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%'c have studied the electron-phonon interaction in aluminum using Fermi-surface-fitted 4-orthogonalized-

planc-wave electron states, a realistic phonon spectrum, and integration mesh density varying with local Fermi-
surface curvature. The resulting electron-mass enhancement X and thermal scattering rate 7

' are evaluated as
functions of position on the Fermi surface, with the following results: (i) The agreement between observed and

calculated cyclotron masses is improved slightly by the use of our anisotropic X rather than the average one.

(ii) The r~nisotropy of X is determined predominantly by mixing coefficient variations, rather than by phonon

anisotropy. (iii) The scattering rate v exhibits order-of-magnitude variations over the Fermi surface at low

temperatures. Its values at 5 K are within 50%%uo of the experimentally observed ones everywhere, with

considerably better agreement in free-electron regions. (iv) Deviations from the naively expected T behavior

are predicted: IQ ffcc-electron regions, umklapp processes cause 8 Shore rap/d increase than T for
tempcnturcs above 15—25 K. On ridges, where the initial "T' coeNcient" is very large, we find a slower

increase. There results a washing out of anisotropy with increasing temperature. The results on X are in good
agreement with those of a recent similar calculation; the r ' results agree qualitatively but not quantitatively.

J. &TRODUII."TION

The continuing growth in capability to measure
and analyze the scattering rates of quasiparticle
excitations in metals" is exciting for a number of
reasons, of which two are (i) the scattering rate
~ ', together with the effective-mass enhancement
A. , are basic to the description'~ of ].ow-lying
electronic excitations in the interacting eleetron-
phonon system, and (ii) the quasiparticle rate r '
is a uniquely sensitive probe of the azisoA Opy of
the electron-phonon interaction —anisotropy which
manifests itseU less directly in other quantities
such as transport coefficients. ' To amplify on the
last statement, the electrical conductivity (for ex-
ample) may be written as an average of the aniso-
tropic transport relaxation time 7'„. Although its
anisotroyy gives rise to dramatic effects, it can-
not be measured directly, and at best only its
qualitative features may be inferred from experi-
mental data. So transport coefficients are rather
insensitive probes of anlsotropy.

In this paper we are concerned with the caleula-
tjon of the quasiyarticle properties, A. and r, of
aluminum. The reason for the choice is that alu-
minum presents the interesting combination of a
multisheeted Fermi surface with a, very simple
electronic structure [its electronic properties,
ircluding Fermi-surface shape, are well described
by Ashcroft's 4-OPW (orthogonalized-plane-wave)
model']. Because of this simplicity the nature of
the electron states is intimately related to the
Fermi- surface hape: single-OP%' states in
spherical regions, 2-OP% in most of the high-
curvature regions (near zone boundaries), and 4-
OP% near the zone corners. Certa, in features of

the quasiyarticle properties might therefore be
dictated by the surface shape.

The ingredients in this ealeulation are discussed
in detail in Sec. II, and so we state them only
briefly here for comparison with previous calcu-
lations. The 4-OP% model is used for both the
Fermi-surface shape and the electron-phonon
matrix elements, and a realistic phonon spectrum
is used as well for the latter. The quasiparticle
quantities are then calculated by direct integration
over the Fermi surface, using a fixed mesh whose
point density is determined by local Fermi-surface
curvature. This calculationalprogramand a some-
what similar one by Leung' differ from all previous
aluminum calculations' in their detaijLed treatment
of the electron structure. This program differs
from Leung's in two respects: (a) Leung uses
15-OP% electron states and the Heine-Abarenkov
pseudopotentia, l for the calculation of matrix ele-
ments; (b) rather than doing surface integrals di-
rectly, he introduces the frequency distribution
functions n 'E(k, ur) as an in-termediate step."The
general agreement between our calculated values
of X suggests that the matrix elements are not
seriously affected by the use of one method over
the other. The discrepancy which exists between
the 7' values probably arises from the difference
between our integration methods, since it is dif-
ficult in either ease to treat low-frequency phonons
with a high degree of accuracy. This problem will
be discussed at length later.

