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The theory on the coherent electron-exciton pairing in molecular crystals is generahzed to include the effect of
the electron spin. It is shown that in the Hartree-Pock approximation, singlet as well as triplet excitons may
interact with excited electrons to form charge-transfer bound states provided that certain conditions prevail.

Thegap functions 4+ and 6, due to the electron-singlet and electron-triplet exciton pairing, respectively, are
calculated at zero temperature and they are found to be independent of one another only when the exchange

interaction between the charges is extremely weak. In this limit, the two frequency modes for the two charge-

transfer complexes resulting from the electron-singlet and electron-triplet exciton pairing propagate through

the crystal independently. As the strength of the exchange interactions increases the gap functions 6+ and

depend strongly on each other, an effect which brings about the mixing of the two frequency modes

corresponding to the two charge-transfer complexes. Expressions for the ground-state energy (binding energy)
of the crystal arising from the electron-singlet and electron-triplet exciton bound states are derived and

discussed in detail.

I. INTRODUCTION

The valence bands for most molecular crystal. s
are filled with electrons having opposite spin
alignments. Thus upon excitation, Frenkel ex-
citons (excitons of small radius) which consist
of tightly bound electron-hole pairs and are used
to describe the elementary collective electronic
excitations of molecular solids' may have their
spin components either up or down. When the
spin degeneracy of the exciton field is removed
in the Hartree-Fock approximation, the excitation
spectrum' consists of two frequency modes which

propagate through the crystal independently and
correspond to the singlet- and triplet-exciton
modes, resp ective 1.y.2

It has been recently suggested that an exciton
may interact with an excited electron which is
located at an adjacent lattice site of a molecular
crystal to form a charge-transfer bound state. '
The excitation spectrum as well as the electro-
magnetic properties of the electron-exciton bound
states have been discussed in I. Using methods
formally analogous to those in the theory of super-
conductivity, 4 it has been found in I that the pro-
cess of the coherent electron-exciton pairing is
feasible provided that certain conditions prevail.
and that the created electron-exciton pairs are
diamagnetic. Electrons' (charge carriers) can
be produced in the crystal either by photon ab-
sorption' as is done for excitons or by photoin-

jec tion. '
Since both excitons and electrons carry out spin

then in forming the electron-exciton complex,
the el.ectron and the exciton may have the same
or opposite spin al.ignment. The purpose of the
present study is to generalize the theory on the

electron-exciton pairing to include the effects of
the electron spin.

The probl. em is formulated in Sec. II where use
has been made of the same model for a molecular
crystal as that considered in I but including the
effects of the electron spin. Using the spin-de-
pendent Hamiltonian and a decoupling approxi-
mation, a coupled set of equations of motion is
derived for the electron and exciton operators.
The excitation spectrum is discussed in Sec. III.
It is found that the singlet as wel. l as the triplet
excitons interact with electrons to form charge-
transfer bound states. The gap functions 4, and

for the electron-singlet and electron-triplet
exciton pairing, respectivel. y, are calculated at
zero temperature and they are found to be inde-
pendent of one another only in the limit when the
exchange interaction goes to zero. In this case
the energy modes describing the electron-singlet
and el.ectron-triplet exciton bound states migrate
through the crystal independentl. y. For finite val. —

ues of the exchange inte rac tion the gap func tions
~, and 4 depend on each other, an effect of which
may cause the mixing of the two frequency modes.
The binding energies arising from the electron-
singlet and electron-triplet exciton pairings are
calculated in Sec. IV while a discussion is given
in Sec. V.

