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Functional-derivative study of the Hubbard model. II. Self-consistent etiuation
aud its complete solution~
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Vfe develop a self-consistent method to solve the basic equation for the self-energy correction of the Hubbard

model obtained in the preceding paper. The term m [6] involving second functional derivatives is neglected and

the quantities ( XR (t)) and ( C~„(t)Cz (t)) are initially assumed to be independent of the external fields

&(o.) and «(o.). Under these restrictions, the complete self-energy correction is shown to be expanded in powers

of «(a) and «(o) in the form X~z (tt) = ~o(~~ o t)B + & =0&~" &z" ~ (~~ '~ ~ )&(R"R"'~t)B
where (o consists of all possible terms linear in «(cF), while g" is made up «»1 possible terms of the
nth degree in e(c~r. Equations for fo and g" are solved exactly and the resulting series is summed analytically,
yielding a compact and complete analytic solution for the restricted equation. The part which is linear in ~

is shown to be equal to the perturbation result obtained in the preceding paper, confirming the claim
that the perturbation result is exact through terms linear in e. The method is extended and the effect of
B(g)/B«and B( C~C)/Be is included. The effect is found to eliminate the difficulty that the value of one
of the terms in the self-energy correction is abnormally overestimated in the previous result in the split-band
half-filled bmit.

I. INTRODUCTION

In the preceding paper, ' we have developed a
new perturbation method which can be applied to
systems involving strongly interacting electrons
such as the Hubbard model. Higher-order Green's
functions appearing in the equations of motion for
the basic Green's functions 6 are reduced to func-
tional derivatives of. G with respect to a small ex-
ternal field and calculated iteratively. 2' The
zeroth-order solution Go used in evaluating initial
values of the derivatives 5G/5e is calculated by
solving the original set of. equations under neglect
of 5G/5e. Since G, corresponds to the Ilubbard I
solution~ in the presence of the external field and
includes the intra-atomic correlation energy ex-
actly in the atomic limit, it is expected that the
perturbation series converges rapidly in the
strongly interacting limit, where a conventional
perturbation expansion based on the Hartree-Fock
solution fails.

The method was formulated for the Hubbard
model and the self-energy correction was cal-
culated correctly through terms linear in & in
Paper I. In the absence of a comparable system-
atic method to calculate higher-order Green's
functions, such a result has never been obtained
for the Hubbard model previously. Unfortunately,
the result in Paper I still contains some unsatis-
factory aspects, suggesting the need of calculating
nonlinear corrections. First of all, since the ex-
citation spectrum &,. is a solution of a polynomial
equation in &u, G, '(ru;) —Z(~, ) =0, &u, may not be

calculated correctly even though the self-energy
E(&u) is determined exactly through terms linear
in &. Secondly, one of the denominators of the
self-energy correction Z obtained in Eg. (5.14) of
I appears to become abnormally small, thus over-
estimating the value of Z. Although corrections
y(e) to the denominators are of higher order in e,
the value of P(c) can exceed the values of the
original denominators obtained in Eq. (5.14) of I,
thus modifying the result drastically.

However, it is no longer practical to continue
the iterative perturbation expansion. Instead, it is
easier to solve the basic Eg. (3.25) of I directly.
As will be shown in See. II, the results in Paper
I are, indeed solutions of the basic equation under
certain conditions. In Sec. III, we shall develop
a method to calculate a complete solution of the
basic equation under the following restrictions and
reproduce the result obtained in Paper I. The
restrictions imposed on the basic equation are that
v [5,J is neglected and that derivatives 5c are re-
placed by 5,~'s which operate on e(o) and e(g) only
and which yield 5(N)/50m =0 and 5(C C)/5~& =0.
Under the above conditions, the basic equation can
be solved exactly and the complete solution involv-
ing infinite powers in & is now written in a closed
analytic form as is shown in Sec. IV. In Sec. V,
changes introduced by including the effect of 5(N)/
5e and 5(C C)/5e will be calculated. As is dis-
cussed in the end of See. V, this will eliminate the
remaining difficulty in Paper I that one of the
terms involved in the self-energy correction may
become abnormally large.
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II. SEjLF-CONSISTENCY REQUIRFAIENT

Let us first sho~ t at the solution obtained in I aper I satisfies, under certain conditions, the basic Eq.
(3.25) of I, that is,

-&8 5Z„,.(tt') = dt, g Q X-, (at) Z-, (0) B-,(at) ( i)G-, (tt, ) 6(aa, ot)
1 2

+(-t)G„„.(tt, ) 6(aa, yt)F.(Rt)-(II -I)-I
RB&o j. 2 g

G„„(tt }6(a+at)F {at)-(gg-BBja 1 56 R,apt+

&&[(Go) ~p, (t t') -Z„„.,(t, t'}]+11[8,„,,(tt')j,
%here

~-.{at)=f(~ -[1-(l)t„-.(t)&]I] ', F,(Rt)-=[(ul -I)-'&N„-.(t)&'+w-'&I-N„-. (t)&]-,

5

5~(aa, ot+)

5
5a(RR, jr') }

56 (R,act )-
(2.1)

B-.(at) = n-. (I n.)+-I -'g-5'-~(aa "ot),
R ' vs'

5'"'(aa "rt) =6(aa "Ot)(c'-(t)c -(t)&+~(a "art)(c' -(t)c -(t)&

and II) =ts/S-t; X-, (0) and F-,{0) are obtained from X-, (at) and F-, (at) by replacing (N„-, (t)& by n-„while Il [S]
defined by Eq. (3.26) of I will not be considered in the following. The unperturbed Green's function G, is
given by Eq. (3.18) of I,

(2.2)

(G, );„',.(tt') =F.(at) 5-„,5„,-F-.(at) [F-.(O)j-'6(aa Ot) 5„,

-&-.(Rt) Q [6(aa "«)&Cst-. (t) Cs„-.(t)& -~(a "aot) &Cst„-,(t) CS-, (t)&]5„8,5I„. (2.3)
z« ~z

Note that in Eqs. (2.1)-(2.3), and from here on, the presence of the operator 5/5 t in quantities of the form

g(t) 5«, is indicated only through the t dependence of g(t).
Since we have neglected the 56 dependence of (N& and (Ct C) in Paper I, let us replace 56 in Eq. (2.1) by

5,6 which operates on 6(aa'ot) only and which yields 5(N&/506 =0 and 5(CIC&/5~6 =0. If we also assume
the absence of any external fieM operating on electrons with opposite spin 0, that is, 506(aa ot) =0 for RQ

R andR', the result obtained in Eq. (5.3) of I,

z,„,.(tt; ~}= [~-.(Rt)/x-. (o)]([~-.(a t) 1.-.(o) B-.(a t)]+[~~(0)B]'+[" ]'+ ~ 'te(aa Ot) 5„,
Il) (R t) Bg (R t)

I —~-.(a t) ~-. (0) B-.(at)
is an exact solution of the basic Eq. (2.1). In fact, 5GO /506(0) yields the first term in Eq. (4.7) of I:

5G-, '/56(o) -~-'. (Rt) B.(Rt) 6(aa ot) 5„-, ,

while —5Z, (o)/5, 6 (p) yields

—5z.(o)/5~{o)-[[z-'.(Rt)x-.(0)B2(at)]/[I- x-,(at)x-.(0)B-.(at)jj 6(aa'ot)5«. .

