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We develop a self-consistent method to solve the basic equation for the self-energy correction of the Hubbard
model obtained in the preceding paper. The term #[A] involving second functional derivatives is neglected and
the quantities { Ngo(t))> and ¢ Cg.(t) Cg-(1))> are initially assumed to be independent of the external fields
€(0) and €(5). Under these restrictions, the complete self-energy correction is shown to be expanded in powers
of €(o) and (&) in the form Sppo(tt') = E(RR' G1)8,y + =,_ oZg Zg €™ (RR';R"R")e(R"R" & 1)8,,
where &; consists of all possible terms linear in (&), while £€™ is made up of all possible terms of the
nth degree in €(¢). Equations for & and &™) are solved exactly and the resulting series is summed analytically,
yielding a compact and complete analytic solution for the restricted equation. The part which is linear in e
is shown to be equal to the perturbation result obtained in the preceding paper, confirming the claim
that the perturbation result is exact through terms linear in €. The method is extended and the effect of
8( N)/8¢ and 8 C'C)> /8¢ is included. The effect is found to eliminate the difficulty that the value of one
of the terms in the self-energy correction is abnormally overestimated in the previous result in the split-band,

half-filled limit.

I. INTRODUCTION

In the preceding paper,' we have developed a
new perturbation method which can be applied to
systems involving strongly interacting electrons
such as the Hubbard model. Higher-order Green’s
functions appearing in the equations of motion for
the basic Green’s functions G are reduced to func-
tional derivatives of G with respect to a small ex~
ternal field and calculated iteratively.?'* The
zeroth-order solution G, used in evaluating initial
values of the derivatives 5G/6¢ is calculated by
solving the original set of equations under neglect
of 6G/be. Since G, corresponds to the Hubbard I
solution* in the presence of the external field and
includes the intra-atomic correlation energy ex-
actly in the atomic limit, it is expected that the
perturbation series converges rapidly in the
strongly interacting limit, where a conventional
perturbation expansion based on the Hartree-Fock
solution fails.

The method was formulated for the Hubbard
model and the self-energy correction was cal-
culated correctly through terms linear in ¢ in
Paper I. In the absence of a comparable system-
atic method to calculate higher-order Green’s
functions, such a result has never been obtained
for the Hubbard model previously. Unfortunately,
the result in Paper I still contains some unsatis-
factory aspects, suggesting the need of calculating
nenlinear corrections. First of all, since the ex-
citation spectrum w; is a solution of a polynomial
equation in w, Gyl (w;) —~Z(w;) =0, w; may not be
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calculated correctly even though the self-energy

¥ (w) is determined exactly through terms linear
in €. Secondly, one of the denominators of the
self-energy correction ¥ obtained in Eq. (5.14) of
I appears to become abnormally small, thus over-
estimating the value of ¥. Although corrections
¢(€) to the denominators are of higher order in ¢,
the value of ¢(e) can exceed the values of the
original denominators obtained in Eq. (5.14) of I,
thus modifying the result drastically.

However, it is no longer practical to continue
the iterative perturbation expansion. Instead, it is
easier to solve the basic Eq. (3.25) of I directly.
As will be shown in Sec. II, the results in Paper
I are, indeed solutions of the basic equation under
certain conditions. In Sec. III, we shall develop
a method to calculate a complete solution of the
basic equation under the following restrictions and
reproduce the result obtained in Paper I. The
restrictions imposed on the basic equation are that
7[A] is neglected and that derivatives ¢ are re-
placed by 6,¢’s which operate on ¢ (o) and €(G) only
and which yield 6¢{N)/5,e =0 and 5{C"C) /64 =0.
Under the above conditions, the basic equation can
be solved exactly and the complete solution involv-
ing infinite powers in ¢ is now written in a closed
analytic form as is shown in Sec. IV. In Sec. V,
changes introduced by including the effect of 5(N)/
6e and 6{C"C)/ve will be calculated. As is dis-
cussed in the end of Sec. V, this will eliminate the
remaining difficulty in Paper I that one of the
terms involved in the self-energy correction may
become abnormally large.
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II. SELF-CONSISTENCY REQUIREMENT

Let us first show that the solution obtained in Paper I satisfies, under certain conditions, the basic Eq.
(3.25) of I, that is,

[§}
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A5(RE)=Hw =[1 =N ]I}, F5(Rt)=[@ =D (Ng5()) +w (1 =Ng5()]™

Bz(Rt)=nz(L—ng)+I"* ) b (RR"GH), (2.2)

R" =R

b (RR"Gt) =€(RR"Gt)(C ;5 (1) C g5 (8)) £ (R"RG)(C Ln5 () CR5(8)) ,

and w=48/8t; A5(0) and F5(0) are obtained from A5(Rt) and F5(R¢) by replacing (N5(¢)) by n3, while 7[A]
defined by Eq. (3.26) of I will not be considered in the following. The unperturbed Green’s function G, is
given by Eq. (3.18) of I,

(Go)rkio(tt) =F5(Rt) bgg:byer —F5(RE)[F5(0)]"*€(RR5t) b,y

~x5(RD) Y [€(RR"GH)(C L) Crug(t)) = €(R"RTH)(C L5 (t) C r5(t))] g Byer - (2.3)
R" =R
Note that in Egs. (2.1)—(2.3), and from here on, the presence of the operator /8¢ in quantities of the form
g(t) 6, is indicated only through the ¢ dependence of g(t).

Since we have neglected the 5¢ dependence of (N) and {C'C) in Paper I, let us replace ¢ in Eq. (2.1) by
8, which operates on €(RR’gt) only and which yields 6{N)/6,¢ =0 and 5<cTc>/aoe 0. If we also assume
the absence of any external field operating on electrons with opposite spin &, that is, 6,(RR '5t) =0 for all

R and R’, the result obtained in Eq. (5.3) of I,

2 rrro tt'30) =[A5(R1)/A5(0)]{[x5(R ) 25(0) B;(R#)] + [\ (0) B +[- - -]3'+- -} (RR'ct) b,

22 (Rt) B5(RY)
T1- A5 (R1)25(0) B (RY)

is an exact solution of the basic Eq. (2.1). Infact, 6G;%/6,(0) yields the first term in Eq. (4.7) of I:

€(RR'ct) b, (2.4)

6G5'/6e(0)=A2(Rt) B5(Rt) e(RR 0t) 6,41,y 2.5)
while - 62, (0)/84€(0) yields
= 854(0)/8€(0) ~{[ A (RN5(0)BA(RY)] /[ 1= A5 (RON5(0)BG(RE)]} €(RR '01)0,4 . (2.6)

The sum of the above two expressions is equal to the original = (¢) given by Eq. (2.4), showing that = (o)
is, indeed, an exact solution of Eq. (2.1) in the limit of 6,€(5) =0. This conclusion is, of course, evident
from the way the series for 3, (o) shown in Eq. (2.4) is generated; 6G;*/6,¢ yields the first term
[A/x(0)][x1(0) B] €; the functional derivative of the first term, in turn, yields the second term
[A/A(0)][AA(0) B]?€6 and so on. Thus 6(G;'—2)/6, reproduces I () exactly. We note that the order of
magnitude of the first, second, ... terms are the same as the zeroth, first, ... terms, and once the
Hubbard correction (the zeroth order term) is taken into account, the whole series [x/A(0)]{[xx(0) B]
+[A\(0) B2+« - -} b€ has to be included. Otherwise, the Hubbard-type solution cannot be a self-consistent
solution of the basic equation (2.1). As we shall discuss in the following paper, the Hubbard I solution as
well as solutions of the type shown in Sec. IV of I, are not self-consistent solutions of Eq. (2.1) and are,
in fact, unstable.

