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In order to study the properties of the Hubbard model for narrow bands, a systematic treatment of the
equations of motion of the Green's functions appropriate to that model has been developed. Higher-order
Green's functions are reduced to functional derivatives of the basic Green's function G and calculated
iteratively in a perturbation scheme which takes the Hubbard I solution Go as the zeroth-order Greens
function. A zeroth-order approximation to the self-energy correction obtained by inserting 60 into the
functional derivatives is compared with various existing solutions. The perturbation scheme is further extended
to an infinite order and the self-energy is calculated exactly up to terms linear in the hopping motion e, a
result which has not been obtained previously. The self-energy correction in this final result is drastically
difFerent from the zeroth-order solution, demonstrating the importance of the infinite-order iterative
procedure. Finally, the electron correlations included in the final result are discussed in terms of diagrams.

I. INTRODUCTION

A correct description of the state of d electrons
in transition metals has been the subject of con-
siderable discussion in the theory of magnetism. '
In metals, d electrons are considered itinerant
and so contribute to the Fermi surface and to
the electric conductivity. To explain the insulating
properties observed in many oxides of transition
elements, on the other hand, Mott' has postulated
that d electrons in these materials are normally
localized and do not introduce a Fermi surface or
a metallic conductivity. As their density in-
creases, however, the d electrons become itiner-
ant, giving rise to metallic behavior.

Hubbard'4 has described the insulating and met-
allic states as well as the metal-nonmetal transi-
tion on the basis of a very simple model. In the
presence of a strong intra-atomic repulsive in-
teraction I, a narrow band of d electrons splits
into two and, if the lower band is filled and the
upper band empty with a finite energy gap between
the two, the lattice is an insulator. As the density
increases, the bandwidth 2D increases and the gap
decreases and eventually vanishes, yielding a
metallic state with two overlapping subbands.

Although the Hubbard treatment has been re-
garded as one of the most promising approaches to
d electrons in transition metals, many puzzling
questions on the nature of the solutions are un-
answered. For instance, if the lower (or upper)
band is partly filled, the lattice would be metallic.
According to Herring, ' however, in Hubbard's
solution the ratio between the Fermi-surface
volume and the number of electrons deviates from
the value predicted for weakly interacting normal
electrons and the discrepancy becomes a factor of
2 when the number of electrons N is nearly equal

to the number of atoms N, forming the lattice.
This is contradictory to Luttinger's theorem' that
the Fermi-surface volume is unchanged by elec-
tron interactions to all orders of perturbation.
One might, of course, argue that the conventional
many-body perturbation approach on which I ut-
tinger's theorem is based is not dependable in the
narrow-band region where the Hubbard approxima-
tion is valid. However, the abnormal behavior of
the Fermi-surface volume in the Hubbard solutions
persists even when the density of electrons and
the bandwidth increase and the lattice becomes
metallic with two overlapping subbands. " There ex-
ists no experimental evidence to support the Hub-
bard metallic state.

The Hubbard insulating state appears only if. the
lower band is completely filled and the upper band
remains empty. This simple picture has a drawback.
Since the maximum number of electrons the lower
band can accept N„, is not necessarily equal to the
number of atoms X„ the lattice with one electron
per atom may not be an insulator, even though
this is the most probable case. '

To answer the foregoing questions, one needs to
obtain a more accurate solution to the Hubbard-
model Hamiltonian. The equation-of -motion ap-
proach has been successful in many problems in-
volving phase transitions in predicting the correct
behavior over wide ranges of temperature while
conventional many-body perturbation methods
have failed. Nevertheless, the validity of results
obtained by this approach is often questioned be-
cause the decoupling approximations used in solv-
ing the equations are ill justified and there has
been no systematic way to improve the approxima-
tion. The Hubbard treatment based on decoupling
approximations is no exception.

The conventional perturbation method appropriate
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for metals fails to exhibit the Hubbard splitting of
a narrow band. ' Moreover, perturbation expan-
sions developed in the atomic limit involve numer-
ous complications due to the spin and possibly
spatial degeneracy in the unperturbed ground
state. ' In Hubbard's alloy analogy, ' the narrow'-
band problem is replaced by an alloy problem
which is treated approximately. In fact, Soven's
result' in the coherent-potential approximation
{CPA) for disordered binary alloys is identical to
the Hubbard III solution '0 Unfortunately, system-
atic improvement of the alloy analogy and of the
CPA solution calculated under the single-site ap-
proximation is Rs difficuLt Rs systematic improve-
ment of the decoupling approximation in the equa-
tion-of -motion approach.

However, the alloy analogy suggests that, in
each set of the multiple-scattering processes,
an electron with spin 0 sees a two-valued potential
which is dynamically determined according to
whether the site is occupied by another electron
with opposite spin 0 at the time the electron a hops
into the site and that it is very important to take
this effect into account explicitly. In the Hubbard
treatments as well as in the CPA results, this
effect is included whenever an electron returns to
an original site but, when the electron hops to
neighboring sites, the effect is neglected and the
dynamical process is replaced by an average
static potential. To improve the existing methods
by including the dynamical process explicitly at
all sites in the lattice, higher-order Green's func-
tions have to be treated in. exactly the same man-
ner as the single-particle Green's function G.

The purpose of the present and the following
paper" xs strictly limited to developing a new
perturbation technique in such a way that the dy-
namical correlations mentioned above can be in-
cluded at each site of the lattice and the equations
of motion can be solved systematicaLLy. Discus-
sion of the properties of the Hubbard model cal-
culated by this method will be summarized in a
third payer. " Attention is limited to the non-
magnetic solution at T = 0 K. The method is
based on the functional-derivative technique or-
iginally proposed by Schwinger" which, in the
present case, reduces the higher-order Green's
functions involved in the equations of motion of
basic Green's functions t"' to functional derivatives
of G with respect to an infinitesimal external field
describing electronic hopping. '4 Since the number
of Green's functions involved is the same as the
number of equations, the Latter can, in principle,
be solved. In practice, approximation schemes
are required, and we adopt an iterative approach
here. The zeroth-order solution Qo is given by
solving the set of equations after neglecting func-

tional derivatives. The functional derivatives
and hence the self-energy correction to Q' are now

computed by using Go, yielding an improved solu-
tion Q '~. Use of 6 ' in computing the functional
derivatives gives a further improved solution Q '
and so on.