II. FORMULATION OF THE PROBLEM

The Hamiltonian for a two-level system of a
molecular crystal has been derived in I and is
given by Eq. (6) of I. This expression can be
easily generalized to include the spin of the elec-
trons and then it.takes the form
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X = COnSt. + ~ ~vp Q nvoA nva +
n, v, o

L(rnv, nv}ar mvan» a+ g L(mO, n0)a. ma a. „
D a R~~o Rmn. "Rm no'a'

+ Z J„(n,m)b- „,b„„„-
a.Rm n

a, o' v ~ Rrn n
a ~ o

Uaa'(nl m)bnvabnva'+ rnua'+ mua' l

where the indices 0 and 0' indicate the spin com-
ponent of an electron and take the values of spin
up (t) or spin down (0). Equation (1) is identical
to Eq. (6} of I apart from the inclusion of the elec-
tron spin and the neglect of the fifth term of Eq.
(6) of I which describes the simultaneous creation
and annihilation of two excitations; this term has
been also disregarded later on in I. The coupling
function Z„(n, m} is defined as'

J„r(n, m) =Z(nOa, mvcr'i nva, mOa')

=(nOa, mva'i Vi nva, mOo')

-( n0a, mvo'i Vi mOo', nva'), (2a)

while that of U«(n, m) is given by

U„.(n, m) = U, „(n,m)+ U„„(n,m}, (2b)

Un (n, m) =Z(nOo', mva'i n0a, mvo')

—J(n0a, m0o' inOa, mOa'), (2c)

U„(n, m) = Z(mvo, n0a'i mvo', n0o')

—J(nvo, mvo'i nva, mva'), (2d)

v and 0 refer to the excited and ground states of
an electron, respectively, and the excitation
energy &„a is described by Eq. (Ia) of I, namely,

Ev'a =L(nv, mv) —L(n0, mO)+ g Ua «(n, m).
a, Rmn

(2e)

The electron creation and annihilation operators
a „„,and a», describe the electron state v at
the lattice side n with the spin projection up 0(n)
or down 0(- —,'). Similarly, the Frenkel exciton
operators are defined as bnv a + npa+ nv a and

= Q n v aQ npa Thus apart from the spin degen-
eracy, the expression of the Hamiltonian (1)as well as
the notation coincide with that of Eq. (6) of I where
the reader is referred to for further details.

Using the Hamiltonian (1) we derive the equa-
tion of motion for the operator (a „„t+a.„„t),

@vp + nv) ++ nv) m
~ n +m vt ++ mvf

Rmn

[Ut t(n, m)ar „„t+Ut t(n, m)a. „„t]b „tb -„t
R rnn

[Ut t (n, m)a. „„t+Utk(n, m)rr. „„t]bm„tb
Rmn

where from symmetry considerations we have taken

Ut t (n, m) =Ut t (n, m}, Ut t(n, m) =Ut t (n, m),

Jt t(n, m) = Zt t (n, m), Zt t(n, m) = J t t (n, m).

Equation (3) has been derived in the same approximation as that of Eq. (9) of I.
To decouple Eq. (3) we follow I and apply a similar scheme as that of Eq. (10) of I, namely,

g Ut t(n, m)a. -„„tb-„tb-,t=Ut t(n, m)(b~„tb-„t) n-„, +tg Utt(n, m)(a-„„tb -„t)b -, t,

(4a)

(4b)

(5a)

Q Ut t (n, m)ar -„,t b -„t b -„t =P Ut t (n, m)( b -„t b -,t) a-„„t+g Ut t (n, m) ( u -„„tb -„t) b -,t,

g U t t (n m}+ rl ll t b m v t b rn ll t g Ut t (n m) (b m ll t b m u t) + n v t +g U t t (n m) ( + n u t b m ll t) b m u t l (5c)

QUt t(n, m)ar»tb m„tb m„ t=+Ut t(n, m)(b m„tb mvt) a»t+g Ut t (n, m)( ar „vt b m„t) b mvt. (5d)
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where

+mijn ++mph
Rmn

-~.(n)(b .L
+b .L), (6)

E„,=E„—2 g U„(n, m)n„,
Rmn

U, (n, m) =2[UL L(n, m)+UL L(n, m)],

n„=(b-„Lb-.t) =(b .Lbm. L),

(7a)

