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A microscopic theory of the lattice dynamics of the rare-earth metals based on the model-potential method is

developed and applied to the hexagonal close-packed metals, Tb and Ho. The electron-phonon interaction is

represented in the rigid-ion approximation by a rare-earth-metal model potential (REMMP) of the Heine-

Abarenkov-Animalu type which incorporates formally the s-f hybridization in the energy bands of the
lanthanides through an l = 3 model-potential well depth of the resonance form, A,(E) cc 1/28&/(Ef E),
where Wf and Ef are, respectively, the width and the position of the narrow fband. Physical effects due to the
nonlocality of the REMMP, spin-orbit coupling, local-field corrections, and three-body forces are investigated

but only the nonlocality of the REMMP was included explicitly in the numerical calculation. Calculated

phonon dispersion curves for Tb and Ho are in reasonable agreement with the experimental data of Houmann

and Nicklow and of Nicklow et al. This work represents a successful completion of the program of extending
the pseudopotential and model-potential methods to all metals throughout the Periodic Table.

I. INTRODUCTION

Recently considerable progress has been made
in the microscopic theory of the lattice dynamics
of the transition metals by using the transition-
metal model potential (TMMP) proposed by one of
us' to represent the electron-phonon interaction.
As in the microscopic theory of the lattice dynam-
ics of the simple metals, based on the self-con-
sistent field, Born-Qppenheimer, and harmonic
approximations, one sets up a dispersion relation
for phonons in a crystal of the form

[M(u'6„6,„,-D„,(q; ~x')je8(q) =0 (o. =1,2, 3),

where q is the phonon wave vector restricted to the
first Brillouin zone; e~(q) is the P component (P
= l, 2, 3) of the unit polariza. tion vector, with (lon-
gitudinal and transverse) polarization index s; M
is the mass of the ions, and

C R 8
D~a ==D~o+D~a+Deo

defines the dynamical matrix, comprised of three
contributions, viz. the Coulombic (Dc,), the re-
pulsive core-core (Da~), and the electronic band-
structure (Da~) contributions. For the common
metallic structures, face-centered cubic (fcc),
body-centered cubic (bcc), and hexagonal close
packed (hcp), one calculates the Coulombic and the
repulsive (Born-Mayer) contributions by standard
techniques. For the electronic band-structure
contribution, however, one needs to construct the
electron-phonon interaction which, in the rigid-ion
model, is determined by the pseudopotential or
model potential carried by the vibrating ions. Qur
objective in this paper is to extend this approach

to the rare-earth metals, in particular, the hcp
metals of the lanthanide series.

Animalu' and Khanna et al. ' have used the local
form of the TMMP in the calculation of the phonon
dispersion curves in the fcc transition metals with
a measure of success. A similar approach using
free-electron (Lindhard) dielectric function was
less successful for the bcc transition metals. Sub-
sequently, Qli and Animalu' reformulated the lat-
tice dynamics of the transition metals taking into
account the s-d hybridization effects and local-field
corrections to the free-electron dielectric function
in the framework of a nonlocal TMMP theory: the
formalism was applied to the bcc transition met-
als, vanadium' and niobium, ' and reasonably good
quantitative agreement between experimental and.

computed phonon dispersion curves was obtained.
Using another formulation of the nonlocal theory
due to Eschrig and Worm, ' Kulshrestha and Upa-
dhyaya' have calculated the phonon dispersion
curves for the hcp transition metals, Sc and Y:
these authors reported large nonlocal effects and
obtained good agreement with the experimental
dispersion curves by treating the coefficient of the
linear term in an expansion of the TMMP form
factor near the Fermi surface as an adjustable pa-
rameter. In order to elucidate the source of the
nonlocality in the TMMP, Maclin and Animalu' re-
cently performed a precise nonlocal dielectric
screening of the TMMP in the resonance model
using the single-plane-wave approximation and
found that the screened nonlocal TMMP form fac-
tor of ihe Animalu-Heine type, V(k, q) at k =kz did
not differ significantly from the local TMMP ap-
proximation. Consequently, the large nonlocal ef-
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fects reported by Kulshrestha and Upadhyaya' ap-
pear to arise from the shift in energy due to ion-
ion interaction via the polarization field of the con-
duction electrons which, in the random-phase ap-
proximation, is determined by t;he square of the
pseudopotent:ial or model-pot:ential matrix ele-
ments and the Green's function summed over the
occupied states in the Fermi distribution; or, in
other words, the nonlocal effects are associated
with the energy-wave- number charac teris tie func-
tion G(q) and can be derived from first principles
within a. semilocal TMMP theory (see Sec. IIB
below).