The same calculation may be applied to the case where e(RR’ct) =0 for all R and R/, and it can be proved
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that the result = () obtained in Eq. (5.13) of I by successive applications of 62 /5.¢(5) is a self-consistent
solution of the basic Eq. (2.1). More explicitly , Z,(7) consists of the following four terms:

W (5 A5 (R1)20% (RR"51) [} ~ (Nro (£)) ]
=0 (5) = ; (1= (R OF 1~ (3R 30 OrrrOeer s .7
@ =y A (RN (R't) b (RR'G)(C]; (t) Cro (£))
Zo (@)= —ua(Rt)][l-ua(R't)][f “X(RR'GH)] @
Z (@)=2] < [1 -u-(Rt)]l[l —X(RR"3D] ~ 1) A5(RE) b (RR"GL) gpi sy @.9)

and Z)(o"‘)(E) which involves 6 e-independent factors of the type shown in Eq. (5.10) of I and which vanishes
in the limit of 6,¢=0. Here

X(RR"G) =x5(RE)[1 - p5(ROI[ = (Npo (1))
=A5(RO[1=pz RO A5 (R")[1 = p5(R"1)]™HC Lo () Crn g (1)) {C g () C o (8)) (2.10)
and
ps(RE) = =3 0{w = [1 =N (N 11}
6[G;1 -2 (5)] /64(5) yields

A5 (R2)?6% (RR"Gt) .
2 T s RO - (RR7GO] L2~ (Nao (D] 0amr 00 (2.11)
A5(RE) us(RE) ) (RR"GH) A5 (RE)AS(R'E) B (RR G1) L OCa )6
R! Ro tt!

[1- 45 (ROI[L-X(RR"50] R " * T i _(R][1-X(RR'51)]

R"

while 63 (5)/5,¢(5) and 622 (5)/6,€(5) yield

AG(R1)?u5(R1) b (RR"5Y)
; [1'Ma(Rt)]z[l—X(RR”Et)][2 (Ngo (D)) )0prrBers + 2+ (2.12)
and
A5 (RY) us (ROAS(R'E) ™ (RR Gt
2 T e (RO = (RO (L= X (RR O] RO Cro D oper 22+, (2.13)

X
respectively. In the above expressions, we have omitted terms involving 5 since we are primarily in-
terested in nonvanishing terms in the limit of e =0. The sum of the above three expressions, indeed,
yields % (5) +2? (). If terms involving " are explicitly included, we will also find =9 () +=% (5),
confirming that the solution 20(5) obtained in Paper I is a self-consistent solution of the basic equation
(2.1) in the limit of 5,¢e(o) =0.

The above result is, again, evident from the way the series for T (o) is generated successively in Paper
I. If the first-order solution consisting of the second and third terms in Eq. (4.11) of I is included, the
entire series leading to = _(5) given by Egs. (2.7) and (2.8) has to be added. Since solutions of the type
given by Sec. IV of I do not satisfy the basic Eq. (2.1) and, by including one more term, the values of =
change drastically, it is meaningless to discuss the accuracy of these solutions.

If we include 6,¢(0) and 6,(5) simultaneously, the result (o) +Z,(5) given by Eqs. (2.4) and (2.7)-(2.9)
is no longer a self-consistent solution because the factor th—(l )\ZB 5)”! involved in 3 (o) is a function
of €(7) and introduces a new series.

III. METHOD AND THE FIRST-ORDER SOLUTION
In Sec. II, we have shown that, if 5,€(5) =0 or 5,e(0) =0, an exact solution of the basic equation (2.1) is
linear in €(RR’ct) or €(RR"Gt) and €(R”RGt) and that the general expression for the self-energy X is
written

age(RR'ct) or Y [alend® (RR"G) +d5)n0" (RR"GH)], (3.1)
RII
where b'*) is defined by Eq. (2.2). Here, the parameters a, and a‘*’ may be determined in such a way
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that Eq. (2.1) is satisfied. If 6, (6) and 6,€(5) are included simultaneously, however, higher-order powers
in €(@) will appear in T because B;(R¢?) involved in Eq. (2.1) has terms linear in €(3). If, for instance,
=, =a,€(RR'ct) §,;, is inserted into the right-hand side of Eq. (2.1), we obtain

agr5 (Rt)25(0) (n;(l -nz)+ I'lz b (RR ”Et)) €(RR'at) 6,41 (3.2)

R’I
thus finding quadratic terms »~e. =, =3 p» b (RR"G1) e(RR'0t) by, in turn, yields

> 25 (RH)A5(0) <n5_!(1 -n3)+ 17" b (RR "'Et)) 5" (RR"Gt*) e(RR'gt) b,y
R" R“'

+A5(R1) Y bW (RR"GH) [5 —(Npy ()] €(RR/GE*) 8,40 + 5 (RE) Y b (RR"GE) €(RR'G1*) by

RII R,I
+A5(R1) D b (RR"GH)(Cln, (1) C o (1)) €(R"R'G1*) By (3.3)
R’I
showing the appearance of cubic terms 5 (1) 57 (#*) (), and so on. Here b (£*) denotes the expression
G pro (tt7) D) (RR7GE) =iG g, (t4) b (RR"GLY) (3.4)

and hence the derivative &[5 (£) 5™ (#*) e(£)] /5€(5t) operates on b (£) but not on 5 (£*).
A general expression for T, obtained by successive application of the iterative procedure may then be
written