Kadanoff and Baym" have proved that the itera-
tive approach is equivalent to a conventional per-
turbation expansion and yields a complete set of
diagrams if the equation of motion for the single-
particle Green's function G»t, —= ((Cs„C~t~,)) is
used and if the zeroth-order Green's function is
defined as the solution of the equation in the ab-
sence of the interaction. In the above expression,
C~, and C~, are the creation and destruction oper-
ators of an electron with spin o at the atomic site

For the Hubbard model, we propose instead to
use the two equations of motion for the two Green's
functions ((C,X„;;Csi, )) =-I', where%+, =As,(8

= CD, Cs„Xz,= l -Ns„and spin o is opposite to
(T.

The main advantage of this method over conven-
tional many-body perturbation methods and the
Kadanoff-Baym method is that the Hubbard I solu-
tion can be taken as the zeroth-order Green's
function Q, which includes the dynamical correla-
tion at site 9 explicitly, and in which a narrow
band is split into two. Functional derivatives are
calculated by using the Q and hence, in the result-
ing higher-order Green's functions, the dynamical
correlation are explicitly included at each site
where multiple-scattering processes are being
calculated. The equations of motion for the basic
Green's functions can now be solved systematically
up to any order of accuracy, thus fulfilling the
main object of this paper.

%'e shall outline how the functional-derivative
technique can be applied to the Hubbard model in
Sec. II and derive explicit expressions needed for
calculating the functional derivatives and the self-
energy corrections in Sec. III. The zeroth-order
calculation in Sec. IV illustrates how various
types of functional derivatives are calculated,
while in Sec. V we repeat the iterative procedure
on selected terms infinite times and calculate the
inverse Green's function Q ' correctly through
terms linear in the hopping parameter e, a result
which has not previously been obtained. The self-
energy correction obtained in the zeroth-order
calculation in Sec. IV is modified drastically in
this final result, demonstrating the importance of
the infinite-order iterative procedure. As we
shall discuss in the third paper, this difference
will also be critical for maintaining the stability of
the Hubbard lattice. Although serious difficulties
still remain in the final result, it will no longer
be feasible or advisable to improve the accuracy
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of the self-energy correction in a straightforward
manner, through terms quadratic in the hopping
parameters for instance. In Paper II, instead, we
shall describe a self-consistent method of improv-
ing the accuracy so that a more reliable energy
spectrum can be calculated.

II. FUNCTIONAL DERIVATIVE APPROACH TO THE
HUBBARD MODEL

We introduce also the two-particle Green's func-
tions

r„'~ ..(tt') -=((c„.(t)N'„"-.(t)c„'.(t')))

1 (T[SC„(t)N'~,-(t)ct.,(t')])
i (T[S])

I,et us consider the Hubbard Hamiltonian imaginary time ordering, and P is the inverse
temperature, while the operator S is given by,

3C = e»'Ca~Ca ~+I ~Nz~z
B iR R

in the presence of a small external field;

S= exp -i
0

dt Q 5e&RR2ot)
Ry, Bg.&

xc,'(t)c„,,(.t )) .

(2.5)

K'= Q 5&(RR' t)oct gR(t)c„ (it);
z,g', a

5c(R'R at)',
5e(RR'ot) =

0 if@'=Z. (2.2)

We now want to construct the equations of mo-
tion for I' ' and rearrange them in the form

i —„+w'~ r',~„.(tt')=Q- (t))5„.5„,.8

Here e~~t is the hopping matrix element, and I is
the intra-atomic interaction between two electrons
with opposite spins v and 0 at the same site R.

According to Kadanoff and Baym, "the one-
particle Green's function is defined in the imagin-
ary time interval 0- —iP as

(2.6)

to make transparent the uniqueness of the formal
solutions. This is carried out in the following
two steps:

SteP 4. Use of the relation

G„..(tt') =-« c,.(t)ct ..(t')))
1 &T[SC„(t)cti,(t')])
i (T[S])

(2.3)

i —c,.(t)N&„'-. (t) = [c„.(t)x&„".-(t), x:+x ]

yields

(2.7)

[~(RR"ot)((C„.(t)C,'-.(t)C„-.(t)C," .(t')))
B v 8

—.(R"Rot)«C,.(t)C„'.—.(t)C„-.(t)C„' .(t')))] = (NI;i.-(t))5„„5„.,
where 6' =1, 6 =0, and

(2.8)

e(RR'ot) = ~» + 5e(RR'ot) . (2.9)

Step 2. In Eq. (2.8), the derivative i(8/Bt) has operated on C~, (t) and N(„'~-, (t) involved in r~'~ and has
modified I" ~ to

«C„.(t)N„"-.(t)C„' .(t'))), &(C„.(t)C„'-.(t)C„--.(t)C,'.(t'))), or «C,.(t)C„'-.-(t)C —.(t)C,"..(t'))) .

These changes may be reproduced by using the fact that an infinitesimal change 5e in c introduces a change
in S and hence changes in I' '.

i5r(') = i5«c„.(t)Nt')-. (t)c„'.(t')))

dt, C~, t „'-t C~ t, C„ t, C„ t'
0 Bj g82o&1

—(C,(t,)C, ,(t,))((C (t)N "-(t)C ~ (t')))] 5 (R,eR o, t,), (2.16)
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where (Czt, (t,)cz, (t, )) is shorthand for

(T-[sc„.(t,)c„' . (t', )])/(T[sj) =to„... (t,t,'),
and similarly for Qz~(t)), etc. , and is not a. simple thermodynamical average

More explicitly,

g
. c t (9

(2.11)

(2.12)

I
6 (z„„t )

((c,.(t)v'„"-'.(t)c„',.(t'))) = ((c,.(t)c„'-.(t-)c„--.(t-)c„',.(t')))

—(c,';(t)c —.(t))({c .(t)+'-. (t)c", .(t'))),
6,+„z-,t,) ((c,.(t)+;~ (t)c," .(t '))) = {(c„'--.(t')c, —.(t')c„.(t)c,'.(t')))

- (c,'-.-(t)c„,(t))((c,.(t)N,"-.(t)c„',.(t'))),
z

5 („&„t,) ((c„,(t)N'„'-, (t)c„'.,(t'))) = {(c„-,(t')c .;(t')c„,(t)ct., (t')))

—(c„'-.(t)c,--.(t))((c„.(t)N' -.(t)c„'.(t'))),

, )-((c„.(tK'„='.(t)c.'.(t'))) = ((c..(t)c.'-;(t )c.—.(t )C.'.(t')))

—(c„...-{t)c„-.(t))((c,.(t)N' -.(t)c„'.(t'))) .