(7b)

(7c)

The first terms on the right-hand side of Eqs.
(5a)-(5d) designate corrections to the electron
spectrum due to the average exciton density while
the last terms describe electron-exciton pairing
where the two particl. es have either parallel or
antiparal. lel spins, respectively; the decoupling
approximations described hy E(ls. (5a)-(5d) are
expected to be valid in the high-density limit. '
Substitution of E(ls. (5a)-(5d) into E(L. (3) yields

Sd
@

Lj 0 ™~n v t + & n v k

a, (n) =at L (n) ~ b
L L (n), (8a, )

&L L (n) = 4
L L (n) = Q UL ) (n, m)( o. -„„Lb - „L),

R m n

(8h)

bi L(n) =ALL(n) = g UL L(n, m)((x „,Lb, L).
Rm n

(8c)
Considering the definition of the coupling function
U, (n, m) given by E(Ls. (2a)-(2d}, we conclude
that the function U, (n, m) arises from Coulomb and
exchange-type interactions but only exchange-type
interactions are involved in the expression for
U (n, m). The gap functions &

L ( (n) and &L L (n)
describe the electron-exciton pairing where the
electron and exciton have parall. el and antiparallel
spins, respectively.

Using the Hamiltonian we derive the equations
of motion for the exciton operators b -,

~ and
b mph' as

-E„, b-,
L

= Q JL L(n, m)b-„„L(1—2b, tb „))+ p JL )(n, m)b-„, ((1 —2b ,~bi, )L
~R~ ~ Rn m nm

UL L(m) n)b )))~«oT)«Lo.'n«L ~ UL L(m~ n)bn««Ln n«&o' n«$i
Rnm

(
———E„b „(=g' 8 „(n m)b-„, (1 —2b, b-„)+ Q 4 L(n m)b„„t(l —2b-, b-, )d't

Rnm Rnm

U& L(n, m)b ))) «Ln „«LG „«L —~ UL L (m, )nbm («n „«L Q „«L.
R nm Rnm

When use is made of the decoupling approximation
given hy E(ls. (5a)-(5d) and E(ls. (4a)-(4b) then
E(ls. (9) and (10) may take the form

-Evo b'av~ ~bmus
id

= Q' J,(m, n)(b-„„~b-„„)
Rnm
—O. f (m)(n-„„L so. -„„L),

(u k, E„,+ Q' f,(mv-, nv) exp[i(k R „)],
Rmn

(15)

(14}
where the excitation energies for the single elec-
tron and exciton spectra ~ k, and & „„arede-
fined, respectively, as

where

Z, (n, m) = [JL L (n, m) + JL L (n, m)] (1 —2n, ). (12)

In the momentum representation the coupled
E(L. (6) and (ll) become

(
sd

+Xp + kvt ++ kv) +* k bkvt +bkv)

(13)

E' =E„,+ Q' Z, (n, m) exp[i(k R --„)].
Rm n

The coupling function &,(k) is given by

b „(k)= iL
L L (k) s b

L L (%),

where

~ i i (k) = &» (8 = («Z «» (& - t() (

(16)

(17)

(18a)
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6t l(k) =Et I $) = jq)F Ut I (k-il)(a tb I)

(18b)

Uii $-q) = g U~ ~(n, m) exp[i(k —q) R --„],
Rmn

(18c)

Ui i(t( —q) = g Ui((n, m) exp[i(k-q) 8--„].