In the remainder of this section we review the
surface-integral expressions for X and 7., First
consider the simpler quanity A.; recall that it re-
lates the quasiparticle velocity
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vo(k) =[1+X(k)] 'v(k) (1)

to the bare "band" velocity v (k}. It is given by the
Fermi- surface integral3

1 " dS' ~ Ig, (k, k')1
4)i3 „kIv'I

Ig, (k, k'}I'=(2p(o„) 'I(k'I g„~ vvIk) I'

is the squared a,mplitude for the electron transi-
tion k-k', with the emission or absorption of a,

phonon with wave vector j and polarization o (for
an emitted phonon, q=k-k' reduced to the first
Brillouin zone). In (3), p is the mass density of
aluminum, V is the Ashcroft pseudopotential (for
consistency with the Fermi-surface fit), and of
course ~ and e„are the phonon frequency and
polarization, respectively. A similar formula
holds for the thermal quasiparticle relaxation rate
at the Fermi surface (a=0, Ref. 3}

r-'(ir, a=o)= —,f ),
)
F ls.(k, &') )'f(&~ /&, &),

(4)
where

f(x) =(e"- 1) '(1+ e ") '

=- n(x}[1—f'(x)]
incorporates the temperature dependence through
the e(luilibrium Fermi and Bose functions f' and

n; note that f(x) falls off exponentially for large
x. For quasiparticles off the Fermi surface the
relaxation rate v (k, e) is slightly more compli-
cated than (4). For the measurements done in
aluminum' the appropriate quantity is the ave~age
of 7' '(k, e) over energies near the Fermi level, as
discussed in a number of places, '" and that is
simply

OO 8 0
(&'(t))-=de — )&'(k, c)

= —", v '(k, &=0)

related to the value at the Fermi level. Later we

compare experimental measurements with (7 '(k)),
(5), rather than (4}.

One further point must be discussed here. For
very low temperatures the occupation factors f (x)
restrict important contributions to the integral in

(4) tothe immediate vicinity of k (i.e. , Ik —kl«kz)
The result is that, for any fixed integration mesh,
the numerical sum intended to represent (4) ap-
proaches zero exponentially [exp(- o/T}], rather
than algebraically (T') as does the exact integral
(4), in the limit T -0. However, the exact low-
temperature limit may be calculated by writing the
surface integral in plane pola, r coordinates

dS'-qdqd8 (T-O)

and observing the asymptotic form

lim ' ' —= lim G,(k, k') = G,(8),
g J~g ~qo

(6)

(this independence of G, on q will be demonstrated
explicitly later) which permits the integrals to
factorize. It is then elementary to show that

lim r '(k, e = 0) =, ', (kaT)'
2.1D4

2' ~0

II. CALCULATIONS

In this section we describe the method used to
perform the Fermi-surface integrations required
in (2), (4), and (7), and we discuss the calculation
of the necessary ingredients in the integrands. The
integration mesh is shown sn Fig. 1. It consists
of 1294 points: BV3 on the second zone hole sur-
face, and 421 on the thi. rd zone electron surface.
The mesh-point density is greatest near the zone
edges, where the curvature is high; the density
was chosen to satisfy a criterion based on the
electron-phonon matrix element variation (to be
discussed later). It is apparent that the density is
sufficient to represent the Fermi-surface shape
adequately. The points are located, and the wave
functions are calculated by means of Ashcroft's
4-OPW model. This model provides an excellent
fit to the actual Fermi-surface shape, ' and we
believe that it gives the wave functions to a suf-
ficiently high level of accuracy that they are not a
limiting factor in the overall accuracy of the cal-
culation.

For each mesh point, we calculate the element
of surface area and the velocity v=8 ' V~&. These
are then used to evaluate three surface integrals
of interest, two of which are related to the "spe-
cific heat" and "optical" effective masses, as
shown in Table I.