% rrro (t) =Eo(RRGE) 6,00+ 3 > > £ (RR;R"R"'GL) (R"R"'01) 8y, , (3.5)
n=0 R" R"'

where £, is the sum of terms linear in €(g), while £” is the sum of terms of nth degree in €(3). It is
obvious that higher powers in e(o) do not appear. If we insert the above expression on the right-hand side
of Eq. (2.1), e(R”R"’ot) in = will be replaced by e(RR"’ct) whenever terms involving €(RR"’ct) 8/5€ (o)
operate on £ . When terms involving €(5) 6/06€(5) operate on £, however, e(R"R "'gt) in T, will be re-
placed by €(R,R"'ct) if R” =R and, otherwise, it will remain unchanged. In either case, the index R"’
will never be replaced and therefore, terms involving e (R”R"’ct) with R”’+R' are decoupled completely
from those proportional to e (R”R’gt) in Eq. (2.1). Since terms generated from G;* do not involve
e(R"R"'ot) with R”'#R’, the solution we are looking for is obtained by inserting £" (RR’;R"R"'5t) =0 for
R""+R’. Equation (3.5) is then reduced to

Srrro (1) =Eo(RR'GL) b,y +i £ (RR'GY) € (RRot) 6,40 + i > n™(RR';R"Gt)€(R"R'01) byr (3.6)
=0 m=l R" =R
where 7(® =0, and £ and n® consist of terms in the nth degree in €(G) having the form
p(®) 0) ) (t*) (&) (t2%) - N ACA(; (n=1)+) (3.7
where
A AL AT T RS Lt TP ALty (3.8)

If we insert the expressions in Egs. (2.3) and (3.6) into the right-hand side of Eq. (2.1), we obtain
Zrrro(it') =5 (RE)2B5(RE) e(RR'0t) 8,40 +A [Gt | gpr o (E87) +AE(RRGE) 6y

+25(RE)A5(0) B3 (RY) i £ (RR'Gt) e (RR't) b,,r

n=0

n i <Ag(n) (RR'Gt)+Y An™ (RR 'R”;Rat)> €(RR’gt) 8,4
n=1

R"”

+2 2 [AE" (RR";R7Gt) +an (RR";R"5H] € (R"R 1) 5, , (3.9)

n=1 R”

where AG;! and A&, as well as

At (RR'51) (RR'ct) + Y AE™ (RR';R"G1) €(R"Rot)

R"
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and

An™ (RR'R”;RGt) e(RR'ct) +An™ (RR":R"5t) e(R"R'ot) (3.10)

are obtained by inserting G5, £,, £, and ™, respectively, into the right-hand side of Eq. (2.1) in the
absence of the first term involving €(c) 6/6€(s). It is again obvious that A"™ and An™ consist of terms
having the structure shown by Eq. (3.7). The expressions for Eq. (3.10) are obtained by using exactly the
same reasoning as that used in deriving Eq. (3.6). The term involving e(0) 5/6€(0) in T has generated

the first and fourth terms in Eq. (3.9).
The original ¥ shown in Eq. (3.6) becomes an exact solution of the basic Eq. (2.1), if the expression

on the right-hand side of Eq. (3.9) is equal to the original Z,. This condition may be separated into three
parts. The part not involving €(o) is

EJ(RR'GL) b,p0 =A [Ggt Ippro (t) +AE(RR'GE) 6y -
The part proportional to e (RR’ct) is

n r=\ _ ?\E(Rt)zBE(Rt) 1 n) (PP r= ) mr.p=
;E( (RR'51) = 1Az (ROA;(0) Bz (RE) © 1-rs(RD5(0) B5(RE) Z (A'E( '(RR Ut)+;A"()(RR R ’R°t)>’

(3.11)

(3.12)

while the part proportional to € (R”R’ct) is

> 1" (RR";R"Gt) =5 [Ae™ (RR;R"51) +An™ (RR’;R"G1)] . (3.13)
n n

Although Egs. (3.12) and (3.13) involve all powers in €(7), the equalities should, in fact, remain valid for
each power. Hence Eq. (3.13) is rewritten

n™ (RR';R"Gt) =A™ (RR';R"Gt) +An™ (RR’;R"Gt) . (3.14)
To obtain a corresponding equality for .g("’, we need to use the following expansion:

[1=-A5(ROX;(0)B5(RO] P =f +pf 2+ p2f 3+ p3f 2 tee (3.15)
where

— 1 - _ -1 (=) n=

f=7 o, pe e S =As(Rt)A5(0) 1 ; b (RR"Gt) . (3.16)
Equation (3.12) is then written

g(o) (RR rat) =M\;1(— 1 +f) , 5(1) (RR r(;t) :M\;lfqu +f<A‘r;(1) 442 An(.l)) ,

5(2) (RRI(_)-‘t) :K)\;lf"i ¢2+f2¢<A£(1) +2An(l)> +f<Ag(z)) +Z: An(z)) , (3.17)

£ (RR'a’t)=Mglf‘*¢3+f3¢>2<Ag‘1) +ZA77(1)> j.c2¢<_,_\£(z) +ZATI(2)> +f<A£(3) +ZA"7(3)>’ otc.

In the above expression, A£™ and ) An™ represent A:™ (RR'Gt) and 3. An™ (RR'R”;R5t), respectively.

Equations (3.11), (3.14), and (3.17) are now the basic equations for the complete self-energy correction
Z,- The first equation in Eq. (3.17) yields the result given by Eq. (2.4). In the following, we shall show
that Eq. (3.11) yields the result given by Egs. (2.7)-(2.9). Although the most general expression for

£.(RR'GY) is

Eo(RRGL) =" " apps, gngni€(R"R"'GH), (3.18)
RH RI!I
the coefficients agg/, gvg» satisfying Eq. (3.11) vanish unless R” =R or R”’ =R, because the result A, ob-
tained by inserting = =&, on the right-hand side of Eq. (2.1) does not contain terms proportional to
e(R"R"'Gt) unless R” =R or R”’ =R. Hence £, can be expanded in terms of e(RR”Gt) and e(R"R51), or,
equivalently, in terms of 8% (RR”G#) and b~ (RR”Gt) as follows:

E(RR'GE) =) xppn(R') DY (RRG) + Y yppn(R') 6 (RR"GY) . (3.19)

R” R”



15 FUNCTIONAL-DERIVATIVE STUDY OF THE...II... 1841

A, is then calculated to be

AEWRR'GE) =Y xppn (RA5(R D (RRGH) [% —(N gy (1)) + p5(R 1) 6¥ (RR "5}

R"

=5 %praROAG (R D (RRYG)(C Ln o (1) C o (1))
R"

+3 " Vrrn(RY) PG (RO bY (RRGH) [ = (N o ()] + 15 (R ) b7 (RR"G)}
RII

+3 Yrnp(RMG (RO VD (RR'GE(C Ly () C o () (3.20)

R'I
while A [G5! gz, (/) has been calculated in Eq. (4.7) of I as follows:

A [GEI]R,R'O(t[') :A—E(Rt)zz W (RR"5t)[% —<NRO' (t))J@RR: 040 +15 (R t) p,E(Rt) Z b (RR”GH) BrmOssr

R" RII
A5 (RONG(R'1) bW (RR'GE(C L1 o ()C o (8) )5,y - (3.21)

Equation (3.11) is satisfied if the coefficients of »® (RR”Gt) and b~ (RR"5t) vanish. This yields that
[1-p5(RO]xgrn (R) SAZ(RE) [5 =Ny (1)) 6pr +25(ROAS(RD(C Lo (8) C o (1)) 0 s
+ e (ROAG (R[5 =N 5o ) ] +¥pn g (RIAG(RE)(C L s () C o ()
[1=u5(RO]ygen(R") =25 (RE) ug5(RE) bgpr +Xgpn (R') A5 (RE) [ =(Npy (8))]
~ % g(ROAG(ROLCEn (1) C o (8)) .