(2.4)

(2.6)

(2.6)

The sum of the above two expressions is equal to the original Z, (cr) given by Eq, (2.4), showing that Z (0)
is( indeed~ Rll exRc't solution of Eq. (2.1) 111 tile 111111'tof 506 (g) =0. Hli's collclllsloll ls~ of course~ evlden't

from the way the series for Z, (0) shown in Eq. (2.4) is generated; 5G, I/5, 6 yields the first term
[A/A(0)] [XX(0)B]65; the functional derivative of the first term, in turn, yields the second term
[A/X(0)] [XX(0)B]'65 and so on. Thus 5(G, '-Z)/5, 6 reproduces Z, (0) exactly. We note that the order of
magnitude of the first, second, . . . terms are the same as the zeroth, first, .. . terms, and once the
Hubbard col'1'ec'tloll (tile zeroth 01'del' tel'nl) ls taken lllto Rccolln't the wllole sel'188 [X/3l(0)]([XX(0)Bj
+[V,(0)Bj + ' ' j 56 hRs to be 111cluded. Otherwise) tile Hubbard-type solll'tloll cal)not be a self-consistent
solution of the basic equation (2.1). As we shall discuss in the following paper, the Hubbard I solution as
well as solutions of the type shown in Sec. IV of I, are not self-consistent solutions of Eq. (2.1) and are,
in fact, unstable.

The same calculation may be applied to the case where 6(aa'gt} =0 for all R and R', and it can be proved
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(2.a)

(2.10)

that the result Z, (o) obtained in Eq. (5.13) of I by successive applications of 5Z, /5ge(o) is a self-consistent
solution of the basic Eq. (2.1). More explicitly, Z, (o) consists of the following four terms:

(g) ) g &g(Rt)'bi')(RR "Ft) [—,'-(Nzg(t)}]
z„[1—t),—,(R t)]' [1-X(RR "ot)]

(~) )
A g (R t) Ag (R 't) b~+) (RR 'o t) (C)tt i g (t) C gg (t))

[I —
) -.(Rt)][1-).(R't-)][1-X(RR ot)j

1
)' — -(&g)K& &(R-& ))"} (2.9)—p, ~

and Z~, (o) which involves 5ge-independent factors of the type shown in Eq. (5.10) of I and which vanishes
in the limit of ape= 0. Here

X(RR ".ot) =A.—,(Rt)'[I —p —,(Rt)] '[2 -(Nzg(t))]
—)),—(Rt) [1—t), (Rt)j -)).-(R "t)[1—)), (R "t)-] (Cog�(t)C+gg(t)) (Czgg(t)C+g(t)),

t);, (Rt) =(w - ,'f){yv —[-l-(N„-,(t)&]I) '.
5 [C, ' —Z'" (o)] /5' (o) yields

, (Rt) b+—(RR"ot)
[1— -(Rt)] [1 X(RR-" t)]

Ag(Rt) t)g(Rt)b (RR'~&st) ))g(Rt)) g(R't)b+'(RR'gt)'~ [1-p,-(Rt)] [I -X(RR "Qt)] "' "' ' [I- t()Rt)] [I X(RR gt-)]

(2.11)

while 5Z,' (o)/5ge(o) and 5Z,"(o)/5ge(P) yield

(R t) g (R t) b (RR 0't)

[I (R t)]2[1 X(RR PP
—

t)] [8 R () gj BB t) (2.12)

)).-, (R t) p, g (R t) X-, (R 't) b~+) (RR 'o t)
[1—p-, (Rt)] [1-p, —,(R't)] [1-X(RR'ot)]

respectively. En the above expressions, we have omitted terms involving b since we are primarily in-
terested in nonvanishing terms in the limit of 5& =0. The sum of the above three expressions, indeed,
yields Zp) (&7) +Zi,')(a). If terms involving b~ ) are explicitly included, we will also find Zi,') (o) +Z~~(o),
confirming that the solution Z, (o) obtained in Paper I is a self-consistent solution of the basic equation
(2.1) in the limit of 5gc(o) = 0.

The above result is, again, evident from the way the series for Z, (o) is generated successively in Paper
I. If the first-order solution consisting of the second and third terms in Eq. (4.11) of I is included, the
entire series leading to Z, (o) given by Eqs. (2.7) and (2.8) has to be added. Since solutions of the type
given by Sec. IV of I do not satisfy the basic Eq. (2.1) and, by including one more term, the values of Z
change drastically, it is meaningless to discuss the accuracy of these solutions.

If we inclu e 5'(o) and 5'(o) simultaneously, the result Z, (g)+Z, (o) given by Eqs. (2.4) and (2.7)-(2.9)
is no longer a self-consistent solution because the factor )).'8—,(1-X'B—,) ' involved in Z, (g) is a function
of e(a) and introduces a new series.

HI. METHOD AND THE FIRST-ORDER SOLUTION

In Sec. II, we have shown that, if 5ge(o) =0 or 5'(o) =0, an exact solution of the basic equation (2.1) is
linear in e(RR'ot) or e(RR "gt) and e(R "Rat) and that the general expression for the self-energy Z, is
written

age(RR'ot) or g [a~+~ b+ (RR "ot)+a~~), b (RR "ot)], (3.1)
gtt

where bi') is defined by Eq. (2.2). Here, the parameters ag and a~" may be determined in such a way
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that Eq. (2.1) is satisfied. If 5,e (g) and 5,e(o) are included simultaneously, however, higher-order powers
in e(g) will appear in Z because B-,(Rt) mvolved in Eq. (2.1) has terms linear in e(o). If, for instance,
Z, =a, e(RR ot) 5«, is inserted into the right-hand side of Eq. (2.1), we obtain

a, l (Rt-).1-,(0)(n-. (l n ,) ~ i '-Q -5' '(RR jrt)) e"(AP. gt) 5„', ,
gtt

thus fllldlng quadratic terms 5 6 ~ Zg = Qpe 5 (RR Ft) e(RR 0'f) 5ggi q m turnp yields