The matrix elements (3) re(luired for the (Iuasi-
particle properties are calculated using the 4-OPVf
wave functions of the Ashcroft model, and a phonon
spectrum derived from a Born-von Karman force-
constant fit to neutron data. The rationale for
using the simple 4-OP% model for the matrix ele-

x dg G 8C2g 7
0 6

where C,(8) is defined by lim, , (d (8) = qC, (8). The
angular integral may be done numerically, to pro-
vide the exact T' coefficient for the low-tempera-
ture limit. This procedure will be discussed fur-
ther in Sec. II, along with many other details of the
computations. The results of the calculations of
both X and 7 ' are given in Sec. III.
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FIG. i. (a) Second-zone Fermi surface. (b) Second-and
third-zone Fermi-surface sheets shown together. The
~48 th minimum symmetry element is shown for the sec-
ond zone; the third zone consists of three such sets of
arms. (c) Second-zone mesh shown in detail. Certain
Fermx-surface points are named after corresponding
points of high symmetry in the zone. The ' t U

'
d

fined so that its normal is i directed, to enable later
comparison with experiment. Unnamed points, indi-
cated by dots, will also be referred to later.

ments is as follows: First, we recall that Ash-
croft's model is empirical, in the sense that the
measured Fermi-surface dimensions are used to
infer the band gape V(G). These band gape are the
values of the electron-ion form factor at the re-
ciprocal lattice points 6=[111]and G=[200j. The
form factor represents the electron-ion pseudo-
potential operator V—the same V which occurs in
the electron-phonon matrix elements (3). For con-
sistency, then, the matrix elements should be cal-
culated from a pseudopotential which "re roduces"
Ashcroft's empirical band gaps, and from the sam(
4-QPW wave functions used in their determination.

In connection with the choice of form factor, we
should point out that the usual Ashcroft form" '

used, but with the ionic core parameter B, set at
0.61 A, rather than the 0.59 A quoted in Ref. 11.
This choice is necessary in order to fit the em-
pirical band gaps; it fits V, essentially exactly and
overestimates V, by 13'. In contrast, the choice
8,= 0.60 A underestimates V, seriously (-35/g),
while A, = 0.62 A overestimates both V and V .

h
1 2'

%e ave studied extensively the variation of the
quantity G,(k, k') —= co 'lg, {k, k')l' [the integrand of

see Eq. (2)j over the Fermi surface, particu-

TABLE I. Li
inte

'sted are our computed values f fo sur ace
grals representing the "specific-heat" and "o

effective ma sses, and the Fermi-surface area. The

' ic- ea an optical"

free-electron velocity vp and surface area 8 are iven
for referencece. Free-electron quantities: vp = 2.02 x 10
cm/sec' Sp=38.5 A

Surface integral Computed
value

ms~ ~v dS
'Ipl Sp ~v

So') dS

I - = iSovo)
' dSlvl 0.67

larly in the vicinity of ridges. Through th' t d
eveloped the criterion for mesh density that

lssu

the quan'. ity G,( k, k') should va.ry by no more than
10/q under the displacement of its arguments by a
single interval in any direction. Th' 't
supplements the more subjective one that the mesh
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q(8)

e ...I)e, e=e)=I, 'e)e)) 'P ee'c (e).c (e) f e'def()etc, ih T).
g 9 0

The radial integral may still of course be done
analytically, and then the angular integral done
numerically. As a result of the truncation q(II),
the contribution r„'«(k) is accurate for all tem-
peratures, and this guarantees that the total scat-
tering rate

r '(k =0) = r ' (k & =0)

+ (sum over all other mesh points k')

(13)
is accurate both at zero temperature [where r '
= v, '„, are both equal to (7)j and at higher tempera-
tures where typical phonon wave vectors are suf-
ficiently large that the mesh provides adequate
angular resolution. The expression (13) may not
be accurate for some intermediate temperature
interval, depending on the mesh density near k.
Evaluating ~ ' at 5-K intervals, we find apparent
minor loss of accuracy only at 5 K„occuring at
some of the Fermi-surface points.