The above equations together with those for xzuz(R’) and yR,,R(R’) can be solved exactly, and, in the limit
of a small external field 6¢ =0 where X(R”t) =x(R1), etc,, the results are

(3.22)

xRRn (R,) =A2 (% ‘-no) D;}e" GRRI +A2<C;IU CRU>B;Q}3:6RHR: 5

(3.23)
Yere (R) =X (1= ) #2232 (3 =ny) =A% C Ly Crrg) Chwy Cro) 1 Dpkndrrs »
and y.:(R’) =0. Here
Dpr =(L=p)2=22(3 =1y )2 +23(C L  Cpr g ) {Chng Cro) - (3.24)

In the present limit, Egs. (3.19) and (3.23) are exactly the same as the result obtained in Paper I and shown
in Egs. (2.7)=(2.9), confirming that the result in Paper I is exact through terms linear in €. Note that, if
needed, the exact solution in the presence of the external field 6e can also be obtained from Eq. (3.22),
while the result in Paper I does not include terms of the type shown in Eq. (5.10) of I. As mentioned be-
fore, they vanish in the limit of 6¢ =0.

IV. COMPLETE SOLUTION OF THE RESTRICTED EQUATION

Let us now calculate the nonlinear corrections by solving Eqs. (3.14) and (3.17) and show that the re-
sults can be factorized in powers of € and hence the exact solution can be obtained in a closed analytic
form. Before discussing the factorization, we shall calculate the lowest nonlinear corrections involved
in the expression in Eq. (3.6), that is, quadratic terms in €. Since they are bilinear in 8¢(o) and 6¢(3),
£V and 7 should be expanded as

£EP(RR'GH) =Y [#F%n (R') b (RRSY) +3Pen (R) b (RR"G1)]
R”

(4.1)
n® (RR';R"5t) = 2% (R") b (RR"GE) +0 Fen (R') b (RR"GE) .

Here again, more general terms b®*)(R”R"'Gt) do not appear. A:® and An® are then given by

AEP(RR'GE) =y xFeu (R MR B (RR"51) [ = (N, (1)) + 1 (B b (RR"G1)}

R"
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+3° ¥en (RN (RO ¥ (RR"51) [§ -

R"

=(Ngo )]+ (R 6 (RR"G1)}

AED(RR';R"GE) = = ¥B g (R X(RE) B (RR "51) {C o (£) C o (1))
+ Y R (ROA(RE) 8™ (RR"Gt) (CLmy () Cy ()

AP (RR';R"Gt) = 280 (R7) IN(RE) B (RR"GE) [ =(Ng, (1))] + 1 (RE) B (RR"GH)} (4.2)

RR”

+0en (R){N(RE) 8% (RR"GE) [+ = (Ng, ()] + 1 (R1) ) (RR"51)}

An® (RR'R";R5t) = =28 (RN (R 57 (RR"Gt) (C o () C g (1))
+ 0 g (ROMRO DD (RR"GE) (Cln (1) C o (),

By inserting Egs. (4.1) and (4.2) into Eq. (3.14)
and also into the second equation in Eq. (3.17),
and by setting the coefficients of 5~ and 5% zero,
we find that

[1-fu(RE)]xPen (R")
= FARE) [5 = (Npo (1)) 1920 (R')

+ FAROCCEn, () C o)) v (R,

[1=fu(RO]yTen (R')
=(NRY/I) [+ ARO[ = (Npo (1)) | xFen (R?)
—FAROCIn g (O Cre @2Bnr(R),  (4.3)
[1-p(RA)]2Ten(R)
MR (Chng () Cro () ¥ (R7)
MR [3 =Ny () ]n (R),
[1-p(RE)] Fen (R?)
== X(Rt) {ClLng(t)Cro(®)) ¥8 o (R")
(RO [3 = (Ngo ] 2Fen (RY).
It is obvious that the solutions x, y, 2z, and v of

the above equations are independent of the index
R’ and, in the limit of 6¢ =0, they are given by

ARG =ng)F (3 —ng)]
DI'ZR"i(l _f)k(’%_no) ’ (4 4)
(1) g3 1)(1) = Asle—ll(C;re"a CRo)
“rrr SRR T hr F (A =fIAE —n,)
where
Dipn=(1=fu) (1 =) =A% (3 —n,)?
+ fAKC Ly Cro) {Chy Crig) - (4.5)

I f=1, Dyhp» becomes equal to D, given by Eq.
(3.24) and, except for the factor A/I, x%ie,, and
Z P are equal to Xpen (R') and x 5g: (R') given by
Eq. (3.23), showing that, except for the factor

Doty D, =

Ll

A "'e(o), the second-order correction is essen-
tially the same as the first-order correction.
However, since f#1, the w Fourier transform of
the denominator Dygn+(1 —f)X(3 —n,) remains
a function of w and is not reduced to the unfor-
tunate form shown in the second term in Eq. (5.14)
of I.

Higher-order corrections are given by Egs.
(3.14) and (3.17). By comparing the expressions
for £” and £7-0 given by Eq. (3.17), we find that

g(n) (RR'5t) = f¢(R0’t) g(n—l) (RR'G?)
+f (A&‘") (RR'Gt)+Y " An™ (RR'R" ;REt)> )
R’I

(4.6)
Here the first term on the right-hand side of Eq.
(4.6) is equivalent to

lim [ f¢(RG?) £n=D (RR'GtY)

t ad]
+fo(RGt*) £7"V (RR'at)], (4.7)
when the expression for g(") is inserted into the
right-hand side of the basic equation (2.1). Since
¢(RGt*) =0 in the limit of 6e =0, Eq. (4.6) is, in
fact, equivalent to

£ (RR'Gt) = fp(R5t) £~V (RRGt*)
+f <A§(") (RR'Gt)+Y_ an™ (RR'R ”;REt)) .
R"

Let us now assume that (4.8)

£ (RR'Gt) =" (RR'Gt) " (RR'GLY),

(4.9)

7" (RR";R"Gt) =0’ (RR';R"Gt) £~V (RR 'Gt*) .