(18d)

In the adopted model of I, the molecular crystal.
consists of neutral mol. ecules in an undisplaced
lattice having one molecule (atom) per unit cell;
there are N molecules (atoms) in the crystal
volume V. The expressions for the energies of
excitation for the free electron and exeiton fields
~ k, and E-„' are described by Coulomband exchange

interactions while that of Eg „involves only exchange
interactions. Therefore, the plus (+) and the minus

(-) energy modes for the exciton field describe
physical processes where the optical transitions
involved are of spin allowed and spin forbidden,
respectively, The expressions for E-' and E=

kv kv
given by Eq. (16) coincide with those describing
the singlet- and triplet-exeiton spectra' of molec-
ular crystals and they are correct in the Hartree-
Fock approximation. ' In the approximation adopted

here and in the absence of external fields, the
spin degeneracy of the free-exciton field is re-
moved but not that of the free-electron field.

Inspection of Eqs. (17) and (18) indicate that
the parameters 6 „(k) for the "+" and "-"energy
modes involve an admixture of coherent el.ectron-
exciton pairing with paral. lel and antiparallel spins;
they have the meaning of the energy gaps for
electron-exciton states with positive and negative
spin projections on the a axis, respectively. If
the functions n, (k) and n, (k ) do not depend on

each other then the coupled Eqs. (13) and (14) de-
scribing the "+"and "-"energy modes are com-
pletely separated; as we will see later this is not
always the case. Up to now the functions S,(k)
are still unknown parameters and they will be
calculated in a self-consistent way in Sec. III in

connection with the excitation spectrum of the
system under investigation.

III. EXCITATION SPECTRUM

%e shall make use of the retarded double-time
Green's functions of the Zubarev type" defined

by Eq. (19) of I. If we introduce the Green's func-
tions « («« „i x a « „&, («« „i » and « h « „iz h „,), o.'«, i »
then making use of Eq. (20) of I and Eqs. (13) and

(14) we derive the following equations of motion:

(& —~T.}((&kvi +(«k ( ™««»& =(1&2&)—&+(k)&(f't. i +I «. l'o'«. i&&

(& -E «.)« I «.~+&«.i'n «. i&& =-&*,(k)&(((' «. i ~(«i. ('o'«. i&&

Similarly,

(&-E«„}«I k ~ +hk &
I «. i&& =(1&2v)-&,*(k)&&&t.i+o'I. i'~&«. »&

(& —(d T.)«& «. i +& «. ~'h «. i&) =-n. (k)&& h «. i +I «.i'I i.»&.

Solving the coupled Eqs. (19) and (20) or (21) and (22), we have
2 2

1 V vy +kv ~
« + «ui +(«kv(l +kui» 2v ~ II e

+ ~ g

(19)

(20)

(21)

(22)

& .(k) 1
«h«. i +I «. ~ ((«.~&&=&&&«.i+&«.»'I «. i&&

=
2 2,

' —„~, —„~,—,— (2 )

+kv~ Vkv~«h«. i +h«. ~ IT.~&&2',
—„~, + „=~

~kvt 2(~kv+Ekv} (26)

where the energies of excitation Q k, , + &»+ are
defined as

given by

2
+kv ~= @kv +kv (28a)

2 ~ 1/2
+in, (k)i' (27) (28b)

and the scattering amplitudes Ng, and vg, , are
2 2

+kv ~+ VKv~ (28c)
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E k
—(d k v sgn(E k v

—(d k v ) I
E 1(

—(() T( v I ~

Using the Green's functions (23)-(25), we cal-
culate the following expressions for the corre-
sponding distribution functions" in the l.imit of
zero temperature

2

( + kvi (+ kvt ++ kv))) uk v a )

2

(bT ((bTvi +&Tvi)) =vT

(O"k. l(&Tvi +~kvi)) =(~«vt(O'« vi +&Tv~))

(29a)

(29b)

=& „(k)/2e k, , (29c)

We note that in Eqs. (23)-(28) the occurrence of
2 2

either u k „,or v 1;„,depends on the sign of the
quantity E k„—cu k „which for convenience has
been taken as positive. It will be more accurate
if it is understood to denote the absolute value,