In view of the above record of success based on
the TMMP method, we wish in this paper to intro-
duce a rare- ea, rth-metal model potentia. l (HEMMP)
Rnd apply it to the lattice dynamics of the hcp rare-
earth metals. The BEMMP is presented in Sec. II A;
the application to the calculation of the ener-
gy-wave-number characteristic in. the framework
of the Eschrig-Worm nonlocal theory is developed
in Sec. IIH; and other corrections, in particular
local-field corrections, spin-orbit coupling, and
three-body forces are discussed in Sec. II C. Nu-
merical results for Tb and Ho are presented and
discussed in Sec. III; and conclusions are drawn in
See. IV.

II. THEORY OF THE ELECTRONK CGNTRIBUTIGN

In this section, we wish to discuss the represen-
tation of the electronic contribution to the dynami-
cal matrix for the phonon dispersion relation in a
hcp metal by a rare-earth-metal model potential
(REMMP) of the Heine-Abarenkov type. This is
done in three parts: in See. II A, we describe a
forrnal extension of the TMMP method to the lan-
thanide series; in Sec. IIB, we derive the param-
eter in the Eschrig-Worm nonlocal theory of the
energy-wave-number characteristics from a semi-
locRl BEMMP RpproxlmRtlon; Rnd ln Sec. II C, we
discuss the various corrections due to local-fields,
spin-orbit coupling, and three-body forces.

iooQ
80 ~

J
6d

R+++

where the model-potential well depths A, are en-
ergy-dependent parameters t;o be determined from
the atomic spectroscopic data in the spirit of the
quantum-defect met:hod, and all other notations
have t;heir usual meanings. '

For the lanthanide group of rare-earth metals
characterized by outer electronic configuration of
the form 4f" 5d 6s' (n=2, . . . , 14;m=1, 2), and
covering elements with atomic numbers from Z
=58 (Ce) to Z= 71 (Lu), the ions are predominantly
trivalent (z =3) and the atomic spectroscopic term
values' (see Fig. 1) vary only slightly over the
series. Electrons associated with the incomplete
4f shell a,re, like those associated with the incom-
plete d shells in the transition-group metals, vir-
tual bound —a fact related to the s fhybri-dization
found in the energy bands of these metals calcula-
ted by the relativistic-augmented-plane-wave meth-
od. " Spin-orbit coupling is also important for
these high-Z metals.

In the spirit of the TMMP method in which s-d
hybridization in the transition-metal energy bands
is incorporated through an / = 2 model well depth
of the resonance form, A, (E) ~ (E, —E) ', we
cha. racterize s fhybridizatio-n in the energy bands
of the lanthanides in the BEMMP by an l = 3 model
well depth of the resonance form

(4)

where E& is the position and 8'f the width of the f-
band resonance. In practice, because of the simi-
la.rity of the la.nthanides to lanthanum (La), and
the scarcity of the atomic spectroscopic data for
the rare-earth metals in general, we shall use
the model-potentiaL parameters of I,a for l = 0, 1, 2

(Ref. 1, Table I) as starting values for all the
lanthanides. For convenience, these parameters
for l = 0, 1, 2 and our estimate for A, at E =E~ de-
rived from spectroscopic data are given explicitly

A. Rare-earth-metal model potential

The potential that an electron experiences in a
vibrating lattice is related in the rigid-ion ap-
proximation, through the appropriate structure
factor, to the pseudopotential or model potential
associated with a single bare ion in the crystal.
Following the procedure used in simple and tran-
sition-metal model-potential method, we repre-
sent the BEMMP for a single ion by

-QA, (E)P, for r~R„,
l-"0

z/x for f'+Rgy
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FIG. 1. Free-ion energy levels of the i.sovalent se-
quence La3' j La(IV)j (after Hef. 19).
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TABLE I. Parameters of the model potential for La, Tb, and Ho. All quantities are in
a.u. except iE, i (Ry).