Then Eq. (4.8) is

[g'(RR '5t) - fo(Rat)
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-f (Ag'(RR'a't) +Y_ An'(RR'R ";Rat)ﬂ
&

x gD (RR'Gt*) =0, (4.10)
while Eq. (3.14) is reduced to
[n'(RR’,‘R”Et) -AE'(RR’;R"5t)

~An'(RR’;R"51)] €7~V (RR'Gt*) =0. (4.11)

Since £7V £0, the equations for £’ and 5’ are the
same as those for £ and n® given by Eqgs. (3.14)
and (3.17) except that the first term in Eq. (3.17),
Mg'f3¢, is replaced by f¢. Therefore &’ and g’
for any » are calculated as

£'(RR'Gt) =’ (RT1)

=3 [xhpnd® (RR"G) +4pnd) (RR"GH)]
R”
(4.12)
n'(RR’;R"gt) =n'(R;R"Gt)
=24 pnb® (RRGt) + Vpnd™) (RR"GH)
where, in the limit of 6e =0, x’, ¥’, 2’, and v are

given by

—

[(1=2n,) 6rr" +2 (C};'o CRro)br"R] eme”(CIeE Cr"3)

AfIT(5 =no)F (3 —n5)]
Dipn(L=fING =n,)

A3 FI™HCEn s Cro)
DhpnF(L=fING -n,) ~

The self-energy corrections given by Eq. (3.6) can
now be summed as follows:

T rrro () =E(RR'GE) 5y

+< A5 (Rt)?n5 (1 —n3)
1 —Ka(Rt)K;(O)ﬂg(l -na')

W (Rs

+ %—:—é—,%%%y) €(RR'qgt) by

79 (R;R"5t) e(R"R’at) b,/
1-¢'(Rot) ’

(4.14)

which is valid in the limit of ¢ =0 because of the

use of Eq. (4.8). In the limit of 6¢ =0, the above

expression for the self-energy correction may be

written in a more familiar form by using the re-

lations 5% (RR"Gt) =2€ ggn (C};, Cgry) and

b (RR"5t) =0 as well as Eqgs. (3.23), (4.4), and

(4.13). The result is

xfmu iy;;Ru =

(4.13)

z;aniU;eRn =

R"

ERl'e'o(tt’) =Z

R" (%—n.a)z—(%_no)z*'(C}‘iccR”o><C£"ocRo>

éttl

+\:([”5(1 =n5) 1% +Kp) €ppr +fZ LRR"ER"R'>/{[W = =n5) I =n5(1 =n3)I*-K, }] Oz

R"

where

Ky =Z M [Dkrr + (1 =fIN(GE =n5)] (1 = 2n0) €rr7 (Cli5 Crrg)

(4.15)

Dienr? — A =N (G, )

b

(4.16)

LRR" = (AID;;RMZERRN <C}'€E CRIIE> <C};uc cRo>)/[(D$2R")2 - (1 "'f)zh2 % _nq)z] .

If K, =Lggr =0, the above expression is exactly
the same as the self-energy correction calculated
in Paper I and given by Eq. (5.14) of I. Note that
the first term in Eq. (4.15) remains abnormally
large in the present calculation for a half-filled
band in the split-band limit, suggesting that the
complete solution of the restricted equation is

still unsatisfactory, and that the effect of 5(N) /b,
etc., should be included in the calculation. This
will be the subject of Sec. V.

V. EFFECTS OF §(N)/6¢ AND &(CtC)/d¢

We now wish to extend our calculation by includ-
ing the 5e dependence of (N) and (C'C). Since it
is no longer feasible to carry out a complete cal-
culation, we shall illustrate how the complete
solution of the restricted equation obtained in Sec.
IV is modified by including the effect of 6(N)/be

r

and 6{CTC)/5¢, but by neglecting higher-order
derivatives 6"(N)/56¢", etc., with n>2.

Let us first calculate the contributions to
£,(RR'Gt)d,y obtained in Egs. (3.19) and (3.23). In
the presence of the external field, the parameters
x and y are not given by Eq. (3.23) but should be
calculated from Eq. (3.22). However, the part of
£,(RR'5t)5,» which does not vanish in the limit of
o€ =0 may be written

RR" g (£) ORR!

" - b
’ = ,
go(RR O't) 5”' ; Drrro (t) Gtt

drr's (£) (5.1)

+ Oyt
Dgpio(t) 77

where

Drano(®) =[% =(Ngo (8))]16¥ (RR"GY)

Grrro ) =(CLi s @) Cro () B (RRGY),



1844 TADASHI ARAI AND MORREL H. COHEN 19
Drpro @ =[5 A Npz ()P =[5 =(Ng, (N ]? the factor A32,
Let 6{N) and 6{CTC) be the changes in values
+{CLs () Crro () Chis () Cro (8)) . of {(N) and {CTC) introduced by an external field
5e, that is, 6{N) =(Ng,(t)) ~n,, etc. The quan-
(5.2) tities p, g, and D will then be modified as p +0p,

q+6q, and D +6D, and the resulting change in £,

Note that D defined above and used in the follow-
may be expanded in powers of D! as follows:

ing is different from D defined by Eq. (3.24) by

EL(RR5) =3 L 91)( _o0 _<__6D>2_...> _r.1_< Sg\(;_2%D (D)
£,(RR'5t) ZD 1+p 1 SIRAE 7 1+ p 1 ot e . (5.3)
In order to find the contribution from 6D to the self-energy correction, let us insert the quantities
b = Prr7o(f) _ODrrro(t) ~
Z <D2)6D Btt' "Z <[DRR" (t) Z 6E(R Rjo't) 5€(Richti)6RR'5tt' (5.4)
and

qrrs (£) > 8Drr'o(t) —
<D2>6D5“'—<[DRR, OF > 5e (R, B oL) 6€(R,R,Gt;) 6,4r

into the right-hand side of Eq. (2.1). The results are

_Pr'R" . ( dr"R's

, R ’R ”. tt’ t/ ” n 7. ’ 7 .
R" (DR’R"U)z gRR ( ? ’ ) and (DRIIR,I(;)Z RR (R R U t)’ (5 5)
where

déé"u (RyR 3 tty, 1) =A5(RE) iG ggn o (tt,) E b(i)[RR 30L; Dg, ryo ],

R3

_ _, ODg Ry (t') ODg,ryo(t’) 5
b [RR ,5t; D )] =€(RR ,5¢t) —AF20 7 4 130 (5.6)
(RR 553 Dy o ()] =€ (RR ,31) 6¢(RR 451) *e(BoRIN) oh sRot) ’

and
6Drrro(t) 8{Nr5(t)) 8{Nrq(t))
6e(R;R,5t;) ==[1-2(Ng5(0))] oe(R,R;5t;) +[1 - 2N, (0] 6e(R§B,Eti)
5{Chro () Cro (8)) 5¢Cho (8)Crro (1))
+{CLo () Cprp () 5:(R‘Rja{‘ti) +H(C L () Cro (1)) 6:(R,-Rj}:7t,) . (5.7)