1 E kv
exc k=0

(35b)

and depends on the direction of the exciton. Con-
sidering that the effective mass for the triplet
exciton is very large, m,„,» m,'„„m,„,» m, then
from Eq. (35a) the reduced mass p. may be well
approximated as

-2me. (35c)

Similarly, we may derive from Eqs. (35a) and
(35c) the approximate relations

tron while m,+„, and n",„,denote the effective masses
for the singlet and triplet excitons, respectively.
The effective mass of transverse singlet excitons
is negative while that of the longitudinal ones is
positive. ' The exciton effective mass is def ined
as' (5 = 1),

Then from Eq. (29c) we obtain p,
' & 2m' p' —2m (35d)

1 A, (k) b (k)
( kvl kvt)

~km+ ~kv-

1 s.(k) 6 (R)
)kvi kvl

k v+ ku-

(30a)

(30b)

where I; and l refer to the transverse and longi-
tudinal. modes, respectively.

To solve the integral Eqs. (33) and (34) we follow
I and replace the summations by integrations over
the first Brillouin zone with the resul. t

Substitution of Eqs. (30a) and (30b) into Eqs. (17)
and (18) we derive the following set of coupled
integral equations

1 g U, (k-q)~, (q)
2N e~„,

1 p U (k-q)b, (q)
2N

q qv-

1 g U $-q)A, (q)
2N E qv+

1 P U, (k-q)fk (q)
2N Eq„

In the effective-mass approximation we make use
of Eqs. (37a)-(37c) of I, then Eqs. (31) and (32)
become

(31)

(32)

U. (t —q)&+(q)
2N; [(q'/2p')'+ I &.((1)l']"'

1 ~ U (k —q)A (q)
2N~ [(q /2p, )'+

I A (q)l']'~

U (k-q)&. (q)
2N ~ [( /2p ) pl A+(q)l ]'('

U+(t -q)& (q)
[(q'/2~ )'+I & (q)l']"' '

q

where the reduced mass p, , is defined as

' me ™exc
mexc me ' memexc.

(35a)

In Eq. (35a), m, is the effective mass of the elec-

0
+ d(q /2p'+ ) +

[( '/2p')'+
I &.I']"

d(q'/2p, )a
[( /2p, )24.

I
/ I2])('».—.N0

[( '/2p )'+
I &,I']"

d(q'/2p )&
[(q'/2p )'+I& I']" '

where N, (0) designate the density of states de-
fined as

N, (D)=(, )
= (38a)

U, = U, (k), (k, (k) =A, . (38c)

After performing the integration in Eqs. (36) and
(37) we obtain

A, =(d, /sinh(1/p, ),

=(d /sinh(1/p ),

(39)

(40)

where the coupling constants p, are determined
by the expressions

p+ = U+N+(0)/s+

p =U+N (0)/s,
(4la)

(41b)

(d, = P/2p, „$= (6v'N/V )'/' = (6s' n)'~' (38b)

n =N/V being the exciton (electron) concentration.
In Eqs. (36) and (37) use has been made of the
notation
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1 —(U /U. )(&-/&. )
1-(U /U. )'

1-(U /U. )(&./& )
1 —(U /U, )' (41c)

which indicates that b+ and ~ are independent
of one another. This will be the case when the
exchange coupling is extremely weak in compari-
son with that arising from the Coulomb inter-
actions. The ratio

The transition temperatures T,' may be then de-
termined by the relations

KaTc =0 576

where &~ is Boltzmann's constant. In the weak-
coupling limit, i.e., when p, «1, then Eqs. (39)
and (40) may be replaced by

a -2~ e '/'I'

a =2' e '~~-.
(41e)

(41f)

In the limiting case when

(U /U+) 0, (42a)

i.e. , s, -l, then p„and p given by Eqs. (41a)
and (41b) become

p' = I/U. N. (0), p' =1/U-. N (o), (42b)

respectively. In view of Eqs. (35c) and (35d) we

may also have

N (0)&N„(0) and po &p' (42c)

and
sinh(1/pa+) sinh(1/p') ' (43)

for the transverse modes, while the reverse in-
equal. ities hold for the longitudinal ones. Thus
in such a case where Eq. (42a) is applicable, Eqs.
(39) and (40) assume the form

&+ ~, sinh(l/p') 2m, sinh(1/p')
(() sinh(1/po+) p, + sinh(1/po+)

'

(44)

Equations (43) and (44) indicate that the energy
gaps &+ and &' are more or less of the same
order of magnitude.

