con-
fining for all densities becoming progressively
more confining for higher densities. For 7,=2-3.5
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the results of column II, however, are consider-
ably superior to those of column I, being the same
for ,=4. Although the model still too strongly
reflects the electrons back into the metal, these
results reaffirm the conclusion that better surface
energies may be obtained by satisfying the condi-
tion set by the BVT.

It is also interesting to note that the results for
E,_ are far superior to either those of E, or E .
This appears to indicate that the exchange-corre-
lation energy as obtained in the LDA is consider-
ably less sensitive to the choice of effective po-
tential than are the kinetic- and electrostatic-en-
ergy terms. For low densities this has added
significance since E, is the primary contributor
to the total energy. The reason for the above ac-
curacy may be that in addition to the fact that the
errors in the exchange and correlation contribu-
tions cancel, E_, in the LDA depends explicitly
only on the electronic density, and any reasonable
effective potential leads to fairly accurate elec-
tronic densities. This is further borne out by the
fact that for »,> 3.0, densities for which over 68%
of the contribution to the surface dipole barrier
is due to electronic charge outside the metal, the
results for A¢ in the step model'! are within 0.28
eV of those due to LK provided the BVT is satis-
fied.

For the variational calculation it is assumed
that the total energy of a metal is the sum of the
bulk- and surface-energy contributions. Further-
more, since the Friedel oscillations of the elec-
tronic charge density essentially vanish within
a few Fermi wavelengths of the metal surface, it
may also be assumed that it is only those elec-
trons near the surface which are aware of the
presence of the effective potential at the metal
surface. Thus it is only the surface energy term
that is a function of any parameters used to de~
scribe the effective potential. Variational mini-
mization of the total energy thus involves minimi-
zation of the surface energy with respect to these
parameters. In the step-potential model it is the
barrier-height parameter g with respect to which
the surface energy has to be minimized. The re-
sults of a variational calculation** within the LDA
for the step model are given in column III of Table
II. For r,=2.5-6 there is an energy minimum at
the values of 8 quoted inparentheses. For v,<2.5
there is no such energy minimum. The minimum
energy for such high densities is thus obtained in
the =1 limit of the model.

We note that the variational method leads to the
best set of results for low and medium densities.
For 7,=3.5—-6 the energies are within 8.2% of
those due to LK, indicating thereby that the ap-
proximation of separating the total energy into a
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surface and bulk component is physically meaning-
ful. Furthermore, for »,> 3.5 the derivative of
the surface energy as obtained from these results
for E, also closely approximates the (dE,/d7,);x_vs
results. However, since the corresponding values
of g are larger than either those obtained by the
self-consistency or BVT condition, the results

for the derivative (curve 4 of Fig. 2) as determined
by the VBT from the universal curve of Fig. 1 and
hence the energy (column III) are the least accu-
rate. For high densities, the variational results
are the same as those obtained by application of
the BVT, and this model cannot therefore lead to
results for »,=2.0 and 2.5 which are superior to
those given in column II.

Since we have employed the variational principle
for the energy, our results for the surface energy
constitute an upper bound to this property. Al-
though the LK results for the surface energy
are lower, they do not constitute an upper
bound since they are obtained by solution of
the self-consistent equations of Kohn and Sham®
and not from the exact density-functional formal-
ism of Hohenberg, Kohn, and Sham®¢® for which the
energy is a minimum. However, properties other
than the energy, such as the surface dipole bar-
rier, determined by employing wave functions ob-
tained by energy minimization will be correct only
to the same order as that of the wave function and
in general willnot be as accurate as the energy.!*+2°
One therefore needs to employ variational methods
whereby properties other than the energy are
themselves obtained correct to second order. Re-
cently variational methods®®?! for obtaining single-
particle expectation values of Hermitian operators
to second order have been developed and are pres-
ently being employed to determine the electronic
charge density at metal surfaces.

The results of the various calculations indicate
that the surface energy as obtained in the LDA is
particularly sensitive to the choice of the effective
potential and hence to the electronic density near
the metal surface. This is borne out in particular
by the results of the infinite- and finite-potential-
barrier models. The fact that the results of the
LDA calculation for the more realistic finite-bar-
rier model are superior to those obtained by appli-
cation of the VBT is again a consequence of the
dependence of the individual components of the en-
ergy on the electronic density. Even though, for
example, in the exchange term one considers the
difference between the local and bulk values of the
exchange energy, the primary contribution to E
is near the metal surface where this difference is
largest. Similarly, the primary contribution to
the electrostatic-energy term is due to the elec-
tronic density outside the metal and the electrostat-
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ic potential which arises from it. On the other
hand use of the VBT depends only on the electro-
static potential inside the metal. This in turn de-
pends on the total charge density there, which is
obtained by subtracting the positive-charge back-
ground from the electronic density. The percen-
tage errors of the total density are thus a magnifi-
cation of the percentage errors of the electronic
density. Thus the derivative of the surface energy
with respect to 7, is a property which is even more
sensitive to the choice of the effective potential.
The primary advantage of the VBT is that one does
not have to determine the individual components of
the energy, but on the other hand it proves to be a
far more stringent requirementto satisfy. The theo-
rem would be particularly powerful if accurate den-

‘sities could be obtained without making any approxi-

mations with regard to exchange and correlation.
For the step model, however, dEs/st may be de-
termined directly from the universal function f(g)
of Fig. 1, once a criterionfor the choice of the pa-
rameter is developed. Finally we note that these
calculations reaffirm the importance of the BVT
since consistently good results are obtained by its
application irrespective of the method being em-
ployed to obtain the density.
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