Z~-(zt&~-(o)(n-l(t-n-)+r-'Z a' &(zR '-~t))n' '(Ra'vt-')~(~p'~os,
pit t

+X-.(Rf) g 5&'&(RR "ot) [-,'-{X,.(t))]~(RR'm") 5„,+&J.-.(Rf) P 5' &{RR -"of) ~(RR'of') 5„,

+X (Rt) Q— b~+&{RR"ot) (C~t» (t)Cs (t))e(R "R'ot ) 5,~ (3.3)
R"

showing the appearance of cubic terms 5~ & (t) bi & (t")e (t), and so on. Here b~ & (f') denotes the expression

iG„„.(« )9-&(RR-"rf-) -fG„.(ff')5'-&(RR "of'), (3.4)

and hence the derivative 5 [bi (&t) 5~ (&t')e(t)] j5e(gt) operates on bi (f) but not on b~ &(t').
A general expression for 5, obtained by successive application of the iterative procedure may then be

written

(3.5)Z (ft ) =t (RR'~f) 5 + Pgg ~'"'(RR'R"R"'of)~(R"R" of) 5
m=0 Z«Z"'

where $0 is the sum of terms linear in e(g), while $~ "& is the sum of terms of nth degree in e(a). It is
obvious that higher powers in «(o) do not appear. If we insert the above expression on the right-hand side
of Eq. (2.1), e(R "R"'crt) in Z, will be replaced by e(RR"'gt) whenever terms involving e(RR"'of) 5j5e(o)
operate on Z, . When terms involving e(o) 5j5e(o) operate on Z„however, e(R "R"'at) in Z, will be re-
placed by e(R,R"'ot) if R" =R and, otherwise, it will remain unchanged. In either case, the index R"'
will never be replaced and therefore, terms involving e(R "R"'gt) withR"'NR' are decoupled completely
from those proportional to e(R "R'ot) in Eq. (2.1). .Since terms generated from Go' do not involve
e(R'R"'gt) with R"'xR', the solution we are looking for is obtained by inserting ]i"&(RR'R"R"'ot) =0 for
R"'gR'. Equation (3.5) is then reduced to

Z,„,.(ff ) = t,(RR'of) 5„,+ g ~'"& (RR'of) e(RR'of) 5„,+ g g q'"& (RR';R "of)e(R "R ot) 5„, ,
n =0 f1=~ 8" ~B

where»~o& =0, and t~"& and»~"& consist of terms in the nth degree in e(o) having the form

5(~) (f) 5(~ & (f~) 5(~& (f »). . . 5(~& {f&~-» &
)

(3.6)

(3.7)

t~ "+& "&t'+&t+&t&t-&t'-&

If we insert the expressions in Eqs. (2.3) and (3.6) into the right-hand side of Rq. (2.1), we obtain

Z„„.(ff') =& .(Rf)'a.(Rf) e-(RR'of) -5„,+~ [G ]„,.(ff')+n, ~,(RR of) 5„,

+&-.(Rf) &-.(0) R-. (Rf) g t'"&(RR'of) ~(RR'ot) 5„,

+Z {~~6»(gP, 'iTt}+Zaq~"'(RR 8";Birt))e(RR''at)5„
z"

ft =a

+zz[ '"'{ "" )+ '"'( ' " )]("')
where sG, ' and n. $, as well as

5.~&"&(RR rt) c(RR of) +g 5.~'"&(RR'R'of) ~(R "R'~t)
gtt

(3.8)

(3.9)
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(3.10)b q
" (RR 'R " R a I) e (RR ' g f ) +6q

" (RR 'R "of) e (R "R 'g f)

are obtained by inserting G, ', $„$i"~, and q'"~, respectively, into the right-hand side of Eq. (2.1) in the
absence of the first term involving e(g) 6/5e(g). It is again obvious that b, $" and Aq" consist of terms
having the structure shown by Eq. (3.7). The expressions for Eq. (3.10) are obtained by using exactly the
same reasoning as that used in deriving Eq. (3.6). The term involving e(o') 6/5e(o) in Z, has generated
the first and fourth terms in Eq. (3.9).

The original Z, shown in Eq. (3.6) becomes an exact solution of the basic Eq. (2.1), if the expression
on the right-hand side of Eq. (3.9) is equal to the original Z, . This condition may be separated into three
parts Th. e part not involving e(a) is

$o(RR'ot) 5,~. =b [Go ]~~ (tt')+Ago(RR'ot) 5„..
The part proportional to e(RR'gt) is

(3.11)

(„), A.~(Rt) Bg(Rt) 1
(n) r- (n) I ir .g $" (RR~gt) =

I X (Rf)X—(0)B (Rt)
+ —I —A.-(Rt)A.—(0)B-(Rt) ~ h$" (RR at)+g Aq" (RR'R "~Rut)

(3.12)

while the part proportional to c(R "R'ot) is

(3.13)

(3.14)

g q~'(RR'R "(Tt) = g [6("'(RR'R "rt)

+by�"'(RR'R

"at)]
n n

Although Eqs. (3.12) and (3.13) involve all powers in e(o), the equalities should, in fact, remain valid for
each power. Hence Eq. (3.13) is rewritten

q+ (RR'R "at) =b. $" (RR';R "crt)+by" (RR' R "gt) .
To obtain a corresponding equality for )~I, we need to use the following expansion:

[I -A.—,(Rt) X—„(0)B—,(Rt)] '=f +Pf'+P'f'+P'f'+ ~ ~ ~

where

(3.15)

f —=
0 I, P =1—„(Rt)X—( )I g b~ ~(RR "at).

g tl

Equation (3.12) is then written

$"(RA tent)=Ax 'i-1+f)'i'"(RR ~t)=Ax 'f'/+j a$"'+I 6q"')

Q~'~( R'Rirt)=lX 'f'Q' '$J(IL( QkrP f(dd'

(3.16)

(3.17)

j "(RB i7t)=lx 'f'p'+f'g'' 6('+Pap")lf'p Ad +I 6q")+f(6j"+Edq", etc.