The corresponding contribution from (6D)? is obtained by inserting derivatives

Z 21 D° Tt )Z —55 and 21 D3 5("2 _66

of the first-order result obtained in Eq. (5.5) into the right-hand side of Eq. (2.1). The results are

2 ey d’xZ E5h 0 (RIRY; thy, 1) £5) 0o (R'R7; 117, 17) 5.9
and
qRrR" R’ ~iB _
RY DR"RI(:J .{ dthZ RR O(R”R, ttl’t )g( )R" (R”R' tt’ tl)

1

and so on. By repeating the above calculation, the series on the right-hand side of Eq. (5.3) may be re-
placed by the following Taylor series:
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E(RR'GH) 6, +AE(RR'GE)

< brrrrs(t) <6 . L,
L DR'R”o(t’) RR'Vtt! Dge ‘RU G RR

(-)'G(R’R "5 H, #)

(Dmu o f dt, Egm o(R'R”;tt,, t’)gﬁ;l)R,o(R’R";tl t,t")

1

-;B
- (Dgr e )3.f at, .J dt ZZ gRR o(ttl; t') §R R o(tltz,tl)gn R'c (tzt’:t')"'"')
[o]

+ qRrR"R'g (t')

R”

z : UR"E 1
L G| nppr.
DR”R'U(t,) <6RR”6”, DR”R’ ERR"U(R ’R,7 tt,: t')

1 -iB
T L L o ROR S ) (BB 1)

e RN
- dt dt
(DR”R'G)S

The above series corresponds to the series in
Eq. (3.15). In the presence of 5(N)/6¢ and
8{CTC) /b€, E, is expanded as shown in Eq. (5.3)
and hence the result AZ, obtained by inserting £,
on the right-hand side of the basic equation itera-
tively includes, among many terms, those shown
in Eq. (5.9). Since p as well as ¢ is linear in
€(5), the result AZ, is no longer linear in €(3).
Note that these terms with higher powers of €(5)
do not involve e(¢) and hence they are a new type
of terms not included in the original series intro-
duced in Eq. (3.8). However, the series in Eq.
(5.9) is not a self-consistent solution of the basic
equation. I, for instance, (p/D?) &) is inserted
into the right-hand side of Eq. (2.1), the deriva-
tives involved operate on €(5) in g(‘) [but not
€(R'R"Gl') in pgr w5 ()], yielding terms of the
type (p/D?)[(NMGY (xb(” +yb( )]. Let us assume
that 5(N)/5¢, etc., are small so that (6{N)/6¢)?,
etc., as well as 62D/6€® can be neglected. For
the moment, let us also neglect 6g. Then the most
general expression i, for the €(o)-independent part
of the self-energy correction is obtained from
E,0,, +AE, in Eq. (5.9) by replacing ¢ by

brrro (R 1R g bty 1) =25 (R G gn o (tt;)

xS 7v[RR 4043 Dy r,o(t)],

Rg3

(5.10)
7 [RR ;54 D(#')] =25 6P [RR 554; D(¢)]

+Yrr, 0 [RR 35 D(E)]

Here the parameters x and y should be determined
in such a way that the nth-order term zp(g’) satisfies

E gRR o(ttn t') §R1Rzo(t Loy t) §R R"o (¢, t,’t,) te ')’
Rl 2

(5.9)

¥ (RR'G1t') =AEY (RR'Gt’) + Ay (RR'GHY),
(5.11)

where ¢ and AZ{, respectively, are the nth-
order parts of §, and A%, which consist of terms
in the nth power of ¢ and ¢, while AY® is the
result obtained by inserting zp(") into the right~hand
side of Eq. (2.1). The above equation corresponds
to Egs. (3.11) and (3.14), and makes ¢ a self-
consistent solution. Since derivatives in Eq. (2.1)
operate on the leading terms ¢ (¢£,,#') and ¢(¢,, ')
and do not operate on the subsequent terms

£ (t, b,y 1), Gty L5 "), etc., in the n-order pro-
ducts involved in AE" and ¢, the parameters

x and y obtained by solving Eq. (5.11) are, again,
independent of n and given by

XRR" =A(% —Ng + <C}E”ocRo>)D;€}\’," )

Yerr =lpl = p) A2 (z=n o)? (5.12)

—A2<CIQUCR"O'> <C;€"o cRo>]DI;}1€” ’

in the limit of 6¢ =0.

The self-consistent solution y(RR’Gtt’) satisfying
the basic Eq. (2.1) is now generated from Eq. (5.9)
by replacing g(') by ¢ with x and y given by Eq.
(5.12). Unfortunately, the resulting series § can-
not be summed exactly into a simple analytic form.
To demonstrate the net effect of 6{N)/s¢, etc.,
however, let us assume that £} (R R ot ¢')
defined by Eq. (5.6) is independent of ¢’ and the
Fourier transform of y(RR’cit’) may be calcu-
lated by replacing ¢g, g, o (R'R”,tt;, t') Tor

) gao (R'R”, Ly, )] bY ¢ Rzo(R "RY 1y, 1,) [or
g%) o(R'R",tt},t,)]. The resultmg series may
then be summed as follows:
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-iB
$(RR'Gw) = f dte vt Ypp5in
(]

’ II 1 ’
_Z ‘ZI;I; [ RR' T (DRR >¢RR'°(R’R";w)+<DRR > fe\:q)RRl"(RR jw) d)R ro(RR"; )
R” rpn rpn ” 1

1 3
- < ) Z Z ¢RR10(R'R"§‘*’) ¢R1R26(R'R”5w)¢R2R'c(R'R";w) +e "J

DR'R"O Ry R,

npr 1 1 2 "’ ’
+y Aarmty [GRR” - <———> Prrro(R"R'; w) + (F ) ; Prryo (R"R'; W) dp, pro(R"R'; w)
1

R DRllRlo DRIIRIG R"R'G

- <___}__>SZ Z (PRRIG(R"R’;w) (]:)RleG(R”R'; w) ¢R2R”0(RIIRI;w) PPN .j|

.DIII
R"R'c R1R2

orr?o(R"R’; w) >
Dgngrg +Prre(R"R'; @)/

Dr'r"g < Yrr's(R'R”; w) >+ qr"R'g (5 Y-
) ; Dgigro o DR'R"o"‘(PRRa(R'R "3 w) %7 Drrpeg RE
(5.13)
where, as usual, ¥(RR'Gw) evaluated at w=z,= (mv/—-iB)+ it with odd integers v may be continued to an
analytic function ¢(w) for all w. Here the notations used are
Prry0(R'R”; w) Proryo(R'R"; w) (5.14)
Dgrgr g +(P1321eza(R 'R"; w) ’