For finite values of the ratio U /U„Eqs. (39)-
(41) indicate that the gap functions 6, and ()( de-
pend strongl. y on each other. This suggests that
a mixing between the frequencies of the plus and
minus fields occurs the extent of which wil. l de-
pend on the strength of the exchange interaction.
This wil. l be referred to as the strong coupling
case and it may occur whenever electrons and
excitons come close together so that the inter-
action between them is of the short range. How-
ever, in general exchange interactions are known
to be extremely weak in molecular solids and
therefore, in most cases Eq. (42a) is expected
to be applicable.

IV. GROUND-STATE ENERGY

To calculate the ground-state energy of the system
in the same approximation in which the excitation
spectrum has been considered, we average the
Hamiltonian (1) as

(31) = const. + g ~g „(& k „t o' k „t + o' k, t & k, t) + I &»+ ~t t (k )]( b k v t b k v t + b k u t b k v t)
k, v k, v

+ &t t (k) ( b» t b» t + be» b g, t) — b t t (k) ( b k „t a k, t + b k „t Q k ( t)
k, v k 4v

—p d.» (k) ( b» t o» t+ b» t o( k .t) (45)
k, v

Then using Eqs. (29a)-(30b), we derive from Eq. (45) the following expression for the ground-state energy

of the system:

E (4 „'(&i.— i.)* -'(~i. — i.)'. I& ~ (i)I*
I
&+(4)I*

Ckv+ Ckv- 2Ekv+ 26kv
(46)

In particular, we are interested in the difference of the total ground-state energy minus that of the nor-

mal. state, i.e. ,

4(E k () (() k p) 4(E k () ~ k (()', I
& + %)l', I

& —(k)I'

6kv+ 6kv 26kv+ 26kv
(47)

where

(K„),= Q (0 k„+0k„).

We next replace the summation over k in Eq. (47)
by an integration over the first Brillouin zone
and using the same approximations as those for
the derivation of Eqs. (39) and (40), we obtain
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W = —N+ (0)u 2+ [ 1 + (6+ /9+ )') "~ '

-N (0)~'[li(~ /~ )'j'~'

N+ (0)e ', N (0)&u
'

tanh(1/p, ) tanh(1/p )
(48)

Equation (48) is formally analogous to that in the
theory of superconductivity' and is a generaliza-
tion of Eq. (43b) of I. The two terms in Eq. (48)
describe the binding energy corresponding to the
coherent electron-singlet exciton and electron-
triplet exciton pairing respectively. These two
terms are independent of one another as long as
the relation given by Eq. (42a) is applicable. On
the other hand, in the presence of strong exchange
interactions where the coupling functions p, and

p are determined via Eqs. (41a) and (41b), re-
spectively, both terms in Eq. (48) depend strongly
on each other.

V. DISCUSSION

We have considered that physical proc es s es
where electrons interact with either a singl. et
or a triplet exciton to form bound charge-transfer
states. It is shown that both physical processes
are feasible provided that certain conditions are
satisfied. When the exchange interactions are
negligibly small, namely when Eq. (42a) is satis-
fied then below some critical temperatures de-
fined by Eq. (41), the two frequency modes cor-
responding to the electron-singlet and eleetron-
triplet exciton complexes propagate through the
crystal independently. In this case the gap func-
tions 60 and 6' given by Eq. (43) are more or
less of the same order of magnitude (b', ~ 4').