In the above expression, a$'"~ and+ hq~"' represent a$~"~(RR'ct) and g~„bri~"'(RR'R";Rat), respectively.
Equations (3.11), (3.14), and (3.17) are now the basic equations for the complete self-energy correction

The first equation in Eq. (3.17) yields the result given by Eq. (2.4). In the following, we shall show
that Eq. (3.11) yields the result given by Eqs. (2.7)-(2.9). Although the most general expression for
$0(RR'ot) is

(3.18)g,(RR'gI) = QQ a~~. ~i, ~„,e(R "R"'of),

goal

~II I

the coefficients a&~, & „~satisfying Eq. (3.11) vanish unless R" =R or R"' =R, because the result A$, ob-
tained by inserting Z, =$, on the right-hand side of Eq. (2.1) does not contain terms proportional to
e(R "R"'ot) unless R" =R or R"' =R. Hence (o can be expanded in terms of &(RR "ot) and e(R "Rat), or,
equivalently, in terms of b+ (RR "ot) and b ~( RrRrf) as follows:

j„(RR'o f) =- Q x„~., (R ') b~ (RR "o t) +g y~~t~ (R ') b~ i (RR "of) .
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A$, is then calculated to be

t )o(RR'ot) =gxnzi (R')(X-(Rt) b (RR "ot) [2 —&Nz (t)&]+p;(Rt) b+ (RRo»t)].

—Qxn„n(R')A. —(Rt)b~ ~(RR»ot)&cni (t)C~~(t)&

+Q ynn„(R') (X—,(Rt) b+ (RR "ot) [-'; - &N„, (t) &] +p, ,(Rt)—b (Ra "ot)]
pit

+ g y„„„(a')~-.(at) b'-"&(aa "ot) &C„"„.(t) C„.(t),',
pit

while A [Go ']zz, , (tt') has been calculated in Eq. (4.7) of I as follows:

6 [G 'J„, (tt') =X-(Rt)'Q b~'~(aa»ot) [— &N„-(t)&J5„„5„,yy (Rt)—p,
—(Rt) Q bi ~(aa "ot) 6 6, ,

gtl z"

+&-, (at) &—,(R't) b+ (RR'ot) &C„",, (t)C„(t)&6„, . (3.21)

(3.22)

Equation (3.11) is satisfied if the coefficients of bi+~(aa "ot) and b~ ~(RR "ot) vanish. This yields that

[1-1—.(Rt)]x„„(a) =X-'. (Rt) [-,' -&X,.(t)&]6„,+~-„(at)~-. (a t) &C,',.(t) C„.(t)&b„„„,

+ynn„(a ') A; (R t) [2 &Nn (t-) & ] +y ~ .n (R ') A.- (R t) &C st, (t) C s (t) &,

[1—p ,(Rt)]y -„(R') =X-, (Rt) p, —,(at) 6„~+x„„.(R') X-„(at) [-,' —&N, (t))]

-x„„(a)~-.(at)&c,'„.(t)c„.(t)&.

The above equations together with those for x~„~(a') and y~. z(a') can be solved exactly, and, in the limit
of a small external field 5e =0 where A. (a "t) =X(at), etc. , the results are

xnan„(a ') =X (-' —n, ) Dn~" SR'' + X &C C )D

y„„(a')=~[t (I —t )+~'(-,'-n. ) -~'&C,'.C„,.&&C',„.C„.&]D;,'„6„,,
and yzz, (a') =0. Here

D; = (1 —p) ' —Z' (-,' —n, )
' +X'(C t, C „,& (C t„.C„.& .

(3.23)

(3.24)

In the present limit, Eqs. (3.19) and (3.23) are exactly the same as the result obtained in paper I and shown
in Eqs. (2.7)-(2.9), confirming that the result in Paper I is exact through terms linear in e. Note that, if
needed, the exact solution in the presence of the external field be can also be obtained from Eq. (3.22),
while the result in Paper I does not include terms of the type shown in Eq. (5.10) of I. As mentioned be-
fore, they vanish in the limit of 5& = 0.

IV. COMPLETE SOLUTION OF THE RESTRICTED EQUATION

Z,et us now calculate the nonlinear corrections by solving Eqs. (3.14) and (3.17) and show that the re-
sults can be factorized in powers of c and hence the exact solution can be obtained in a closed analytic
form. Before discussing the factorization, we shall calculate the lowest nonlinear corrections involved
in the expression in Eq. (3.6), that is, quadratic terms in c. Since they are bilinear in 5e(o) and be(o),
$

' and g
' should be expanded as

~' (Ra' t) —g [x" (R') b+ (Ra "ot)+y'n'n (R')b (RR "ot)],

&»(aa~ a» t) =x&» (R') b+ (RR "ot)+v~' ~ (R') b (RR "ot).

Here again, more general terms b~'~(a "R"'ot) do not appear. b. $~» and by~» are then given by

(4.1)

(RR'ot) =Qx~~»(R')(A(at)b (RR»ot)[ —' —&IV (t))]+p(at)b+ (RR»ot)].
gll
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+Q yn~i. (R')(X(Rt) b+ (RR "at) [~ —&Nn (t)&]+t((Rt) b (RR "at)},

gp (RR';R "at) = —xI)san(R')l((Rt)b )(RR "ot) &Cn. a(t)cna(t)&

+y~„"„n(R'))((Rt) b(+) (RR "ot) (Cata (t) C~a(t)),

by'" (RR';R "at) = 8(" (R') (A (Rt) b( '(RR "at) [-'-&N (t)&] +/J(Rt) b" (RR''at)}

+van~ (R')()((Rt) b+ (RR "o't) [—,
' —&Ns, (t)&]+p(Rt) b (RRaat)},

(4.2)

g)I() (RR'R";Rot) =-z(n& n(R') l((Rt) b l(RR "(7t) &Cs (t) Cn (t))

+ v',"„„(R) X(Rt) b('(RR "at) &C,'„.(t) C„.(I)&,

(n (n X.'f'I '[(—,'-n, )+(-,' -n —,)]
Dr g(I f)g() )

(y) ~ (y) 1 f I &Cn" a Cna&»" »" D) P(1 f)g() n )

where

(4 4)

Dnn- ==(I-ft() (I —t() fl('(l -n.)'-
+f~'&c'„.c,.& &c,'.c,„.& . (4.5)

If f=1, Dan; becomes equal to D»„given by Eq.
(3.24) and, except for the factor XjI, x(non„and
Z(„'~n„are equal to x». (R ') and x». (R') given by
Eq. (3.23), showing that, except for the factor

By inserting Eqs. (4.1) and (4.2) into Eq. (3.14)
and also into the second equation in Eq. (3.17),
and by setting the coefficients of b and 5+ zero,
@re find that

[1 ft( (R—t)]x~z~z„(R ')
=fA.(R t) [p -(N„,(t) & jy„"„„(R')

+f~(Rt) &C„'„.(t) C,.(t) & v(,'-„(R'),

[1-fu («)]y'n'n-(R')

=[~(Rt)'/r]f'+f~(«) [-.' -(N,.(t)&jx«„„(R )

-fx(R t) (c,'„,(t)c,.(t)&z',"„,(R'), (4.3)

[1 t((R t) j—z',"„„(R~)

=l((R t) &c,'„.(t) c,.(t)& y",!„(R)

l («) [-.'-&N, .(t)&]",",„(R ),
[1—g(Rt)] v~z'~z. (R')

=-x(Rt) &C„'„.(t)C,.(t)) x&,'&, „(R )

+X(Rt) [-,' -(N„.(t)&]~(,'&„,(R') .