Element Ao A2 Rc

La
Tb
Ho

0.90 1.40 0.85 2.30 2.0 252.2 3 1.0 2.154 0.083 0.085
0.90 1.40 0.85 2.30 2.0 214.54 3 1.0 1.894 0,066 0.085
0.90 1.40 0.85 2.30 2.0 210.03 3 1.0 2.000 0.066 0.086

for I,a, Tb, and Ho in Tables I and II. Model-po-
tential parameters for /&3 need not be calculated
if we optimize in the manner prescribed by Shaw"
or use the standard approximation' of setting A,
=C (for / &3} to write the final REMMP in the form

—C —(A, —C)Po —(A, —C)P, —(A, —C)P,

V»= —(A, —C)P, for r&R»,

—z/r for r &R„.

(5)

Optimization consists of setting C =z/r in this ex-
pression and allowing 8„to depend on / and 8 so
that A. , =z/R„(/, E). For our present purpose, it
suffices to put C = z/R„ for fixed R» in Eq. (5).

The screened BEMMP form factor can be cal-
culated in single plane-wave approximation by the
procedure described in Ref. 8 for the TMMP. The
result takes the form

&k+ql Vlk) =f/(q}/«(q}+P(k k+q}+f(F» (8)

where B(q) is the local part (including the orthog-
onaitzation and correlation corrections) andE(k,
k+q) thenonlocalpart of the "bare" HEMMP ma-
trix element (k+q

I V„lk); f(E) is a complicated
integral representing the screening field associated
with the nonlocal part E(k, k+q); and «(q) is the

Hartree dielectric function, with appropriate modi-
fication for exchange and correlation.

B. Energy-wave-number characteristic function

We now proceed to describe the use of the
REMMP form factor to represent the electronic
contribution to the dynamical matrix for phonon
dispersion relation in an hcp lattice.

The dynamical matrix for hcp structure contain-
ing two atoms per unit cell is a 6 && 6 matrix and
can be expressed as

o(t), m) o(q, ~~') i
D(q) =

D*(q, xx') D*(q, «)
where the D(q, «') are 3 x 3 submatrices, q the
phonon wave vector, and v, v' = 1, 2. As pointed out
in Sec. l, the dynamical matrix is composed of
Coulombic, repulsive, and electronic parts; the
Ewald's 8-function transformation is used to cal-
culate the Coulomb part from the relevant expres-
sion given elsewhere"; and the core-core repul-
sive part can be calculated from a Born-Mayer
pair potential. The electronic parts are calculated
by making use of the following expression:

D o(q, «') =— ~ (q+ g) (q+ g)8 Go( I q+ g I ) exp(- iq r„„,),

I

D.o(q, «) =„MZ (q+g}.(q+ g)o G.(lq+g I) — g. g, G.(I g I)F(&).
(8)

Here, n is the number of ions per unit cell; and

F(K) = Q cos(g ' 1„„,), (9)
K

with r„„,= r„—r„„and r„and r„, being, respective-
ly, the equilibrium positions of the two atoms in
the unit cell. G, (q) is the (unnormalized} energy-
wave-number characteristic function which de-
pends on the "bare" pseudopotential or model-po-
tential form factor V»(q) and is given in local mod-
el-potential approximation by the expression

where «(q) is the Hartree (free-electron) dielectric
function with modification for exchange and cor-
relation in the Hubbard-Sham or other analogous
approximations.

TABLE II. Parameters used in the calculation of
phonon frequencies: v& (10 Hz}; k~ ——(37r z/Q} (a.u. };

0
a and c are in A and atomic mass M is in 10 4 g.