(2.13)

(2.14)

(2.15)

(2.16)

Note that if t is replaced by t' in Eqs. (2.13) and (2.16), the first terms on the right-hand sides are
replaced by corresponding terms which vanish because C~t~(t')C~ii-, (t+)Nz ,(t) =-0, etc-. The same is true
in Eqs. (2.14) and (2.15), and hence the choices of t and t in the above equations are unique.

By inserting Eqs. (2.12)-(2.16) into Eq. (2.8), we find the desired equations

~(R"sot) (C,'„.(t)C„-.(t))+ t
6 Z„Z t„,— ((C,.(ter„").-(t)C,'.(t'))) = (]d„'l.-(t))5„,.6„,, (2.17)

8 &8

which has the form of Eq. (2.6). The basic idea involved in the foregoing derivation is to replace i(s/st) in
part by t(6/6e) in W ']. For instance,

/

(( c(t) ~c-(t)(i —c (i) c,(i'—,))) ge(R)) ir)=) (ci c —,) ~ i"—-, j((c())v");())ci,, , () ))). '

(2.18)

It looks as if the two equations for I"(' and I' ] given by Eq. (2.17) may be solved independently of each
other. If, for instance, functional derivatives 6/6e involved in Eq. (2.17) are neglected, the equation for
1 ~'~ becomes

The approximate solution I",,' obtained from Eq.
(2.19) may be used in calculating functional deriva-
tives involved in Eq. (2.17). This would yield an
approximate expression for the self-energy cor-
rection Z,', introduced later and hence an im-
proved solution I gg 9 TgJ could then be used to
compute an improved I"",,~ by Eq. (2.17) and so on.
However, since the large parentheses in Eq.

(2.19)
I

(2.19) do not involve e(IIII "crt) explicitly, the der-
ivative 61"(,", /6e(REi,"'ot') is small and the hopping
motion of electrons with the same spin 0 could not
be included easily in such an approximation scheme
based on r~,"„.

In the following, we shall develop an iterative
perturbation method similar to the one just out-
lined. However, instead of I'~„~ or the Hartree-
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pock solution GHF, the Hubbard I solution will be
used as the zeroth order solution G,. Since the
Hubbard I solution includes the hopping motion as
well as the dynamical correlation due to the tmo-
valued potential at site R and is correct both in
the atomic and free-electron limits in zeroth
order, our iterative perturbation method is ex-
pected to converge rapidly and to yield reliable
results for narrow-band systems. The principle
of the calculation is simple. Let us assume that
all derivatives 5/5e in E(I. (2.17) are zero and
solve the tmo equations. In the limit of negligibly
small external field 5~ = 0, the solution is equiva-
lent to the Hubbard I solution,

2v[O, (ko, (d)] '~(;, ,= (u - e„—
(1 ), (2.20)

where e, is the Fourier transform of c»i, and n~
is the value of (Nn-, (t)) in the limit of 5e = 0. The

G, or the corresponding I",~ may be used in calcu-
lating the derivatives involved in E(I. (2.17),
which, in turn, yield improved solutions G] and
I'~,~ to be used again in calculating the derivatives.
By repeating the iterative process, all possible
terms in the perturbation series mill be generated
without any ambiguity.

III. CALCULATION OF SELF-ENERGY CORRECTIONS

The iterative process described in the proceeding
section can be carried out more conveniently when
derivatives 5I' /5e are transformed to derivatives
of the one-electron Green's function 56/5e by re-
placing I'~~ by Q. The calculation of G can then be
performed mithout using I". Derivatives with re-
spect to charge transfers of opposite spin o,
5I"te/5c(R, R2ot'), can be converted to
5G/5q(R, R,ct') immediately by using the property
of the Projection oyerators Nn~ (t) as -follows:

(cttt(t)c (t)) ~ i t- —, „,)((c(t))t„(t)c,t(t ).-)), '

(C„.;(t)C„;(t))+i
5 „,((Cn, (t)N'„"-, (t)Cn, (t')))

(c,' (t )c, (t )) ~:—.t —„. , )
—((c„.(t)c„' .(t' ))) . (t . t)~

~ ~

To convert 5 I" e/5e(RR"vt') to 5G/5e(RR"ct'), we need to compare Eq. (2.17) with the e(luation
of motion for G:

t —((c,.(t)c, .(t'))) g &(RR &t)((c„„.(t)ct,.(t'))) -f((c,.(t)Ã,.(t)ct,.(t )))= 5„,5„„,.
8' v8

If one subtracts from Etl. (2.17) the expression in E(I. (3.3) multiplied by n(s = (N n~,), one obtai—ns

(3.3)

= t —', - ( - t)&)) t&)ttt((t()cc, (t't) ))
~ Q t(t)R ttt)t ttt;((c"„,(t)ct (t )-))+(i -„.'i — „,)((c„,-(t)N';(t)ct ~(t))),'

e(RR"rt) (Ct,-(t)nc (tn))+ i „, - e(R"Rot} (C„-,(t) C(t))+ i--

X ((C,.(t)N'„'-. (t)C„'.(t')))+ [(N'„'.-(t)) -n&']5„,.5„,, (3.4)

where n =n , and n(-~ ar-e the-values of (NnS, (t)) calculated in t—he limit of 5@=0 and hence 5n(-,'~/5m=0.
Use of Eq. (2.12) and the trivial relation N(„'~-, (t) =n~~+ [N(n", (t) -n(-,'~] yields—
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= ' ((C„..(()C,(('))} (( „-'
()

„, ((C(()(X,'„(()--.n'.-']Ci .((')}) . ().5)
5e RR "ct 5e RR"«)

By inserting Eq. (3.5) and Eqs. (2.13)-(2.16) into Eq. (3.4), we obtain

«C,.(t)l)]'„' (t)C,'.(t')&) =n&,"«C„.(t)C,'.(t')))

2 [w —(1 -n-, )I] '(B—,(t'Rt)I«C„, (t)ct, (t')»+ A'~, (tt')k [&t)t„'],—(t)) -n'—,']] 5 „5„j,
where (3.6)

a'„„.(((')=+ Q ()()( v()(( ~ (
"-„)—(5 „,

)
((c (()()(' (I.)- '.-']-„i (()}}(..