’
¢RR10(R'R”; w) = Prr,o(R'R"; w) + Z

Rg #R

-iB
¢R1210(R1R25 w) = f at eiz”(t-tl)%mla (R Ry tt,t1),

(5.15)
brryo (RiR 25ty ) =25 5(R)iGpg o (t, )Z)’[RR”ot Dy, ryo(t1)],
R”
= A3 =1, +(Chrs Cro)) ) _
RR"Gt; D(t,)] = b™|RR"Gt; D(t
YRRt D))= e 2 7 (CT, Can ) (g Gy 0 RR 08 D ()]
1— 2 __ 2-‘ 2 1’ n "
“( I-L) +A nq) A <CRO CR c><CR ocRo> b(_)[RR”a‘_t;D(tl)]. (5.16)

@5V = (= ngHCE, Cauy) (Gl Cpy)

The above expression is obtained by summing all possible closed loops based on site R such as

’ ? n
PrRo> Z PrR10 PR, Ro ZZ PrR 10 PRy Ryo PRy Ras €ECH,

R3=R R; Ry

which appear in the series for  shown in Eq. (5.13). Since the same function ¢ appears in the denomina-
tors of y, the self-energy correction § obtained in Eq. (5.13) is given in the form of infinite fractions. The
approximation used in Eq. (5.13) involves the following replacement:

fo_wdt fo-is T ( L Gtty) EQ%XJ) <--~G(t1t') ﬂ%ﬁ

"fo—iedt jo'_iadtleizl/(t-t )< -G(tt,) 6<1\£R‘(’t()t1)>><a..G(t1t’) ————Mt{)\i‘z;’f;'))). (5.17)

Since the main contribution to the Fourier integral not be unreasonable for our purpose.

comes from the narrow time interval where ¢~¢,~¢’ In the foregoing calculation, the contributions
and also since the leading terms ¢pp. (R'R"; w) from 6p and 6¢q are neglected, but these contribu-
and ¢ppn,(R”R’;w) in the series for y have been tions may be included similarly. The result is to

calculated exactly, the above approximation may make the following replacement in the last expres-
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sion in Eq. (5.13):
pRlRuO -.pR'R"U +¢SQPI)Q'U(R'R"; (.0) s
(5.18)
drr Rt~ drrR'o + ¢(RFI)?.”0(R”R'; (.U) .
Here ¢» and ¢!® are the same as ¢ defined by
Eqgs. (5.15) and (5.16), except that »*)[D]’s in-

volved are replaced by 8®[p] and 5[], re-
spectively, where

6qrr'o(t) _ dqrr'o(t)
de(R,R,5t;)  6oe(R,R,5t;)

6{(CL/ () Cry (1))
5e(R;R,5t;)

6qrr' (1) -
oye(R;R,5t;)

=b(+) (RR '5t)

8{C}5®)Crr3(t))

0dgr, & (tl)
(£) 5t = 51) —=1%20 " 2 °
Y™ [RR ;5t; qg &, 4 (t1)] =€(RR ;5) 5 e(RR.50)

= 5qR1R20(t1)
*e(RsRT) oy (R RTE)
(5.19)
and 6,€(7) is to operate only on (Ng. . (,)) and
(CLsr () Crugr(t,)) and not to operate on €(5)
involved, that is,

(0o 0)C 2y () (e (RR 51

The expression for b(*)[p] is obtained similarly.
The same calculation may be applied to the sec-
ond, third and fourth terms in the self-energy cor-
rection ¥ obtained in Eq. (4.14). The second term
may be written in the form of the first term in Eq.

(5.14) of I and, since its functional structure is
essentially the same as £, given by Eq. (5.1), the
effect of 6(N) /b€, etc., can be calculated exactly
the same manner as before modifying the Fourier
transform of the second term as follows:

nz(1=ng)I%egnp
Z [w—(l-n;)[]z—n;zl}e—na)lz

R"

( P, +¢®) (R \R"; w)

"okt = -
XRR Yrr Z DklR”i(l—f)x(%_nc)><6RR1

Ry

(Q)
Qr r" + PR1R" (R1IR"; ) <
T Unpn =
Zhnr® Vi ;<Dglma—me—nc> °
1

6e(R;R,5t;)

- 5<C};'c(t)CRE(t))>
'R . 5.20
+e(R'RGY) 5 (R,R.5t) (5.20)
T
(D") n"pr.
Pxro(R"R'; w)
x 6 "= " .
( RR Dinprs + ORI (R"R"; w) )’ (5.21)

where ¢°") is the same as ¢ defined by Eq. (5.14)
except that D, g, involved in b given by Eq. (5.6)
is replaced by

DY ={w =[1=(Ng5 ) I} =nz (1 =n3)I2. (5.22)

The third, fourth terms in T can be expanded
in powers of £/ and i’ defined by Eq. (4.12) and the
same calculation may be applied to ¢’ and n’ in-
dividually. The results are to modify the Fourier
transforms of x’, y’, z’, and v’ given by Eq. (4.13)
into the following form:

(D' )
¥rr10 (R1R”; w)

Dkl"‘"i(l ~ING =n,) + L8 (R,R"; w) > ’

(5.23)

o505 (R1R”; w) )
’

T D FA- DA —n,) + 9@ D (R,R; )

where ¢'”, ¢, and ¢{®'# are parallel to ¢ and ¢ defined by Eqgs. (5.14)~(5.16) except for an appropri-
ate replacement of D involved in 5*)[D] by P, @, or (D’*), where

Pr=xz (RO f5(ROI Y[ =(Npo O 1F [5 =(NRz D]},

Qrrn A (ROf5(ROITHCL (1) Cro @)

(5.24)

(D"*)grr =[1=f5 (RO p5(ROI[1 = p5(RO] =5 (R A (RE)[§ =(Ng, (1))]

+ f5(RONG (RO CLn s () C gy (1)) (C Lo (1) C o (0)2[1=F5 (RO NS (RE) [ 5 =( N oy (8))].