III. RESULTS

A. Effective-mass enhancements

We first present results for the effective-mass
enhancement A.„since it is the simpler quantity
to talk aboui. A. is plotted in Fig. 3 as a function
of position k on the Fermi surface, for orbits in-
dicated on Figs. 1 and 2. Note that the values
0.37-0.42 are characteristic of free-electron-like
regions, and that localized deviations from this
range of values occur on the ridges. On the sec-
ond-zone ridges the deviation is an increase; on
third-zone ridges (near the principal section) it is
a decrease. Near the third-zone neck the situation
is more complicated and A. is untypically large
everywhere. Our interpretation of the behavior
everywhere except near the neck is that the local-
ized deviations arise from changes in the electron-
ic mixing coefficients. This is evidenced both by
the localization to the ridges [the mixing coeffi-
cients are the only important quantities in (2) which
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FIG. 3. (a) Our computedvalues of A, shown along the
two line segments EL and J UX indicated on Fig. 1(c),
which together comprise the (110) orbit on the second
zone surface. (b) Plot of X along segment XWX, or
(100) orbit on second-zone surface. Note the discon-
tinuity at the contact point, which arises from the dis-
continuity in the mixing coefficients. (c) Plot of & along
line segments indicated (Fig. 2) on the third-zone sur-
face.
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TABLE II. For various extremal orbits on the second and third zones, we list measured cyclotron masses, calcu-
lated "band" masses (unenhanced), "apparent" mass enhancements ~(apparent)= rn, {expt)/m, {calc)—1, and the results
of the present calculation A(calc).

m, /m (expt) m, /m(c ale) A, (apparent)
m, /m{calc) A, {apparent}

{&-dependent pseudopotential) ~{calc)

Second zone

(110) central orbit
1.30 + 0.1
1.27 d 0.822 0.58 + 0.1 0.87 0 49+0 1 0.42

1.36 + 0.1 "
{111)central orbit 1.4O d 0.902 O.51+ O.1"' 0.95 O.43 + O. 1 ~'C

Third zone

(110) central arm

(100) inner ring

0.130+ 0.004

0.132+0.001
o.1 d

0.84 + 0,07
0.80 d

0.0897 0.47+ 0,01

O.7O+ 0.15' "

0,095

0.52

O.39~ O.OV ".

0.62 + 0 15 "' 0.44

0.0605(100) neck 0.091j- 0.003

~ J.R. Anderson and S. S. Lane, Phys. Rev. B 2, 298 (1970)."¹W. Ashcroft, Philos. Mag. 8, 2055 (1963), Ref. 6.'
¹ W. Ashcroft, Ph.D. thesis (Cambridge Univ. , 1964)(unpublished}, Ref. 14.

d F. Spong and A. F. Kip, Phys. Rev. 137, A431 (1965).
C. O. Larson and W. L. Gordon, Phys. Rev. 156, 703 (1967),
R. T. Mina, V. S. Edelman, and M. S. Khaikin, Sov. Phys. JETP 24, 920 (1967).

o.5o+ o.o5" 0,48

vary on such a short scale], and by the antisym-
metry between zones. The antisymmetry may be
understood by first noting thet near a given ridge,
and sufficiently far away from the third-zone neck
region t$60 of the four mixing coefficients ale
dominant in the wave functions. It follows that the
product of the two dominant mixing coefficients on,
say, a second-zone ridge, has the opposite sign
from the corresponding product on the third-zone
ridge. As a result, typical squared matrix ele-
ments in (3) exhibit opposite interference effects
in the two zones, and these appear to be largely
responsible for the localized deviations in A..

In addition to these ridge-localized variations,
there are also longer-range variations: A. is some-
what larger in the vicinity of X (the square region)
that it is near L (the hexagonal region) on the sec-
ond-zone surface. Qn the third-zone surface A.

tends to become larger as one moves toward the
neck region. These long-range variations seem
to be related to the amount of umklapp scattering
which can occur, from the region in question. The
X region of the second zone generally lies closer
to a zone boundary than does the 1. region, and so
umklapp processes are available at smaller wave
vector from the X region. The entire third-zone
Fermi surface lies near zone boundaries, but the
neck region is nestled in the zone corner, and
achieves near-contact with the second-zone sur-

TABLE III. For the indicated Fermi surface points
I.see Figs. 1c and 2; U' is the point along arc AB of Fig.
2 whose velocity is vertical] we compare A, values mea-
sured by the surface-Landau-level method, with iso sets
of calculated values.