g(RR "ct)i „,—, —e(R "Rot)i „—
~)

&&C„(t)C~ (t'))),
B vs 8

(3.8)

(3.9)B, (Rt) =n,——(1 n,,)+ P-[e—(RR—"()'t)&Czt, (t)Cz).,(t)—) —e(R "—RVt)&Cz~ ~ z(t)Cz&(t)&] .
R vs 8

By differentiating Eq. (3.6), derivatives 5I' '/5e(RR"ot') are convertedto 5G/5e, 5&Cz —,Cz ~&/5e, etc. , as
follows:

5«C, (t)[I(}P;(t)-n'~]ct, (t')&&
[ ( ) ], ( )

5G, (tt') 5B (Rt) —(,)

, ».".'.(«), 5&N".];(t)&,
5&(R,R,o,t, ) 5e(R,R,c,t, )

(3.10)

Note that 5b/5e. on the right-hand side of Eq. (3.10) still involves 5F/5e. However, the derivative on the
left-hand side 5(I' -n;G)/5e may be evaluated by neglecting 5A/5e. Use of the result in Eq. (3.8) will yield
an approximate value of 5A/5e and hence an improved 5(I' -n-, G)/5e to be used in Eq (3.8).. By repeating
the iterative process, the expression 5(F n;G)/5e -can be evaluated correctly. As we shall show in Ap-
pendix A, the contribution from 5A/5e to the self-energy correction Z is proportional to e or higher order
and hence we may neglect it in the following.

We now return to the exact analysis. By using Eqs. (3.1), (3.2), and (3.5), the master equation (2.17)
may be rewritten

(w -I5 )«Cs, (t)N~;(t)C„, (t'))) -n;" Q e(RR "ct)&&C~,(t)C„,(t')))
8 &R

+ g [&(RR"ot)&C,'.(t)C, -.(t)& —~(R-"Rot)&C-,'-.-(t)C„.-(t)&]&&C,.(t)C,'.(t')))+ ~'„s, .(tt') = Q~.-(t)&5».5«. .
R v 8

(3.11)

If we insert the formal expressions for F and F given in Eq. (3.11) into the trivial relation G=I'++F
we find that

I".-(Rt)C»..(tt') -Z-. (Rt)[Z~(0)] ' g ~(RR"ct)G„.s..(tt')
8 &R

—~-. (Rt) P [.(RR-ct)&Ct.(t)C„--.(t)& —.(R"Rot)&ct-,(t)C„.-(t)&]«C,.(t)Ct,.(t ))&
R &R

—I"—(Rt)[(ul -I ) 'A~sg] (tt') K'Id s(-tt')] = 5„„5gg., (3.12)

where
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E.-(Rt) = [(u -I) '{tI„(t))+u '{1-X,.-(t))] ',
E-, (0) = [(u) I-) 'I;+u) '(1 -n;)] ',
&-, (Rt) =E-, (Rt)[(u) I)-'-u) 'J, &,-(0) =E-,(0)[(u) -I) '-u '] .

Let us now define the inverse of Gzz, (tt') by
~

~dt, g G„,,(tt, )G„,'„..(t,t') = 5„,5„.
0 Ry

Equation (3.12) is then rewritten

G&&)&(tt ) =E&(Rt)5&&z5&&i —Fz(Rt)[F&(0)] g E(RR gt)5&n&r5&&i

(3.13)

(3.14)

(3.18)

—&-.(Rt) g [.(RR"ot){C,'.-(t)G, -.-(t)) —~(R"Rot),C„'-.-(t)C,-(t))]5,„.5„.
-&8-F.(Rt) -dt, g [(u -I) 't,"...(tt, )-u '~,',',.(tt, )]G,,', .(t,t'). (3.17)

(Go)„„'i (tt') =F (Rt)5„~i-5,, i —F (Rt)[E (0—)] 'c(RR—'ot)5„i

Rl

Since the unperturbed Green s function G, is defined as ihe solution of Eq. (3.12) with t)(~ = 0, the inverse
(G,) ' can be written

—~.-(Rt) g [~(RR"m)(C,'-.(t)C„.—.(t)) —~(R"R()t){Ct--.(t)C,—.(t))]5,„5„,
R ver

and the self-energy Z defined by

is thus given by

(3.18)

(3.19)

(3.20)
-ga

Z„...(tt')=E, (Rt) dt, P [(w -I) 't(„"„'„(tt,)-~ '2„,',,(tt, )]G„',„,„(t,t').
0 Aq

The above expression for the self-energy Z may be evaluated by inserting Eqs. (3.8) and (3.10}. The
result is

+E-, (Rt)&;(0) I ' p ~(RR"ot)
B &R

-I z
5~(RR"ot ) 5.(RR"~')

5—Ã -g-- — —— g&-~ (gI )
5e(RR "ot ) 5e(RR"ot')

—c())"))ir))((w I)'(-
where

&.-(0) = [u —(1 n .)I] 'I -. -
Note that 5B/5e and 5{tI)/5e involved in Eq. (3.10) do not contribute to Z since

(3.22)

(3.23)5'„.-(t))/5~(RR" ot') = 5+„-.(t))/5~(RR "ot ), 5It.-(Rt)/5~(RR"ot') = 5I3.{Rt)/5e(RR "ot ) . -
Since the calculation of 5G, /5e by using Eq. (3.18) is trivial and easier than the calculation of 5G,/5e,
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Eq. (3.21) will become more convenient if the derivatives operating over G are shifted to G by the rela-
tion

5GBB,G (tf3)t3Z()BBG(3)3ZBBG(3)()
0 831211 0 83

which is obtained by differentiating Eq. (3.16). Equation (3.21) is then written
-i8 )

2 „„,(tt') =rttQ , Q (Rtlta(-G)R (Rl)( t-)G „,-(tl, )tgtR, at)
a RR t

—
a RR i )0

(3.24)

(-t)G „,(tt, )a(RR, irt) ;(Rt)((ar '—1) '
(
—--- —

)
—ar '

(
—,

) )

—(-t)G (tt, )t(RG(irt)R (Rt)((ra——t) ' .
(

). -ra ' —
(

.
)

X [(G,)„'„.,(f„I') -Z„„,, (t,t')]+ tt[A„B, («)], (3.25)

"[&BB"(«')1=

i
g~ gg g(+ +zz, o tti Gz,z'o tit (3.28)

Equations (3.25) and (3.18) are the basic equations for generating the self-energy Z in the present and the
following papers. If we insert G, ' given by Eq. (3.18) into Eq. (3.25) and neglect Z and ttP»t, (tt')] on the
right-hand side of Eq. (3.25), the zeroth-order approximation to the self-energy, say Z, is obtained.
Use of Zb) in Eq. (3.25) will generate an improved solution Z(3) and so on. By repeating the iterative pro-
cess, in principle, an exact expansion of the self-energy will be obtained. As will be discussed in Appen-
dix A, however, the contribution from w[b, ] will be of higher order and will be neglected in the following
calculation. We shall calculate the zeroth-order approximate solution Z ' in Sec. IV and extend it in Sec.
V in such a way that the self-energy is given correctly up through terms linear in e.