It is obvious that the solutions x, y, z, and v of
the above equations are independent of the index
R' and, in the limit of 5e =0, they are given by

A. I 'e(a), the second-order correction is essen-
tially the same as the first-order correction.
However, since f g1, the a) Fourier transform of
the denominator Dnna+(I -f) A. (2-n, ) remains
a function of ~ and is not reduced to the unfor-
tunate form shown in the second term in Eq. (5.14)
of I.

Higher-order corrections are given by Eqs.
(3.14) and (3.17). By comparing the expressions
for $" and t" " given by Eq. (3.17), we find that

(4.6)
Here the first term on the right-hand side of Eq.
(4.6) is equivalent to

lim (fg(R(7t) $
" ' (RR'(7t')

t ~t

(4.7)+f(t)(Rot') $+ "(RR'at)],

when the expression for $~" is inserted into the
right-hand side of the basic equation (2.1). Since

P(R(7t') =0 in the limit of be =0, Eq. (4.6) is, in
fact, equivalent to

(RR at) = fg(Rot) $(" "(RR'at')

~ f(6)~" (RR Ft) Qkq~~')RB' R I))R.
Rll

(4.8)Let us now assume that

$ "'(RR'(7t) = $'(RR '(7t) (" "(RR'(7t')
(4.9)

q" (RR'R "(7t) =q'(RR'R "ot) $~ (RR'at~).

Then Eq. (4.8) is

~'(RR'at) fy(Rat)-

h" (RR'at) =f(t)(R(7t) $'" "(RR at)

+f(&d"'iRR'irt)+P~q" {amR a;g), "
R"
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f(i-('(iiR'iri)+xiii (R'R R ';R"irt)
gtt

x(" ')(RR'ot') =0, (4 10)

while Eq. (3.14) is reduced to

X'fI '[(-,' -n. )+(-,' -n-, )]

&'fI '(Cs"o Cs )
RR" ~RB" I P(1 f ) y(& n )

(4.13)

[rl'(RR '; R "o t) —b, ]'(RR 'R "ot)

-t)q'(RR'R "(7t)] $ (RR'ot ) =0.
Since $~ ' &0, the equations for E' and g' are the
same as those for $

' and q
') given by Eqs. (3.14)

and (3.17) except that the first term in Eq. (3.1V),
XXO'f'g, is replaced by fp. Therefore $' and q'
for any m are calculated as

(4.11)

( '(RR 'it) = g'(R&rt)

=Q [x„'„„b~+l(Ra "(7t)+ys)a„bt l (Ra "ot}],

(4.12)
q'(RR);R "ot) =q'(R;R "ot)

= z„'s~b~+~(RR "ot)+v„'„.bt ) (RR "ot),

where, in the limit of 5e =0, g', y', z', and v' are
given by

The self-energy corrections given by Eq. (3.6) can
now be summed as follows:

Z„,.(tt') = 4(aa'ot) 5„,
X-, (at)'n-, (1-n—,)I-X-. (Rt) ~-. (0) n-. (I-n-. )

I,&"(aot)
+ ( (,(~ i))e(RR al)il„, '

~ qt" (R;R "ot) e(R "R'ot) 5„.
1 —$'(Rot)

(4.14)
which is valid in the limit of 5& =0 because of the
use of Eq. (4.8). In the limit of 5e =0, the above
expression for the self-energy correction may be
written in a more familiar form by using the re-
lations 5'+'(RR "ot) =2es„- (Cat, C„„,) and
b~ )(Ra"ot) =0 as well as Eqs. (3.23), (4.4), and

(4.13}. The result is

~ [(1-2',) 5ss'+2(Cs'g C an) 5"ss]iess(C sa~a)
5

(-,
' -n-. )'-(-,' -n. )'+ &C„'.C„,.) (C$:.C„.)

where

+ tl- 1 s- I +K~ &~gp + Lggecgttgr 'N 1 s- I g- 1 -Q- I -K
pit

(4.15)

XI [Desi' + (1 f ) )).(2 na)] (1 2ng) cps i (Cs()

Capita�)

(D,',„)'-(1-f)2X'(-,' -n. )'

L =(&ID„' 2e„„„(C—C -)(C„C„))/[(D„'„)-(1-f) X (
—' —n ) ].

(4.16)

If K„=L,.»„=0, the above expression is exactly
the same as the self-energy correction calculated
in Paper I and given by Eq. (5.14) of I. Note that

the first term in Eq. (4.15) remains abnormally

large in the present calculation for a haL~-filled

band in the split-band limit, suggesting that the

complete solution of the restricted equation is
still unsatisfactory, and that the effect of 5(N)/5e,
etc. , should be included in the calculation. This

will be the subject of Sec. V.

V. EFFECTS OF BOV&/Be AND B(C~C&/Be

We now wish to extend our calculation by includ-

ing the 5e dependence of (N) and (CtC). Since it
is no longer feasible to carry out a complete cal-
culation, we shall illustrate how the complete

solution of the restricted equation obtained in Sec.
IV is modified by including the effect of 5(N)/5e

DRs~'0 (t)

%'here

qnz" (I)
5

DRB'a (t}

P„„,.(t) =[-,'-(N, .(t))]b'&(aa "ot),

q„,.(t) = (C„',.(t) C„.(t)) b('(aa'ot),

and 5(CtC)/5e, but by neglecting higher-order
derivatives 5"(N)/5e", etc. , with n~ 2.

Let us first calculate the contributions to

$,(RR'rt)5s obtained in Eqs. (3.19) and (3.23). In

the presence of the external field, the parameters
x and y are not given by Eq. (3.23) but should be
calculated from Eq. (3.22). However, the part of

$,(RR at)5(( which does not vanish in the limit of

5c =,0 may be written
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D...(f) =[-.'-&~.—.(t)&]'-[-.'-&R..()&1'

«.'.(t) C. .(f)&«.'.(f)~..(f)&.