In summary, the self-energy correction T, is written

- v o {C Y= C on—= (9 RNy
Zrrio@) =) ( (1-2n0) er'r"(Cri5Crr5) + Prr'o (R'R ,w)>

R" (%_na)z_(%—nc)z*'<C£’GCR”0><CI|:”OCR'0>
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(o - orrro (RR7; ) >
RE (—21'_”6)2_(%—na)z'*'<C}-€’UCR"0><C;2"0 cR’u> +¢RR0(R,R”;(‘))

> <2eR'R~<C?§'E Crr5) (ChroCrrg) + Pdhrns (R”R’;w)>
(% —na)z - (% —1’1.0)2+ <CI1;’UCR"O> <CR"0CR'0>

R”

<5RR~ - Prero(R'R'; w) )
(G =n5)" = (G =n,)+{CL1yCprng) (ChroCrig) + Oppg (R"R'; @)

+; l:<[7l5(1—115)12+K'§¢”J€R"R' +f ZL;%”R”/eR”'R’)/{ w=(1-nz )I} n—(l -n3 JTEe KT "}J

RIII
(D)
¥rr?*6(R"R’; w) 5.25
X<5RR" - D;é"R' (D")(R"R, Q))> ( . ')
where
Ky =) 2xfgnenpn ClsCrrg) s Ligrn = T/Nf) 20 pn€ppn{Cls Crug) (5.26)

X
and x%,» and vj,. are given by Eq. (5.23).

If K, L', andthe ¢’s are all zero, the above result is exactly equal to the result in Paper I given by Eq.
(5.14) of I. I all ¢’s are zero, K’ and L’ given by Egs. (5.23) and (5.26) become equal to Kand L given by
Eq. (4.16) and hence the above result is exactly the same as the complete solution of the restricted equa-
tion given by Eq. (4.15), illustrating the way the self-energy correction %, has been improved.

The first term in Eq. (4.15), which has been the source of the difficulty involved in the complete solution
of the restricted equation, is now modified as shown in the first two terms in Eq. (5.25). Note, in particu-
lar, that the newly obtained terms may be rewritten

(1= 2n,) err{CL5 Cr"5) + Ptne (RR”; w)
o= G + Cho Crrg) (Chra Cro) + Prna R} )

. 2¢re’ (Clis Cr'5) (Chro Cro) +pike (RR'; w) ) (5.217)
(G =n5)= (3 =15)?+(CLysCrro) (Chio Cro) + Prro(RR'; w) ’ .

where the dots represent terms involving ¢ pz , WithR # R’. Here the terms involving @ g, are higher-order
corrections not included in the result in Eq. (4.15). Inthe nonmagnetic solution where n =, the denominators
in the above expression, (Ch, Crny? (ChryCro) +@rre (RR " w), may become abnormally small in the ab-
sence of ¢ and ¢, since(C},Crry) =(1/N)} 1, et*(R-R") vanishes when the lower band is nearly empty or
nearly filled. However, the correction term @zr,(RR") is of the same order as the leading term
(Cl,Crmy?(ClnyCry) inthedenominators, making the values of the first two terms in Eq. (5.27) com-
pletely different. The order of magnitude of ¢ and ¢ may be estimated as follows. Use of the expansion
for 6(N5)/6e(5), etc., given by Eq. (B4) of I in Eq. (5.6) yields

£ (RR; 17, 17) = = XiG g (1" )Z (1= 2n,){€rry G s (/1) Gy p5 (1) 2, £ [iG g 5(H') G g ()]} 42+,
s (5.28)

where the Fourier transform of iGgp, (£t') G gg5 (¢'t) GRaRg(tt') may be calculated as follows:

tr=iB
I'y,)= f AtiG gz (L) iG gz (1) GR3RE(ttI) gi#y(t=t)
tl

_ fﬂ < ) 14efk-wirwy-wg) ARRO(CUI)ARRU(WZ)AksRo(wS) (5.29)
2n ) (1+e-Blw=k)) (eBlwemk) 4 1) (1 +¢-B8wg-1)) 2y =W+ Wy =Wy )
r
where z, =(mv/—-iB) + 1. The above integral is ous, the value of I'(w) will be small as long as w
nonvanishing if w, and w, are above and w, below is not in the bottom or the top of the spectrum. In
the Fermi level or w,; and w, below and w, above the strong-coupling limit, however, the band is

the Fermi level, and, if the spectrum is continu- split into two and the width of each split band, A,
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is small as compared with the gap ~J. If the lower
band is nearly filled, thewlue of T" will then be

T'(z,)~(1=n,)ns(Cl= Cr,3)/A. (5.30)
By inserting this and the Fourier transform of
iGrpg (tt')iGRRs;;(t’t)GRR;(tt’)

into ¢ given by Egs. (5.10) and (5.15), we finally
find that

rro (RR"; w)~(1=2n,) €ppn/A~1~2n_, (5.31)

because €gzx»~A. When the lower band is nearly
filled, (1-2n,) and (C}, Cgn,) are of the same
order and vanish. Hence ¢gp,(RR”;w) will be
greater than the leading term in the denominators,
(CLyCrro?{CliyCry?, and also the numerators,
(1-2n,) €gpn (Cli Crng) and 2651 (Cl5Crrg)
X(CY5Cro), in Eq. (5.27). This suggests that
the obvious defect found in the solution in Sec.
IV is removed by including the effect of
6(N)/6e(T), etc. In other circumstances, when
the filling differs significantly from 3 or away
from the narrow band limit, the solution of Sec.
IV might not be deficient.

VI. DISCUSSION

The solution obtained in Sec. IV is the complete
self-consistent solution of the basic Eq. (2.1) un-
der the restrictions that 7 [A] is neglected and that
functional derivatives 6e¢ involved are replaced by
the §,¢’s which operate only on €(0) or €(G) as they
occur explicitly, and not on (N) and (Cc'C) in
which they occur implicitly, i.e., 6{N)/5,e=0

and 6(C'C)/6,€ =0. In principle, this result may
be obtained by the iterative perturbation method
developed in Paper I. However, such an approach
is not only very complicated to carry out, but it is
also difficult to ascertain if all possible terms are
really included in the final result. In the present
approach, the self-energy correction T is ex-
panded in powers of (o) and €(5) as is shown in
Eq. (3.5) and the parameters x, vy, z, and v de-
fined by Eqs. (3.19), (4.1), and (4.12) are deter-
mined by solving Egs. (3.11), (3.14), and (3.17)
exactly. Since, by inspection, Eq. (3.5) is the
most general form for the self-energy correction
under the proposed restrictions, it is easily rec~
ognized that the result obtained in Eqs. (4.14) or
(4.15) is the complete solution. In the course of
the calculation, we have also confirmed that the
result in Paper I is exact through terms linear in
€.

The complete solution of the restricted equation
given by Eq. (4.15) still exhibits the difficulty noted
in Paper I that the second term in Eq. (5.14) of I
becomes abnormally large for a half-filled case in
the split band limit. As we have discussed in the
end of Sec. V, this difficulty is removed by includ-
ing the effect of 5(N)/6e. The calculation shows
that care must be taken in expanding the solution
formally in powers of €. Note that the calculation
developed in Sec. V is not exact because of the
approximation described in Eq. (5.17).

We shall discuss the physics involved in the re-
sults obtained so far in a third paper at a
formal and qualitative level and give numerical
results in a subsequent publication.
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