IV. ZEROTH-ORDER APPROXIMATION TO THE SELF- ENERGY CORRECTION

We shall calculate Z ', the zeroth-order approximation to the self-energy, by inserting the unperturbed
solution G„given by Eq. (3.18) into the working equation (3.25), and by neglecting Z and tt[ a] on the right-
hand side.

Functional derivatives of Qo' are calculated as

I g -f )
5(GIt o(f )~ "—(f )) (p„g -$ )

5(G "o (t )GB (I ))
5

1

a

G( t t) ( Bt&( ) B G( )& ( BtBt BtBt) B B' tttt t t'+
5 (It t) (GO)BtZ a(ttt')

1

(4.1)
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Note that terms involving 5&tt&/5e on the right-hand sides of Eqs. (4.1) and (4.2) come from 5E (R t )/5~
By inserting the above expression together with Z =0 and v[6] = 0 on the right-hand side of E(I. (3.25), we
obtain

Z'„"...(tt') = ~-.(Rt)'a-. (Rt)e(RR'ot)[tG, „.(tt )5,-,.—e„„.(«')5„,, ]

t, (Rt)R-(Rt)(-,IRt(RR ttt)(C„(t)C-(t))»(-(,tt t) -tGt'(t„t ,) —tt ')Czar, (tt')]

(R"R t)(Ct .(t)C„-.-(t))[( -t) -G„'(tt ) . 'G- „,'«t )].) t t„„.
8

—I(-.(R't)E (Rt)(~(RR'ot) &C„'.-(t) C„.,(t)&[(~ I) -'tG-„„..(tt-) -~-'tG„„..(«')]

+ e(R'R«)&Cgt-, (t)Cs;(t)&[( -I) '~Gss, (tt') ~'iG-s s, (tt )$5gt.

where

+ f~z"(«')+ &'z's" («'» (4 3)

~]8
&"..'.(«') =

0
dt, Q Q t]G(R,t,)I(r(Rt)iGs„,G(tt, )

~C~ -t'C —t'
«'„'] .(«')=I-.(Rt)I.-(R't') G„,. (tt') g g (RR,-t) (R R'-t')

B1 &8 R2 &R 5e RR,Vt

(4.4)

,(
—),(R,—,

)
5&C;(t')C —.(t'))

«(RR,Vt)

,( ~-),(
~ —

)
& r('),—.(')&

5E(R+ot)

Use of the relations"

tG...(«)=I-g..(t)&, tG...(«')=-&h'..(t)&,

reduces E(I. (4.3) to the following form:

(R~ t) (R R' t') '(C" '(')C"-.(t ))}
5~(R~ot)

(4.5)

(4.5)

d„",..(«') = &.-(Rt)'ft.-(Rt)e(RR'& t}5„+I.-(Rt)' g h"(RR" ot)[-.' -&N„.(t))]5„,5„
~ It

+ &Tt(Rt)p, G(Rt) g b (RR gf)5sst5R&t+ X(](Rt)X(t(R t)t)+ (RR gt)&C t (st)GCsct(t)&5ggt
~ Pt

«„„'.(tt ).0„.(«), (4 I)

5('&(RR'ot) = ~(RR'ot)&C„'-. (t)C„.—.(t)&+~(R'Rot)(C„'.-(t)C„,(t)&,

~( tR)=-,'E;(Rt)[(u -I) '+ur '].
(4 8)

In the limit of vanishing external field 6e = 0, E~(Rt) =Es(0) and the Fourier transform of the above e(lua-
tion Inlay be written

2]]Z"'(ko, &o) =Pg (ko)/[(u —(1 -n;)I]'+ &"I(kcr, (u)+ &"'(ko, cG), (4.10)
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The resulting Green's function is then

(4.12)

5{C'-(f)C„.-(L)) . 5G ~ (u')-
5e(II,Ii,VI') 5~(It,II, m').

2)l'G (k(T, 4)) = (d —E&
In~co , —$'(ko, ~) —8 (ko, ~).e) (.)

(u- (1 -n~)I [&u- (1 -n,—)I]'

The first term on the right-hand side of Eq. (4.10) is parallel to those obtained by Esterling and Lange'
and by Fedro and Wilson" except for a factor in the second term and the signof the thirdterm in Eq. (4 11).
However, it is premature to discuss these differences under the present approximation since, when the
self-energy expression is calculated exactly through terms linear in e in Sec. V, the structure of the cor-
responding terms will be altered completely as is shown in Eq. (5.14).

By inspection, we find that ( '~ and ~~~" are, at most, of order e and e', respectively. They may be eval-
uated explicitly by using the fact that {N~~(t)) and {Cn,—(t)Cn,—(f)), respectively, are really equivalent to
iG», (tt') —and iG»io(tt') by the definition given by Eq. (2.11). Therefore their derivatives are ealeulated
by Eq. (3.24) as follows:

G ( )
[(GO)~ln20(flf2) Zgln20 (ilf2)]

G (f f+) (4 13)B2B'a 2

et)~ & (d~ (1 —ng)I & 4)2 —(d2 . (4.15)

If we neglect the second and third terms ing(ko')
given by Eq. (4.11) and assume that g(ko)
=n —(1 n )e„, th-e c—ondition that the resulting cubic
equation yields two complex and one real roots is

~&„l».15 I for a half-filled lattice (n, =-,'), —

j e )
&

~
1 —2n —g for n , &0.4 or n —& 0.6 . —.