(5.2)

Note that D defined above and used in the foIIow-
illg is different from D defined by E)l. (3.24) by

the factor &—'.
Let 5&~& and 5&gtg& be the changes in values

of &~& and &pter & introduced by an external fieM

58, that is, 5&M& = &N„, (t)& -n„etc. The quan-
tities p, q, and D will then be modified as p+5p,
q+5q, and D+5D, and the resulting change in (0
may be expanded in powers of D x as follow

) ~ p(i 5p)() 5D 5B
)

q (i 5q)(i IID 5D'
)

In order to find the contribution from 5D to the self-energy correction, let us insert the quantities

5D 511 =Q 5e (R;R;o't;) 5ss, 5,1,
P Pzs-. (f) 5D»".(t)

(
Q' qadi'o (f) ~ 5Dsll'a (f)

5D 5t~r =
[ ( )]2- ~ ——

(R R -) 5e(R;Rl(rtl) 51,i

into the right-hand side of Ell. (2.1). The results are

(Dg @"(yf g g gyJ

where

t;&1„.(R,R„ff„f')=X.(Rf) fo„„-,.(ff, ) P 5&"[RR,of;D„. ..(f')],
83

-5 R R'-,—=-[l- &&,—.(f)&] ——' +[i-2&h„.(f)&]

+«' (f)~ ~ (f)&
"" " +&~'. (f)~ (f)&Ba B~a 5 (R R

—f )
B'a Ba 5e(R R

—
f )

(5.7)

correspolldlllg coll'trlllll'tloll fl'0111 (5D) ls obtained by inserting

, g' 'P ——5~ md
2f P QD 2t q Q)
2f g)3 5e 2f D 5e

of the first-order reslllt ot)tRllled Bl EQ. (5.5) into tile right-hand side of Eq. (2.l).

-s8

Ds'z" a~ a R1

Z — «gt' ' (R"R'ff f)t'': (R "R'ff f)A' B B~ 0 B~

Ey repeating tile Rbo've CRlclllRtlon, tile series on the right hand side of Ell (5 2) may be re
placed by the following Taylor series:



F UN CTIONAI. -DER, IVATIVE STUD Y OF THE. . .II. . .

7,(RR'of) 5„,+~ ~,(RR'rff')

(Dz z .}'

D
qz" z'()(~ )+ — g, & 4~-5«—

gt, Dgn pi~ yE ] R"R~o

1 -i8
+ —

)2 (ft~ Q g~„~» (R "R '; tt~, t') g~„ »„. (R "R ', t~t') t')
Bg

(DRi«~i ~) &o o») ~ z2

p. ..(f ) 1

(f ) 4z 5~~
—

D
—

&g~ .(R'R"' tt', f')
grRir g R / RrRsr a

-&8
+ —,— dt, Q r~„~» (R'R"; tt~, t') f~~»~i (R'R"; f, t', f')

Dzg ~ )' 00

-c8 --i8a~, e,g p (',,' (((„(.') d, ', (t( .( ),('„,'. ((( .( ),+', ")'
1 2

xgy [RR,Vt; D,,...(&')],

y [RR,(7t; D(t')] =x,b" [RR,(rt; D(t'))
(5.10)

+y„b~-»[RR,rt; D(f')].

Here the parameters x and y should be determined
in such a way that the nth-order term ()~,

"» satisfies

The above series corresponds to the series in

Eq. (3.15). In the presence of 5(N)/5e and

5(C C)/5e, $o is expanded as shown in Eq. (5.3}
and hence the result zED obtained by inserting ]0
on the right-hand side of the basic equation itera-
tively includes, among many terms, those shown
in Eq. (6.9). Since p as well as g~ ' is linear in

e(g), the result b, P;, is no longer linear in c((»).
Note that these terms with higher powers of e((»)
do not involve e(g) and hence they are a new type
of terms not included in the original series intro-
duced in Eq. (3.6). However, the series in Eq.
(6.9) is not a self-consistent solution of the basic
equation. If, for instance, (p/D') g~ » is inserted
into the right-hand side of Eq. (2.1), the deriva-
tives involved operate on e (o) in g~ » [but not
e(R'R "of') in p„,a„,(t')], yielding -terms of the

type (p/D')[aj Gp(~g' '»y+~5»)]. Let us assume
that 5(N)/5e, etc. , are small so that (5(N)/5e)',
etc. , as well as O'D/5 cean be neglected. For
the moment, let us also neglect 5q. Then the most
general expression P, for the e(g)-independent part
of the self-energy correction is obtained from

]o5«+b, go in Eq. (6.9) by replacing g~ » by

y „,.(R,R,;tt„t') =»).-.(Rt)io„s„,(tt, )

y~"» (RR 'gtt') =.n, ]~"» (RR 'ott') +b, g" (RR Yrtf')

x„„,=» (-,'-n. +(c„, c„,))D-„'„,

y - =[P((1—q)+»)'(-,' n.)'-
-» (c,'.c„,.) (c„„.c,.&]D,„„,

(5.12)

in the limit of 5& = 0.
The self-consistent solution g(RR'(ytt') satisfying

the basic Eq. (2.1) is now generated from Eq. (5.9)
by replacing g& & by y wit x and y given by Eq.
(6.12). Unfortunately, the resulting series g can-
not be summed exactly into a simple analytic form.
To demonstrate the net effect of 5(N)/5e, etc. ,
however, let us assume that g~zz», i (R~R2; tt), f')
defined by Eq. (5.6) is independent of f' and the
Fourier transform of g(RR'gtt') may be calcu-
lated by replacing g~, „,,(R'R", It„ t') [or

rg»~, (R'R", tt„t,}]. The resulting series may

then be summed as follows:

where ())~0» and a]0~"», respectively, are the nth-
order parts of (0 and 6 P„, which consist of terms
in the nth power of (t) and l'~ », while n, p~,

"» is the
result obtained by inserting )C)~,

» into the right-hand
side of Eq. (2.1). The above equation corresponds
to Eqs. (3.11) and (3.14), and makes )P,

" a self-
consistent solution. Since derivatives in Eq. (2.1)
operate on the leading ter~s g' » (tt„t') and Q(tt„ t'}
and do not operate on the subsequent terms

»(t, t„t'), (p(t, t„t'), etc. , in then-order pro-
ducts involved in 6)0~"» and ()»~o», the parameters
x and y obtained by solving Eq. (5.11) are, again,
independent of n and given by
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-iB
{t-t')))(RR'geo) = dte"~ '

)t)(zzzz azz)
0

2PR'R" a (R 'R ";(d ) + AR))zan(R'R "j~) Q)z )z, (R'R";(u)
R'R"a — DRtR ra DR I Rtc a Ry

I l

Q Q 4')zzzzo (R R ' ze) 4')zz)z (R R ' (z')'42)z'o (R R ' ~) +' ' '
DRt Rti a 1 2