Element

&oq' IV„(q) I' «(q) —l
8aze' «(q) l f(q)'-(lo)

Tb
Ho

8.831 0.7453 3.59 5.696 264.336
8.745 0.7506 3.5773 5.6158 273.850
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Now let us consider the nonlocal corrections to
the energy-wave-number characteristic G(q) in
the manner proposed by Eschrig and Norm. ' Ac-
cording to these authors, if one expands the form
factor for k values near the Fermi wave number

kz and substitute in the standard expression'3

G(q) Z"
„-

" -'q &kIV„Ik+q&&k+qIVIk&,

&k+q lvlk& =[B(q) +F(k +q, k)]/c(q), (13)

where B(q) is the local part of the model potential
(including the orthogonalization and correlation
corrections), and E(k+q, k) is the nonlocal k- and
E-dependent part. %e also write

& k
I v~ I

k+ q &
=B(q) +E(k+ q, k). (14)

Next, we expand the nonlocal part F(k+q, k) as
follows:

the result may be written in the form

G(q) = G.(q)[1+s, G(q)/D(q)1

where

(:(k)=-',z {(+k'— )k
2g 1-v)

D(q) =, 1+ ln
38 1 —g 1+'g

F g

(12)

(kk+ ,t))k=k'(k +k, k )+(—) (k —Z ), ((5)

where BA,/BE in this expression is obtained by
differentiation of A, (E) defined by Eq. (21) below.

Fina, lly, we substitute (13) a.nd (15) in (ll) and

keep only terms of order (BF/BE)s to obtain the
result in Eq. (12), with

2 BF

&k~+qi V„lk~& BE z~

1}=q/2k~, G, (q) being the energy-wave-number
characteristic in the local screening approxima-
tion.

These and subsequent workers' in the field of
the lattice dynamics of hcp metals treated a, as an

arbitrary adjustable parameter in their calcula-
tions. It is possible, however, to determine this
parameter in the framework of the nonlocal model-
potential theory and hence exhibit its physical
meaning. To this end, we use the local-screening
approximation to write the screened model-poten-
tial fol'Ill fac'toz' appeal'lllg ill Eq. (11)as

for &kp+q I V@Ik~& 40. (16)

In practice, a, is not a smooth function of q, so
that its treatment as aa adjustable constant" is
unjustified. However, an exact treatment of the
nonlocal effect is possible [though not practical,
because of the large number of reciprocal-lattice
vectors appearing in the summations in Eq. (8)].
In an exact treatment, instead of using the local
approximation given by Eq. (13), we substitute the
exact formula (6) in Eq. (11). Since I(F) is a func-
tion of q only, we find from Eq. (11) that

(:(k) Z [( ))+)-k( k+ kk)k] +k{k+kk)+((k)),.- E(k)-E(k+q e q

does contain terms inI(F) and I(F'), where

( ) P (nk)- (nk +)q(„- -)
k E(k) —E(k+q)

is given explicitly by [Ref. 8, Eq. (13)]:

( )
32)n*[1—f(q)]It'„'

( )
vA, q'e (q)

(18)

Pj),& P&x j) p+q &u —p+q j),& p+q ~u &r P&z &s P ~,
&"-k~ (P -ip+qi )

I A, (E )+ ' (E —E ) for I=0, 1,2,
BE

A, (Ep) = (21)
A, ( E~) i E„-E„i

(E, —E,)+-,'IW,

and I(E2) is defined similarly. The large contribu-
tion from nonlocality parameterized by a, in Eq.
(16) arises from I(E') rather than from I(E): this
explains why nonlocality may be important in G(q)
but not in (k+q I

V Ik) itself, as suggested in Sec. l.
Our numerical calculations indicat, e that a constant
a, of order —1.0 gives a suitable approximation of
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the exact formula. (1V) by the Eschrig-Worm ex-
pression (12), for Tb and Ho. We accordingly
treated a, as an adjustable parameter to give a
reasonable fit of the observed phonon dispersion
curves in view of the fact that the available spec-
troscopic data were not sufficient to determine the
SA, /SE for the relevant va, luce of l.

C. Other corrections

We turn finally to other corrections to the elec-
tronic part of the dynamical matrix which are of
interest for the hcp rare-earth metals. There are
three corrections of significance, viz. spin-orbit
coupling, local-field corrections, and three-body
forces.

First, let us discuss spin-orbit coupling. Since
we are dealing with elements of high atomic num-

ber, we expect spin-orbit coupling to be important.
Inclusion of spin-orbit coupling in the model-po-
tential scheme can be accomplished (see Ref. 5) by
the procedure described by Animalu" for the sim-
ple metals. Since the contribution of the spin-orbit
model potential 1/'„ to the form factor is pure
imaginary, it may be incorporated in Eq. (10) sim-
ply by replacing

l V„(q) l' by [ l V„(q) l'+lV, .(q) l'].
Since the spectroscopic data for the lanthanides are
scanty, we have made a quantitative estimate of this
contribution using the data on I.a and found spin-
orbit contribution to the lattice dynamics of the
lanthanides to be negligible.