Here we have replaced t" ' by 6, ' -Z to indicate
explicitly that Eq. (4.13) may be used to calculate
the derivative 5{ )/5e iteratively. Use of Eq. (4.1)
will yield an explicit expression for the derivative,
which is correct through terms of order e' and
hence ('~ and E', respectively, will be calculated
correctly through terms of order c and c'. We
shall summarize the calculation of ( ' in Appendix
B. Although (~' is of order c for arbitrary e, the
result in Appendix B shows that the value is re-
duced to -e for &u satisfying the condition G '(&u)
= 0 and hence $

' may be neglected in the present
paper.

Finally, we shall discuss some aspects of the
solution obtained. As we have already suggested,
the inverse Green's function calculated in Eq.
(4.12) with (~') = $~') = 0 is not a satisfactory solution
but still yields a result which is a great improve-
ment over the Hubbard I result given by Eq. (2.20).
Let ~, and ur, be the Hubbard I roots of G, '(&u) = 0.
The present result may then be rewritten

((u —(u, )(co —(u, ) I'g(ko)
2pQ (kv, ro) =

&u —(1 n ,)I [~-—(—1-n;)I]' '

(4.14)
In the limit of narrow bands, the three roots of
the cubic equation cu', , cu'„and m,

' are all real and
satisfy the relation

(,)
[(u~—(1 —n,-)I]'

(~~ —~J) (~; —~~)
(4.17)

where ~,'. , m,'. , and ~~, respectively, denote cu'„

~,', and ~,'. In the narrow-band limit, the above
result is not different from the Hubbard I result,
that is, A. (e', ) = A (&u, ) = (1 -n,-) & 0, A (e2) ~A (v, )

=n~& 0, and A(u&,') is zero within the accuracy of
the present calculation. More precisely, A(~3)
is negative but its value is of order e' and beyond
the accuracy of the present calculation. As the
bandwidth increases, however, A(~,') remains
negative and its magnitude increases. In the
limit where the split-band structure is replaced
by the single-band structure, A(&u,') becomes
nearly equal to —A(&u,') [or -A(&u', )], suggesting
that the present solution becomes unphysical in
the region where the metal-nonmetal transition is
to take place.

In See. V, we shall iterate the calculation de-
scribed here an infinite number of times, and
obtain a more reliable result.

A similar result is obtained even if the second
and third terms ing(ko) are restored. As the band

width increases, therefore, Hubbard's split bands
disappear and only a single band capable of accept-
ing two electrons per state appears, indicating that
an essential mechanism for the metal-nonmetal
transition, which is not found in the Hubbard I
solution is already included in the present solution.

However, the metal-nonmetal transition cannot
be discussed properly using Eq. (4.14) for the
following reason. The spectral weights of the
solution are given by
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V. ASYMPTOTIC BEHAVIOR OF THE SELF-ENERGY
CORRECTION IN SMALL-HOPPING LIMIT

Although the calculation in Sec. IV is based on
the assumption of narrow bands, the result does
not correspond to a precise approximation in the
hopping parameters e„. %e extend the calculation
to determine the self-energy correction at least
up to terms linear in e~ correctly. For this pur-
pose, we shall keep calculating higher-order
terms until we exhaust all possible terms which
are linear in e,.

8111ce fu11c'tloIIR1 derlvatlves of &NB~(t)) Rnd

&Ct,B(t)c ~B, (t)) yield corrections of order e', we
shall postpone taking such derivatives until after
the self-energy correction is calculated up to
terms linear in e~. For this, we shall introduce
the derivative 5,~ which operates on e{RIR,cttt).
only and which yields

5&+„.(t))/5, e = 5(C„'.(t)C„.(t))/5, ~ = 0.

From the zeroth-order correction Z ' obtained
in E&l. (4.7), we find that

5B,BI 5B't; 5t't, 5t, t'

and, . by inserting the above result into E&1. (3.25),

Z&t&,,(ttt) = 8 [X,-(Rt)a-, (0)B~{Rt)]'e(RR'ot)5«. .

(5.2)

The functional derivative -5Z&'1/5, c(c) is exactly
the same as that in Eq. (5.1) except for an addi-
tional factor &,—(Rt)&-, (0)B~(Rt) and yields Z&'1

which is again the same as that in E&l. (5.2) except
for the same additional factor A.,-(Rt)A.,—(0)B-,(Rt)
and so on. %e can continue the calculation in-
definitely and the series of terms generated in
this manner may be summed as follows:

—[(1&1&+)+(1&1&+)'+(A1&+)'+ ( )'+ ~ ]e(RR'ct)5«
0

~.-(Rt)'B-.(Rt)
l (Rt). (0)B (R,)

(RR 't)5 (53)

The derivative of Z ' with respect to 5,6(R;Rtct')
involves the following four terms:

—
5 ,"(R,R ;,'t.)

= - ~-{ t )' 'I & B,r(t ) B,.-{t»)(5B,B,
—5B,B,)5t t,5t„

— ;(R,t,)'[-.' —&~...(t,)&]&C.',.(t,)c.,—.(t,))(5..., 5...,) 5.,„5,.„5. ..
cI{RItt)P'tt(Rltl)&CBttt(tl)CBt a(tl))( BIBI BtBt) BIB' tt tt tt t

(5.4)

Except for an additional factor tt;(R,t, ) [E&l. (4.9)], the third term in E&l. {5.4) is the same as the first
term in E&l. (4.2) and hence yields terms exactly the same as the second, third, and fourth terms in Z&'1

given by E&l. (4.7) except for the additional factor p. s. That is,

Z'„'„".(tt') =1-.(Rt)'q-. (Rt) g 5 "(RR"ct)[;'&X,.( ))t-] -„5,. „5.+1.(Rt)t .(Rt)-' P -5&-I(RR ot)5„„,5„,
vs' 8 VB8

+ 1&-.(Rt)&-.(R't) q-. (R't)b"(RR'ct)&C„'. (t)C„.(t))5„. (5.5)

ApRrt fl'oIII tile sallle addltlonal fRctol' 1lg, 'tile del'lvatlve of 'tile Rbove expl'essioII -5Z ' /5OE(c) 18 RgRlll
the same as -5Z& 1/5, e(o) given by E&l. (5.4). Therefore we can continue the calculation indefinitely Rnd sum the
series as before except for the following complication. The second and fourth terms in E&l. (5.4), re-
spectively, yield the following results:

Z&t„'t).(tt ) = ~.(Rt)' g 5& &(RR "ct)[-,' -yr„.(t))]'5,-„.5„.+ &.( tR)'q.-(tR) -g t & &(RR"ot)[-,'- &lV„.(t))]&„„5„
g tt ~ tt

—@(Rt)1&8(R't)'tt' '(RR'ot)[-,'- &1VB(t))] „{C.,(t) C(Bt))5«. , (5.6)
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z'„'„",.(tt') = &.-(Rt)'&-. (a't)b' '(RR'vt)[-.'-(N„.(t))]&c„'.(t)c„.(t))&„

+ ~-.(at)t .(Rt)&.(a't)b"(RR'vt)&c„'. (t)c„.(t))b„

—&.-(Rt)&.-(R't) g &-.(R"t)b' '(RR "m)&c„'.(t)c,-.(t))(c,'-.(t)c„.(I))5,„.5„.
R

(5.7)

Note that, except for the same additional factor p. —, the derivatives of the second terms in Z" and Z",
respectively, are the same as the second and fourth terms in Eq. (5.4) and hence the calculation may be
continued indefinitely. Instead of a simple series similar to that in Eq. (5.3), however, we find that

X(a)'[1+2', (a)+3P(a)'+, 4P. (R)'+ ] Q bt'~(aa"Vt)[-,' —&N s(t))]b»b„
~ II

+ ~(R)~(R')(1+[g (R)+ p (R')]+ [V (a)'+ u (R)V (R') + t (a')']

+ [p (R)'+ p (R)'p (R')+ p (R)p(R')'+ tJ (R')']+ jb"(RR'Vt)&ct (t)C (t))6

+ ~(R)tL(a)[1+ P(R)+ P, (a)'+ ~ ~ ~ ] Q b' '(Ra "m)6».5„.
8

= &-(Rt) Q b+(RR"Vt)[2 —&Ns~(t))]5»ibtti/[I —p, —(at)]2
g It

+ ~;(Rt)~-, (R't)b"(AR'Vt)&cst, (t)C„,(t))5« /[1 —P. ;(at)][1—P, (R't)]

+ ~.-(«)p, —.-(at) g b' '(RR"m)5„„5„./[I -t .(Rt)] .
g It

The foregoing expansion generates not only the series in Eq. (5.8) but also series involving terms of
types appearing in the first and third places in g

&;(Rt)'[I —g , ( at)] ' Q-b' '(Ra "ot)[-,' &N„, (t))—]'b», 5«,
R

- ~-.(at)&;(R't)'[I —p -.(R't)] 'b' '(RR'Vt)[-,'- &N„,(t))]&Ct..(t)c .(t))6„,

+"o(Rt)'~;(R't)[I —y;(Rt)] ' [1 —P.,—(R't)] 'b~ ~(RR'Vt)[-,' —&Ns, (t))]&ct, (t)C (t))5

~-(at)~.-(a't)[1 —Pr(a' t)] ' z ~o-(R't)[I p;(R"t)] 'b' —'(RR"Vt)
~ II

(5.8)

x (c„'.(t)c„-.(t))(c„'-.(t)c,.(t)) 5„„.5„. . (5 9)

T"e sum of the second and third terms in Eq. (5.9) as well as all terms generated from it by differentiation
with respect to 5,e will have a factor of the type

~.-(at)[1 —t .-(Rt)]-'[-,'-(N„.(t))] —~.-(R t)[1 —~.-(a t)]
— [-.'-&N„..(t))],

which vanishes in the limit 6e = 0. Therefore, we will not write them explicitly in this section.
The sum of the first and fourth terms in Eq. (5.9) is

&.-(Rt) P b' '(aa "vt)x(RR "vt) 5,„5„.,
~ tl

(5.10)

(5.11)

x(RR "m) = I.(Rt)'[1 - p..-(a-t)] '[-,' —&N,.(t))]' —&.-(Rt)[1 —p. —.(at)] '

&& ~ (R"t)[1 —v;(a"t)] '(c'. (t)c -.(t))(c ~ .(t)c .(t)) . (5.13)

The expression in Eq. (5.11) is exactly the same as the third term in (G,) given by Eq. (3.18) except for
the factor X(RR"Vt) multiplying &Cst-,c~.;) and &Cst, cs,—) involved in (6,) '. Consequently, the series
generated from Eq. (5.11) will be summed up in the form shown by Eqs. (5.8) and (5.11) except that
b~'~(RR"Vt)'s are replaced by b~'~(RR"m)X(RR "m). The new expression (5.11) will generate the same series
and the same expression (5.11) except for another factor X(AR"Vt) added and so on. The sum of all pos-
sible terms, which are generated from the second, third and fourth terms in Eq. (5.4) and which do not
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have a factor of the type shown in Eq. (5.10), is

&-.(Rt)'g [1-q.-(At)] '[1-X(AR"ot)] 'b"(AA"m)[-,'-(N„.(t)&]5,„.5„.

+ X,-(Rt)&;(A't)[1 —p.,-(At)] '[1 —p. ;(R't)] '[1 X(R-R'ot)) 'b"(RR'ot)(Cst~, (t) C„,(t) &5„~

+ A.,(At) P ([1—p, ,—(Rt)] '[1 X(R-R"ct)] ' —1]b (RR "ot)bzz~b«~

(b'"(AR"ct)[-.'- (N,.(t))]5„„5„.+ [-,'- (N„.-(t)&][-.'- (N„,(t))J 'b"(RR'ot)
B &B

x(Ct.,(t)C„,(t)&b „5„—[-,' —(N„(t)&]bl ~(AA'ot)5„~6„)

N— 1
x [l-(N, —.(t)&]'-[l-(N .(t»1'+ l N"

'
— «„'.(t)C„-.(t)&(C„'-.(t)C,.(t)&

Z "a

I(w —[1—(N„~(t)&]I] 'bl ~(RR" ot)b„s.5„.
a '&a

(5.13)