A, (apparent), Refs. 9 and 13
Point Constant V» & dependent &»

A, {calc)
Present

Ref. 7. work

0.49+ 0.01
0.46 & 0.01
0.54 + 0.02

0.41+ 0.01
0.38 + 0.01
0.45 + 0.02

O.41 0.42
0.39 0,37
0.365 0.37

face. So it is not unnatural that the largest values
of X should occur there.

The results shown in Fig. 3 agree quite well with
those of Leung (Ref. 7). As pointed out by him,
the contrasting behavior between second and third
zones (in the short-range variations) is not ob-
tained in a single-QPW calculation, as done for
example by Leavens and Carbotte. ' The long-
range variations, Bt least on the second zone, do
seem to emerge correctly from such a treatment.
This partial agreement between single-QPW and
multi-QPW calculations is consistent with our in-
terpretation of short- and long-range variations
as 2-QP W and umklapp effects, respectively.

We compare calculated orbital averages of X

with those inferred from cyclotron resonance data
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in Table II, and in Table III we compare calcu-
'th the surface- I andau-levellated point values wi

e ehau t ""d t obtained by Doezema and VVegehaupt. '

In all hut two eases (one of which ha g
neertainty), the agreement is very

f ood. It is particularly pleasing tha e ani
ent. Note that in order totropics are in agreemen .

s necessary to i erbt '
1 se agreement, it was n y

the "apparent" X values by comparing observed
ith band masses calculatedeffective masses wi

endence of thewith account for the energy-dependence o e
'

1 The calculation is described bypseudopotentia . e c ' ' '
b

r in the fourAshcroft, "and his values appear in
column of Tab e1 II. The same corrections have

ble III.been app ie in1 d
' the second column of Tab e

B. Relaxation rates

Vfe are interested in the scattering rate 7 as a
function o of both k and temperature T. Anticipating
a T' de endence in free-electron regions, we pa ep

4 for several points7' 'T ' as a function of T (Fig.
on the secon -zond-zone surface indicated on Fig. 1. At

1 temperatures the anisotropy is uge. nvery ow emp
an initial T' beha-f — lectron regions there is an ini iaree-e

rtain threshold' r which is augmented above a certain

[Fi . 4(c)] the total scattering rate for points k inFig. c
that contribution whichthe hexagonal region, with

arises from scattering only to other states k' in
the same hexagona regioI egion (to eliminate umklapp).



ANISOTROPIC QUASIPAB, TICLE PROPERTIES IN ALUMINUM

o ]

1

l

0.05 o.iO, 0.]5
ARC LENGTH ( g )

0.20

FIG. 5. Plots of 7"'T ~ vs arclength on the (110) orbit
of the third-zone arm (Fig. 2), for several values of the
temperature.

Note that the umklapp onset tempex'ature is re-
duced as the point k moves outward from the cen-
ter (1.) toward the zone boundary (K). Finally, as
one approaches the ridge [Fig. 4(a)], there is no

longer a well-defined umklapp threshoM (the dis-
tinction between "normal" and "umklapp" is not

always possible when 2-OPW states are involved);
the quantity 7 'T ' starts out large and falls mono-

tonically with increasing temperature. Viewed as
a function of k, v' 'T ' is sharply-peaked at ridges
for low temperatures. As the temperature in-
creases, the peaks broaden and the anisotropy
washes out. The washing-out is accomplished by
a reduction of v' 'T ' near ridges, accompanied by

an increase in free-electron regions. This view
is demonstrated in Fig. 5, where 7 lT ' is plotted
as a function of k, on the principal (110) orbit on
the third-zone arm. The absence of flatness in
the zero-temperatuxe plot reflects the absence of
completely free-electron character in the wave
functions. It is not surprising that there is no
apparent umklapp threshold.