Next, let us consider the local-field corrections.
Following the discussion given by Oli and Animalu'
for the cubic transition metals, we modify the
electronic contribution to the dynamical matrix in

hcp structure in the following way:

D 8(q, vx') = 2 Z(q+g), (q+ g')~G(q+g, q+g') exp(+ig ~ r„)exp(-ig' r„,),
g gl

I

&. (~, «)=„M (++(~+i).(i g'4&(~ ~ i, Q i')- i. ilt:(i, i')&(~)),
g I' g 8'

where

(22)

E(x) =-,'[exp(+ig ~ ~)+exp(-ig' ~ x)],

G(q+g, q+g') =-(fla lq+gl ««e )x(q+g q+g')

x V„(q+ g)e '(q + g, q + g') V&(q y g'),

(23)

X(q+g, q+g') =[v(q+g)] [~;,&-e(q+g, q+g')j,

v(q+g) being the Fourier transform of the elec-
tron-electron Coulomb interaction with appropriate
modification for exchange and correlation. This
involves the inverse dielectric matrix e '(q+ g,
q+ g') whose off-diagonal components are generated
by the depletion hole arising from the energy de-
pendence of the REMMP [cf. Ref. 4, Eq. (22)].
Estimate of this contribution is hampered by lack
of enough atomic spectroscopic data required to
evaluate the derivatives of the REMMP parameters
dA. , /dE which also appear in the full nonlocal theo-
ry through Eq. (20).

Finally, we turn to the three-body forces. The
experimental dispersion curves for Tb i5 and Ho i6

indicate that along I'KM direction, the ordering of
dispersion branches and the degeneracy at the K
point are similar to those of hcp Be.' '' The anal-
ysis of Roy et al."suggests that these special fea-
tures of the phonon spectrum of Be, and hence
those of Tb and Ho, are a direct manifestation of

unpaired, i.e., three-body forces; this feature
cannot be explained by a simple pseudopotential
model based on second-order perturbation theory
or by the modified axially symmetric model of
deWames et a/. "withany number of adjustable pa-
rameters. Bertoni et al."have shown, however,
that the inclusion of third-order perturbation terms
and hence three-body forces in the pseudopotential
formalism was sufficient to explain these special
features. We expect the approach of Bertoni et
al."which is based on the Heine-Abarenkov model
potential for Be to be relevant in Tb and Ho. Un-
paired forces are also introduced by the use of a
nondiagonal dielectric matrix for screening, but
no calculation exists in current literature. We
have not included the unpaired forces in the pres-
ent calculation.

III. NUMERICAL RESULTS AND DISCUSSION

We now proceed to present the numerical results
based on the theory presented in Sec. II and to
compare them with experimental phonon dispersion
curves. Along the high-symmetry directions, l"A,
I'M, and I'KM corresponding, respectively, to the
[0001], [0110], and [1120]directions in the Bril-
louin zone, the secular equation (1) can be solved
to determine the phonon frequencies v from the fol-
lowing relations:



For the [001] symmetry direction (q„=q, =0,
q. = q),

~'(q) =D„(q, ~~) + ID„(q, «') I, LO and LA,

(24)

(q) =D„,(q, «) + ID,„(q,«') I, TO and TA.

For the [0110]symmetry direction (q„=q,=0,
q, = q),

~'(q) =D„(q, ~~) + ID„(q) ~K') I, LO and LA,

~'(q) =D„(q, K~)+ID„(q, «') I, TO(&) and TA(J.),

(25)

~'(q) =D„„(q,«)+ID„„(q,«) I, TO((() and TA((().