2

(R" R'(u)+ Q y (R "R'(u) y (R "R'; (u)
@~i DR"R' g — DR"R'a

3

(R R ' ~) 4 zz (R R ' &) 4)z, e-. (R R ' &) + ' '
DR"R'a R 1 2

R '40
PR'R" a (R 'R "

(z)) gR"R'a PRR"a +
a + (s'a" ~) ~ a „, "" D,....+y„.(R "8';(o))

DR'R" a R'R" g PRRa R"R' g

(5.ia)

(5.i4)

where, as usual, )t)(RR'a&a) evaluated at zz) =z,=(vv/-ip)+ p, with odd integers v may be continued to an

analytic function )t(&u) for all e. Here the notations used are

)zzaza(R 'R ";()z)gzz2 zzz ~(R'R ";&u)

(p» (R R, (u) -y», (R R, (d)+ Q
R2&R R R a VP R a~

-i8
((», (RzR2zw) = dte'"" ' zy,„,( RzR2zt,tzt)z,

0

(R zR 2; t tz& tz ) = X—(R t) zG» ~ (t tz ) Q y [RR "o tz D)z zz g (tz )] z

(5.15)

~(-,' -n. +&c„':.c„.&)
y (&R "«zD(tz&] z n )2 z n )2+&CAN C & &Ct C &

5'IRR "«;D(tz&l

)z(1 —)z) +~'(-,' —n )' —)('&C)z C)z & &C)t, Czz & 5( )(~R „ t D(t ))(-,' -n —,)'- (-,
' -n, )'+&Ct, C„„,) &Ct C„& (5.15)

The above expression is obtained by summing all possible closed loops based on site h', such as

I

4')zzza z g 4'zzzzza q Bz )zan z

Ry/R
Qzzzzz~p)zz)z2~$)z2)z~, etc. ,

Ry R2

which appear in the series for )I) shown in Eq. (5.13). Since the same function p appears in the denomina-
tors of p, the self-energy correct'on )t) obtained in Eq. (5.13) is given in the form of infinite fractions. The
approximation used in Eq. (5.13) involves the following replacement:

;g (z z~) G(-tt )
5&ÃRo(tz)& (,)

5&ttzzg(t')& (5 17)~ ~ ~
~

0

Since the main contribution to the Fourier integral
comes from the narrow time interval where t-t, -t'
and also since the leading terms P», (R'R"; &u)

and P»„,(R "R ;(z)) 'in the series for )J have been
calculated exactly, the above approximation may

not be unreasonable for our purpose.
In the foregoing calculation, the contributions

from 5p and 5q axe neglected, but these contribu-
tions may be included similarly. The result is to
make the following replacement in the last expres-
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sion in E(l. (5.13):

PR'R" a t'R'R" a+(t)RR'a(R R(P)

(5.18)

qR"R'a qR"R'a+eRR"a('" '" ) +) '

are the same as (t) defined by
E(ls. (5.15) and (5.16), except that bi')[D]'s m

volved are replaced by bi")[p] and b ')[q], re-
spectively, where

6qR R a(t) )
b~')[RR, ot; qR R, (t, )] =e(RR,ot)

* (R,Rot) 6qR1R2 (")
6„e(R 3R(yt) '

(5.19)
and 6„e(o) is to operate only on &N„, (t, )& and
&CRi, (t, ) CR., (t, )& and not to operate on e(o)
involved, that is,

6qRR" (t) 6qRR a(t) 6qRR a(t)
6Re(R(R, ot;) 6'e(R(R, at() 5ae(R(R, at()

b, (, )
6&C, „(t)C„„(t)&

5e(R, R,ot,).
(a +(()a (()) e(RR «() "'"' ((( (( () '—'

) (5.20)

The expression for bi') [p] is obtained similarly.
The same calculation may be applied to the sec-

ond, third and fourth terms in the self-energy cor-
rection Z, obtained in Eq. (4.14). The second term
may be written in the form of the first term in Eq.
(5.14) of I and, since its functional structure is
essentially the same as )a given by E(l. (5.1), the
effect of 5&N&/5e, etc. , can be calculated exactly
the same manner as before modifying the Fourier
transform of the second term as follows:

n—(1-n-)I e
[o) —(1 —n-, ) I]'-n-, (l —n-, )I'

(5.21)DR"R'a + 'PRRa (R R ) (o)

where q)
) is the same as q) defined by Eq. (5.14)

except that DR, R, , involved in b given by Eq. (5.6)
is replaced by

D" =(u) -[1-&N -(t)&]I) -n-(1-n-)I'. (5.22)

The third, fourth terms in 3, can be expanded
in powers of ]' and q' defined by E(l. (4.12) and the
same calculation may be applied to g' and q' in-
dividually. The results are to modify the Fourier
transforms of x', y', R', and v' given by Eq. (4.13)
into the following form.

QRy R«+ QR) R«(R )R j (())

B~B

(D' w)
q'RRga (R)R";(o)

a „s( (f)x(-', - ')«+ l(', ') (R,R";«) ) '

&D' a)
PhRya (R ),R a; (o)

R„+(1 f) )((~ —n ) +—bio''&(R~R";(O) '

(5.23)

(5.24)

where (t)~ R), (t)(o), and q)~o '~ are parallel to (t) and q) defined by E(ls. (5.14)-(5.16) except for an appropri-
ate replacement of D involved in b ' [D] by P, Q, or (D"), where

P =l(.-(Rt) f (Rt)I '([—, —&N„.-(t)&]+ [l -&N„-, (t)&]j,

Q„„=Z-.(Rt)'f-.(Rt) I-'&C,'„.(t) C,.(t)&,

(D' ) - =[1 f (Rt) t),
—(Rt)]-[1——p;(Rt)] -f—(Rt) )(.-(Rt) [—' (N (t)&]-

+f-.(«) l -a(«)'(CR-. (t) CR. (t) & &CR. (t) CR-.(t)&+[1-fa(«)]&a(«) [a -&NR. (t) &].

In summary, the self-energy correction Z, is written

(1 2na) fR'R &CRia«CR«a& + (t)RR'a(R'R") (O')

(-,'-n-. )' (-,'-n. )'+-&Ct,.C,„.& &Ct„.C„,.&
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4)RR a(R'R";(e)
(—
' n-) — (——' —n ) +(CR. CR ~ &(CR- CR )+ERR (R'R";~)

2eR'R«(CR'a CR" a) (CR"a CR'a) + 0'RR" a (R R ) (e)
(-,
' n.)-'--(-,' n. )-'+ &ct,.c,„.& &ct„.c, .&

O'RR"a(R R ;(0)
(—,
' —n—) —(—,'-n ) +(CR. CR„,) (CR„CR, ) +ERR (R "R';(())

where
(

(all�)

0 RR"a(R "R'; (d)
RR" «(~«) « (5.25)

(5.26)K„' = (I'/A'f)Q 2x"„e ~ &Ct-, C„„-,&, L„',- = (I'/~'f) 2v" ~ e„-&C'.C -„-
and xRR„and vRR„are given by Eq. (5.28).