The magnitudes of 7' 'T ' are generally in good
agreement with the measured ones (Table IV),
particularly at the free-electron points X and L, .
The ranges of calculated values indicated for the
third-zone point U' (shown on Fig. 5) and the third-
zone orbit (Fig. 6) reflect the departures from
purely cubic temperature dependence of v '.
These departures are untypically small, by com-
parison with those of third-zone points generally,
and second-zone ridge points; this makes the U'

point and the orbital average particularly appro-
priate for comparison with the data. The mea-
sured value associated with the U' point had pre-
viously been subject to ambiguous interpretation;
it could equally well have been identified with the

appoint

on the second zone' [see Figs. 1(c) and
4(b)]. However, a tipping study has led to the
unique identification with U'. "

It would be interesting to confirm the predicted
deviations from T' behavior. The most clear and
easily interpreted ones occur on the second zone
between I. and K, as shown on Fig. 4(a). The k
space variations are smoother near the V, ridges
than near the V, ridges because the former have

TABLE IV. Measured and calculated scattering rates
are compared for the same three points appearing in
Table HI, and, in addition, for the central arm orbit on
the third zone. The ranges of calculated values indicat-
ed for the third zone apply to temperatures below& 20 K.
The departures from cubic behavior of 7' are evident
ln Figs. 5 and 6. o P0

Point or
orbit

& 'T 3(10' sec 'K ~)

Measured Calculated t,Eq. (5)] I-
20—

I

Zone 2
X
I

Zone 3
UP

(110) central
arm orbit

0.41+ 0.03
0.39+ 0.03

3.1+0.3

4.0+0.5"

0.40
0.38

3.8-5.0

5.0-5.5
0 ]0

T (K)

I

20

Reference 9, surface- Landau-levels.
b Reference 2, Azbel'-Kaner cyclotron resonance.

FIG. 6. The orbital average of 7' 'T ~ as a function of
T, for the orbit of Fig. 5. The zero-temperature value
is recorded in Table lV.
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less curvature (V, -3V,).
fn a few of the 7 'T ' plots [Figs. 4(b), 4(c)j there

is a noticeable dip at 5 K, which results from the
graininess of the mesh. Where it exists, the dip
is small and there is nevertheless possible a
smooth interpolation between T = 0 and the T ~ 10 K
points. With a finer mesh, the dip would occur at
lower temperatures and be less pronounced. Be-
cause of practical calculational considerations,
coupled with the limited availability of lifetime
data, such an effort seems unwarranted at the
present time.

IV. CONCLUDING REMARKS

The values of the effective-mass enhancements
calculated here are consistent with those calculated
previously by Leung, ' even though the two calcula-
tions differ in their detailed treatment of electronic
structure and in their methods of Fermi-surface
integration. The calculated anisotropy exhibits the
same trends found in both the surface- Landau-
level data and cyclotron resonance data, and the
actual magnitudes of ~ agree closely in most
cases. We have not calculated the entire Ferrni-
surface average of X required for comparison
with the specific-heat data, but Leung claims to
have found fairly good agreement there. '

The agreement between measured and calculated
scattering rates is pleasing. Agreement is par-
ticularly good at the X and I. points, where be-
cause of the free-electron character of the wave
functions, the T' coefficient depends on the form
factor only at zero wave vector. Because of this
it is not surprising that the coefficients are nearly
the same at these two points. For the third zone
(110)-orbital average, where r ' is nearly cubic in

temperature, the agreement is quite good. There
is some discrepancy, however, with the mea-
sured T coefficient identified with the third-
zonepoint U'. Owingtothe rapidvariationsof 7 'T '
with both Tand k near this point, one should perhaps
not expect very close agreement for the U' point.
Finally, the interpretation of data at such points
would be facilitated if the predicted deviations from
T' behavior were observed. Such observations
would provide a stringent test of the theory, and,
in particular, of the use of simple electronic
structure for treating the electron-phonon inter-
action.
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