For the [1120] symmetry direction (q, =q, =0,
q. =q),

~'(q) =D„(q, «) + [D,*,(q, «')D„(q, «')]'»', T, and T„

~'(q) = —,(D,(q, «) + Re D„„(q,~v') +D„(q, v~) —Re D„(q, ~v')

+( [D„„(q,«) + Re D„„(q,«') D„(q, gg) + Re D„(q, g g')]'

+4[ImD„,(q, e~) —ImD„, (q, «')]'j'~'), T", and Z -, ,

~'(q) = 2 (D..(q, «) Re D.,(q—, «')+D„(q, «) + R'e D„(q, «')

+([D„„(q,«) —ReD„,(q, «') D„(q, av-) —ReD„(q, vv')]'

+4[ImD„,(q, «)+ImD„, (q, «')]'P~'), 7, and T4,

TABLE III. Coulomb coefficients for Tb [units of 4n'(ze) /MQ]. 0, the atomic volume per unit cell, equals 200 (Qo is
the atomic volume), M is the ionic mass, z is the chemical valence, and e is the electronic charge.

~ D~(q, ~v)

[0001] direction

D (q, xx) D~(Q', KK D«(q, ww')

0.2
0.4
0.6
0.8
1.00

0.052 14
0.051 97
0.051 76
0.05f 58
0.051 52

D~(q, ~x}

1.895 50
1.895 83
1.896 28
1.896 63
1.896 78

[Of f 0] direction

D (q, ~~')
H,e Im

—0.049 65
—0.042 24
—0.030 69
—0.016 13

0-.0

D~(q, Kx')
Re Im

0.099 31
0.084 48
0.061 37
0.032 27
0.0

Dgg(q, KK )
Re Im

0.2
0.4
0.6
0.8
1.00

0.066 94
0.105 69
0.153 92
O. f9323
0.208 31

1.085 19
1.165 63
1.254 2 f
1.31784
f .34043

0.847 86
0.728 67
0.591 86
0.488 84
0.451 15

-0.053 86
-0.058 12
-0.063 05
-0.066 00
-0.06445

0.031 49
0.061 02
0.086 09
0.10376
0.11163

0.891 93
0.745 18
0.552 41
0.352 35
0.163 72

-0.032 83
-0.071 82
-0.122 92
—0.19180

0.283 56

-0.838 07
—0.687 06
-0.489 37
-0.286 35
-0.099 27

0.001 34
0.010 80
0.036 83
0.088 03
0.17f 94

[1120] direction

D~(q, xx') Dg~(q, KK )

0.2
0.4
0.6
0.67
0.8
1.0

1.134 11
1.185 15
0.943 03
0.794 82
0.471 22
0.208 31

0.101 f7
0.281 27
0.641 72
0,79640
1.103 66
1.340 43

0.764 70
0.533 57
0.415 24
0.408 76
0.425 11
0.451 f6

0.792 36
0.481 if
0.237 52
0.188 95
0.139 32
0.128 90

-0.058 17
-0.085 34
-0.154 91
—0.189 33
-0.264 32
-0.327 43

-0.734 19
-0.395 78
-0.082 62

0.000 39
0.125 Of,

0.198 53

0.569 22
0.122 27
0.181 68
0.189 16
0.161 66
0.0
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TABLE IV. Coulomb coefficients for holmium [units of 47t(ze) /MQ]. Q, the atomic volume per unit cell, equals 2Qp

(Qp is the atomic volume), M is the ionic mass, z is the chemical valence, and e is the electronic charge.

q/q D~(q, «)
[0001] direction

D (q, ww) D (q, wz') Dgg(q, f~:~')

0.2
0.4
0.6
0.8
1.0

0.054 71
0.054 52
0.054 28
0.054 09
0.054 09

1.890 34
1.890 75
1.891 21
1.891 65
1.891 65

[0110] direction

-0.052 11
-0.044 33
-0.032 20
-0.016 93

0.0

0.104 22
0.088 65
0.064 41
0.033 86
0.0

q/q D (q, Kv) D~~(q, vv) D (q, vw)

D„„(q,f(;z')

Re Im
D~(q, vx')

Re Im
D (q, ww')