When the electron-exciton exchange interactions
become dominant, i.e., the interaction is of the
short range, then the gap functions ~, and 6 de-
pend on each other. In this case the two fre-
quency modes corresponding to the two charge-
transfer complexes are mixed and the excitation
spectrum is getting extremely complicated. Hope-
fully, for most molecular crystals electron-ex-
citon interactions are expected to be of the long

range and not of the short one which corresponds
to the range where chemical reactions occur. Of
course, this statement could be only verified
experimentally. The two terms in Eq. (48) cor-
respond to the binding energies for the two charge-
transfer complexes, respectively.

The conclusion from this study is that triplet
excitons interact with el.ectrons as easy as the
singlet excitons to form charge-transfer com-
plexes. The advantage of the interaction with the
triplets is that because of the long lifetime of the
triplet state, the accumulation of high concentra-
tion of triplets is easier established than that of

the singlets; of course, experimental difficulties
may be also encountered for the production of
high concentration of triplet excitons. Also, in

most molecular solids and in some biological
systems the triplet state is much lower in energy
than the singlet; and in the case of m electrons
which are energetically near then in such sys-
tems the formation of electron-triplet complexes
will be facilitated.

The experimental situation is at the moment
rather gloomy. Haarer and Castro' in their ex-
periment on the external photoemission of electrons
from the anthracene crystal have concluded that
the enhanced photoemission is caused by an ex-
citon-electron collision process. This physical
process is similar to the well-known phenomenon
of ionization of I centers by exeitons in ionic
crystals. It seems to us that such kind of experi-
ments' where by the use of two light sources op-
erating at different wavelengths, one of which
produces excitons and the other excitons plus elec-
trons, seem to be very promising for the study of
mechanisms involving electron-exciton interac-
tions; more experiments should be encouraged
in this direction. As it has been repeatedly men-
tioned, electron-exciton complexes are undoubted-
ly of the charge-transfer type and therefore, their
existence in molecular solids consisting of aro-
matic molecules as well as in biological systems
consisting of maeromolecules will be of utmost
importance. We hope that the present study will
stimulate experimental interest to investigate
electron-exciton interactions in molecular sys-
tems with the understanding of the extremely com-
plicated nature of such experiments.

In the present study as well as in I, use has
been made of methods formally analogous to those
in the theory of superconductivity and hence the
gap functions 6,(n) in Eqs. (6)-(8) or A, (k) in

Eqs. (17) and (18) refer to the coherent electron-
exciton pairing where the total momentum of the
pair is equal. to zero. Since it is known from the
theory of superconductivity" that only the co-
herent pairing leads to the lowest possible ground-
state energy, we have confined our attention to
z ero-momentum pairs.

The problem of the incoherent electron-exciton
pairing is quite similar to that of the exciton-
phonon bound states in molecular crystals" and
to that of the two-magnon bound states in ferro-
magnets. ' In accordance with these methods" '
for certain values of the total. momentum of the
pair, one may expect to have the formation of
either the two-particle bound state or the con-
tinuum of the two-particle scattering states. Our
treatment here is limited to the description of
the electron-exciton bound states with zero total
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momentum. The physical process where an elec-
tron and an exciton form the continuum of the
two-particle scattering states is excluded here
by the decoupling approximation given by Eqs.
(5a)-(5d).

To describe physical processes which are due
to the incoherent electron-exciton pairing, the
decoupling approximation defined by Eg. (5) should
not be used. Instead, one has to calculate Green's
functions of the form of

(( b - „b „o.-„„;n -„„b-, , b -., ))

and

((& mv + mv b nvl b n'v+ m'v + m'v))i

which are coupled to the single-particle Green's
functions

(( o-„„;o-„„)) and ((b-„;b -,„)),
by making use of the Hamiltonian (I). In general
this is rather an extremely difficult problem; de-
tails of such treatment will be presented in a
future publication.
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