If K', I.', and the (t)'s are all zero, the above result is exactly equal to the result in Paper I given by Eq.
(5.14) of I. If all (t)'s are zero, K' and I.' given by Eqs. (5.23) and (5.26) become equal to Rand I. given by
Eq. (4.16) and hence the above result is exactly the same as the complete solution of the restricted equa-
tion given by Eq. (4.15), illustrating the way the self-energy correction Z, has been improved.

The first term in Eq. (4.15), which has been the source of the difficulty involved in the complete solution
of the restricted equation, is now modified as shown in the first two terms in Eq. (5.25). Note, in particu-
lar, that the newly obtained terms may be rewritten

(I 2na) eRR«(CRa CR"a) + '4Ra(RR j (())
(~)

(—,'-n ,) —(—,
' -n ) +(C—Rt,CR. &(CRt ~ CR ) +ERR (RR";(d)

2eRR &ck-, cR —,) (CRt, CRa&+4RRa(RR'; (d)
(e)

(-,' n.)'- (-,
' n.-)'-+ &Ct.-C„.& &Ct,.C,.&+(I) (RR'; (e)

' (5.27)

where the dots represent terms involving y». withA ~A'. Here the terms involving y». ,are higher-order
corrections not included in the result in Eq. (4.15). In the nonmagnetic solution where n ,= n, the denomina—tors

in the above expression, &CRt, CR.,) &CRt, CR, & +ERR, (RR"; (d), may become abnormally small in the ab-
sence of (t) and ((), since &CRt, CR, &

= (I/N) p, n„e()) tR-R'& vanishes when the lower band is nearly empty or
nearly filled. However, the correction term (t)», (RR") is of the same order as the leading term
&CR~, CR„,) &CRt„, CR, ) inthe denominators, making the values of the first two terms in Eq. (5.27) com-
pletely different. The order of magnitude of (t) and p may be estimated as follows. Use of the expansion
for 6(NR ,&/6e(o), etc-. , given by Eq. (B4) of I in Eq. (5.6) yields

l RR'. (RR'; tt', t') = ~i G». (tt') g (I——2n. ) IeRR [~GRR.(t't) G»-. («')]+eR R-tiG» —.(t't) G„-.(«')]}+~ ~ ~,
(5.28)

where the Fourier transform of iGRR, (tt')iG„R, (t't) G» , (tt') m—ay be calculated —asfollows:"3 '
t'-t 8

r(e, ) = dtiG, „.(tt')iG„.(t t) -G, ,;.(«)-e*""

dc' 1 + e 8(" ~&+~2 (d3)

2v (1+e e&"i "&) (e8&"2 )') +1) (I+e-e& a-»)
A R R a ((()$ )A RR () ((()2 )A R ~ R a ((d 3 )

Zll —(dg + C02 —(d 3
(5.29)

where e, = ())v/- i/) + p. . The above integral is
nonvanishing if &, and cg3 are above and A@2 below
the Fermi level or co, and ~3 below and co, above
the Fermi level, and, if the spectrum is continu-

ous, the value of I"((()) will be small as long as (e
is not in the bottom or the top of the spectrum. In
the strong-coupling limit, however, the band is
split into two and the width of each split band, A,
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is small as compared with the gap-I. If the lower
band is nearly filled, themlue of I' will then be

r(z„)-(I-n. ) ~-. (C,—.C, —.&/~ . (5.30)

By inserting this and the Fourier transform of

ic,„.(tt') r'C.'„-.(I' f) O„-.(tt')
3

into p given by Eqs. (5.10) and (5.15), we finally
find that

y~~, (RR";(u)-(1 —2n, ) ass„/n, -1 —2n, , (5.31)

because &«, -h. When the lower band is nearly
filled, (1 —2n, ) and (C~~„C~,) are of the same
order and vanish. Hence Pzz, (RR";v) will be
greater than the leading term in the denominators,
(C~~, C~, ) (C~~ C~, ), and also the numerators,

x(C„,C„,), in Eq. (5.27). This suggests that
the obvious defect found in the solution in Sec.
IV is removed by including the effect of
5(N)/5e(o), etc. In other circumstances, when
the filling differs significantly from —,

' or away
from the narrow band limit, the solut;ion of Sec.
IV might not be deficient.

VI. DISCUSSION

The solution obtained in Sec. IV is the complete
self-consistent solution of the basic Eq. (2.1) un-
der the restrictions that v [n. j is neglected and that
functional derivatives 5c involved are replaced by
the 5,e's which operate only on e(o) or e(o) as they
occur explicitly, and not on (N) and (C C) in
which they occur implicitly, i.e. , 5 (N)/5, e .--0.

and 5(CtC)/50' =0. In principle, this result may
be obtained by the iterative perturbation method
developed in Paper I. However, such an approach
is not only very complicated to carry out, but it is
also difficult to ascertain if all possible terms are
really included in the final result. In the present
approach, the self-energy correction Z, is ex-
panded in powers of e(g) and e(g) as is shown in

Eq. (3.5) and the parameters x, y, z, and v de-
fined by Eqs. (3.19), (4.1), and (4.12) are deter-
mined by solving Eqs. (3.11), (3.14), and (3.17)
exactly. Since, by inspection, Eq. (3.5) is the
most general form for the self-energy correction
under the proposed restrictions, it is easily rec-
ognized that the result obtained in Eqs. (4.14) or
(4.15) is the complete solution. In the course of
the calculation, we have also confirmed that the
result in Paper I is exact through terms linear in

The complete solution of the restricted equation
given by Eq. (4.15) still exhibits the difficulty noted
in Paper I that the second term in Eq. (5.14) of I
becomes abnormally large for a half-filled case in
the split band limit. As we have discussed in the
end of Sec. V, this difficulty is removed by includ-
ing the effect of 5(N)/5e. The calculation shows
that care must be taken in expanding the solution
formally in powers of &. Note that the calculation
developed in Sec. V is not exact because of the
approximation described in Eq. (5.17).

We shall discuss the physics involved in the re-
sults obtained so far in a third paper at a
formal and qualitative level and give numerical
results in a subsequent publication.
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