Re Im

0.2
0.4
0,6
0.8
1.0

0.069 37
0.107 72
0.15546
0.194 37
0.209 30

1.086 35
1.16345
1.248 55
1.309 91
1 ~ 33171

0.844 26
0.728 82
0.595 97
0.495 70
0.458 98

-0.056 48
—0.060 83
—0.065 85
—0.068 80
-0.067 09

0.032 80
0.063 54
0.089 61
0.108 00
0.11621

0.890 40
0.745 94
0.555 19
0.355 94
0.167 06

-0.034 16
-0.074 49
—0.126 89
-0.196 90
-0.289 36

—0.833 91
-0.685 11
-0.489 33
-0.287 14
—0.099 97

0.001 36
0.010 95
0.037 28
0.088 90
0.173 15

[1120] direction

q/q D~(q, KK) D~y.(q, KK) D„(q, t4. v) D (q, f(:z') D,~(q, vt(. ") D«(q, vK') ImD„, (q, ~~')

0.2
0.4
0.6
0.67
0.9
1.0

1.132 98
1.179 17
0.937 44
0.790 43
0.469 77
0.209 30

0.103 26
0.281 58
0.638 68
0.792 00
1.096 70
1.331 71

0.763 74
0.539 24
0.423 86
0.417 54
0.433 51
0.458 98

0.792 51
0.484 86
0.242 39
0.193 91
0.144 44
0.134 19

—0.060 89
-0.088 62
—0.159 37
—0.194 30
-0.270 28
-0.334 12

—0.731 62
—0.396 25
—0.830 29

0.000 39
0.125 84
0.19993

0.059 18
0.126 49
0.186 80
0.194 12
0.16541
0.0

where the "+" sign denotes the optical branches and
the "-"sign the acoustic branches.

The Coulomb coefficients calculated from the ex-
pressions given in Ref. 12 are tabulated in Tables
III and IV for Tb and Ho for the principal symme-
try directions given in Eqs. (24)-(26). Since the
parameters characterizing the Born-Mayer re-
pulsive contributionarenotavailable for the lantha-
nides, we have not included this contribution (typi-,
cally 5%) in the ca.lculated phonon dispersion
curves. The electronic contribution is calculated
in semilocal HEMMP approximation using the ex-
pression for the form factor given in Appendix A,
and a, = —1 in Eq. (12) as discussed in Sec. IIB.

Typical values of the phonon frequencies are
tabulated for some branches in Tb in Table V; and

TABLE V. Phonon frequencies (units of 10~~ Hz) of Tb
for some branches.

the complete phonon dispersion curves are dis-
played in Figs. 2-5, for Tb and Ho, andcompared
with experiments. The agreement between theory
and experiment is only semiquantitative in view of
the corrections due to local-fields and three-body
forces which have been omitted in this calculation
for the reasons given in Sec. IIC. Although the re-
sults are sensitive to the value of a, (treated here

K T~M
I

3.0

N
X

5 2.00

1.0

0.2
0.4
0.6
0.8
1.0

IA direction

0.32 3.56
0.62 3.31
0.96 2.90
1.45 2.49
1.94 1.94

I'M direction
yL gU

0.35 3.55
0.74 3.32
1.34 3.10
1.83 2.85
2.14 2.66

I'Ellf direction
T3 T2

0.54 3.35
1.61 2.98
2.29 2.54
2.58 2.23
2.66 2.14

0 02 04 06 08 1.0 08 06 04 0.2 0 0.5 10

maX
q/q q/q

FIG. 2. Phonon dispersion in Tb: solid curves rep-
resent the calculations of the present work: OA+k ex-
perimental points of Houmann and Nicklow (Ref. 15).
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r T = K T M r T = K T M

3.0

Nx
O 2.0

N

Ol

'P 2.0
h

1.0
1.0

I

0 0.2 04 06 08 1.0 08 06 04 0.2 0 0.5 1.0
q/q 0 0.2 0.4 0.6 0.8 1.0 0.8 0.6 0.4 0.2

q/q q/q
0 0.5 1.0

FIG. 3. Phonon dispersion in Tb: solid curves rep-
resent the calculations of the present work; OLOL
experimental points of Houmann and Nicklow (Ref. 15).

FIG. 5. Phonon dispersion in Ho: solid curves rep-
resent the calculations of the present work; Od Ok
experimental points of Nicklow et al. (Ref. 16).

as an adjustable parameter), they are quite stable
up to 50% change in the value of A, (Ez) because of
the small amplitude of the l =3 spherical Bessel
function.

IV. CONCLUSION

In this paper, we have developed a microscopic
theory of the lattice dynamics of the hcp rare-
earth metals based on the Heine-Abarenkov-Ani-
malu model-potential method. This work repre-
sents a successful completion of the model-poten-
tial program for all metals in the Periodic Table.
It reassures us that the pseudopotential concept is
applicable universally to simple, transition, and
rare-earth metals provided some care is taken in

the treatment of the d-band resonance in the tran-
sition metals, and the f-band resonance in the
rare-earth metals. However, certain problems
remain to be solved. For example, an internally
consistent treatment of the chemical valence and
the incomplete shells of the transition and rare-
earth metals is yet to be given: we expect such a
treatment to lead to a model-potential theory of
magnetism in metals. The resonance model, as
presently represented in the TMMP and the
REMMP, is an oversimplification of the complex
structure of the d band and the f band in rea. l met-
als; but it contains the essential ingredient re-
quired to investigate the physical effects of s-d and
s-f hybridization in electronic properties. In spite
of these problems, we feel that the microscopic
theory of the electron-phonon interaction and the
lattice dynamics of the transition and rare-earth
metals presented thus far is reliable enough to
permit a program to investigate a number of out-
standing problems of the electronic properties of
these metals, particularly superconductivity.

N

2,0
0

ih

1.0
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FIG. 4. Phonon dispersion in Ho: solid curves rep-
resent the calculations of present work; &&pig experi-
mental points of Nicklow et al . (Ref. 16).

In this Appendix, we wish to give an explicit ex-
pression for the screened-model-potential form
factor V(q). In the local screening approximation

(A] '
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where

v'(q) =&km+qlv~+V. ,+v-)lk )

F(k—m) km+ q)+B(q), (A2)

say, V„being the model potential defined by Eq. (5)
and V, V the usual orthogonalization and corre-
lation corrections.

In Eq. (A2),

B(q}=—,[sin(qR„) —qR„, cos(qR„)]—,cos(qR„)+,', "', [sin(qR, ) —qR, cos(qR, )].8~C . 8~z 4r j E, ( 24gza„,

For lk, +ql=k„,

F(km, km+ad) = —4mA 'R'm(A, —C)([j,(x)]'-x ' cos(x)j,(x)]- 12mQ 'R~m(A, —C)

x([j,(x)]' —jo(x)j,(x)]P,(cos8) —20mn 'R'„(A, —C)

x) [j,(x)]' —j,(x)j,(x)] P,(cos8) —26 mO 'R„'(A, —C) g[ .j,(x)]' —j,(x)j,(x)]P, (cos8),

where x =kmRm, cos8 =1 —q'/2k'';C =m/Rm;

P,(cos8) = cos8, P,(cos8) = —,'(3 cos 8 —1), P,(cos8) = —,
' [5 cos8P, (cos8) —2P, (cos8)];

jo(x) =x ' sinx, j, (x}=x ' sinx —x ' cosx, j,(x) =(3x ' —x ') sinx —3x ' cosx,

j,(x) = 5x ' j,(x) —j,(x), j,(x) = Vx ' j,(x) —j,(x).

For lkm+qlvkm,

(A4)

F(km, km+q) = ", '-. [xj,(x)j.(y) -yj, (y)j.(x)]-

40mR'„(A, —C)
&& [xj,(x)j,(y) -y j,(y)j,(x)]P,(cos8') —

&
", ', [xj,(x)j,(y) -y j,(y)j,(x)]P,(cos8')

56 mR'„(A3 —C)(", ',
)

[xj,(x)j,(y)-yj, (y)j,(x)]P,(cos8'), (A5)

where

x=kmR„, y=lk, +qlR„,
cos8'=[x'+y'- (qR„)']/2xy.

The dielectric function e(q) is given by

e (q) = 1+[1—f(q)](4 mme*'/0 q')X(q/2k'),
where

1 —X~ 1+X
y(x)=~Em ~+4 . ln I

(AV)

(A6)

E =k'k'/2m*,

e*'= (1+n„,)e',

(A9)

(A10)

f(q) =q'/[2(q'+k'+k, ')]; k,'=2k /m (a.u. ). (A11)

The final answer obtained by inserting the num-
bers in Tables I and II into V(q) is in Ry.
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