In the foregoing calculation, we have not included the series generated by terms of the type shown in
the first place in Eq. (5.4) nor functional derivatives of the types b(N&/be and 5(C C&/bc. The contribu-
tion from v[6] involved in the exact expression for the self-energy correction given by Eq. (3.26) has
also been neglected, but otherwise al. l. possible contributions to Z have been exhausted. By inspection,
it is easily found that series generated from terms of the type shown in the first place in Eq. (5.4) are,
at most, of order e'. The contributions from b(N&/be, 6(C C&/bc and v[4] are also of order e'. This
implies that the self-energy correction given by the sum of Eq. (5.3) and (5.13) is exact through terms
linear in c. In the limit of a small external field 5E = 0, the result is

n-, (1 —n ,)I' a, —

[&u —(1 —n-. )I ]' —n-(1 —n —)I2

„(C -C„—,&[(1—2n )+2(Ct, C „& exp[i'(A —A")]}
s ~z (—,-n~) -(-; —n~) +(C@~Czz~~&&Cs'~a za&

(5.14)

The second term in Eq. (5.14) comes from the
second and third terms in Eq. (4.11). Note that
the denominator is completely different from that
of the original expression in Eq. (4.10) due to the
large factor (1 —p) '(1 —X) ' introduced by the
infinite summation. Although the self-energy Z
obtained here is exact through terms linear in e,
the solution of G "(co)= G, '(ru) —Z(u&)=0 need not
be calculated correctly through terms linear in ~,
since the equation G '(&u) = 0 is polynomial in v.
Furthermore, the second term in Eq. (5.14)canbe
abnormally large for a nonmagnetic case where
n, = n—, since, in the narrow band limit, (Cs,CR. ,&

x(Cz. ,Cs,& vanishes when the lower band is nearly
empty or nearly filled. To remedy these diffi-
culties, the effect of b(N&/be, etc. , has to be in-

eluded. Terms linear in e will then be added to
the denominators in Eq. (5.14) and these terms
may become very important, as we shall discuss
in Payer II.

VI. DISCUSSION

In Secs. II and III, a systematic treatment of
the equations of motion has been developed; high-
er-order Green's functions, which appear in the
equations for basic Green's functions, are re-
duced to functional derivatives of the basic Green's
functions so that they can be calculated, by means
of an iterative procedure, rigorously up to any
desired accuracy. In principle, the present meth-
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od is parallel to the perturbation method developed
by Kadanoff and Baym. " In order to include the
strong correlation between two electrons with
opposite spins at the same site, however, we have
used the two equations of motion for the two basic
Green's functions 1 ' . In the absence of the in-
teraction, I =0, these two equations are identical
and yield I'l'l =(N-', 'l)G. In the presence of the
interaction I, however, they generate two distinct
classes of terms (diagrams). Diagrams generated
from the equation for I' ' will have an electron
with spin a at time t at site 8, but diagrams gen-
erated from the equation for I' will not have
an el.ectron with spin 0 at time t at site B.

Vile shall. now illustrate how the present method
works in calculating the electron correlation.
Successive hoppings of an electron v are calcu-
lated by the second term on the left-hand side
of Eq. (2.8), that is,

y, = g e(RR"ot)((C„„.(f)X&'-.&(f)C,',.(f'))).
(6.1)

Since the Green's functions involved can be re-
duced to functional derivatives of I' ' as illus-
trated by Eqs. (2.12) and (3.5), Q, may be re-
written

R/I

R

(b)

/
/

R/
I

Rll

R

RQ ~ R

R-e

(t) R ,

R R
(c) p 0———————mo

I7~

R'

R

R

/
/

R~
I

0

R

R R
~ ———

0

R p.-
IT

~ R

~ R

/

~lR, ~ R

P, =n- g e(RR"gt)((C ~ (t)C (t')))8"&Z

6'„E, 'I """~ '
s (az" t-) '

a (aa" ~'))

x«C„.(f)[A &-'.&(I}—n "]C„',.(I'))).
(6.2)

The original expression for P, given by Eq. (6.1)
describes a simultaneous motion of two electrons
a and 0; the electron o hops from site R' to 8",
while the other electron o (or hole v) remains
at site R as is illustrated by diagram (a) in Fig.
1. In Secs. IV and V, the value of Q, has been
calculated by using Eq. (6.2). In the first term
in Eq. (6.2), the electron N„, is replaced -by the
average field n-, created by all electrons with
opposite spin o as is shown by Fig. 1, diagram
(b). This term is also included in Hubbard I, and
introduces the splitting of a narrow band. The
second term in Eq. (6.2) is to correct the error
created by the replacement of the electron N~ —,

by the average potential n —,and yields the series

FIG. 1. Diagrams for ft)& and ft)2. A double-line g'
~B represents the Green's function ((C z~ (t)Cz, (t'))),
a single-line R'-R is the equal-time Green's function
(Cp g (t)C g (I (t)), and a dotted line R ' — R denotes

A counterclockwise loop represents Nz~ (t) or n, , while
a clockwise loop 1 —Nz~(t) or 1-n, Diagram (a) des-
cribes Q& given by Eq. (6.1), (b) and (c), respectively,
represent the first and second terms in Eq. {6.2), while
(d) illustrates Q2 given by Eq. (6.',3), and (e) and (f), re-
spectively, describe the first and second terms in Eq.
(6 4)

leading to the result in Eq. (5.3). As is shown
in Fig. 1,diagram (c), however, the motion of
the first electron has been neglected completely
in this series. To improve this result, there-
fore, we need to include more detailed motion of
the electron a. This will be the subject of Paper
II.

The effect of the motion of electrons with op-
posite spin cr is described by the third term on
the left-hand side of Eq. (2.8), that is,

[ e(RR"(rt )((C„(t)C„—(t )C~. (t )Cs (t'))) —e—(R"R gt )((C~ (t)C„—(t )C~-(t )C„i (I')))].s"~s

Use of Eqs. (2.13}—(2.16), and (3.1), and (3.2) in the above expression yields

(6.3)
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[ &(RR"o t)(C„—(f )C„—(t )) —e(R
"Rot�)(C„„—

(t )C„(f—))]((C„(t)C„, (f ')))

&(RB irtM"( „,—a(R Air"l)i —„,)(( C(l ,C(„~(t' (,i. (a"&a
(6.4)

The original expression for p, given by Eq. (6.3)
describes a simultaneous motion of two electrons
cr and a; the electron a hops from site A' to R
while the other electron 0 moves from A to 8"
(or R" to R}. These two processes are described
by Fig. 1,diagram (d). In Secs. IV and V, we have
calculated their value by using Eq. (6.4}. In the
first term in Eq. (6.4), the motion of the two
electrons are decoupled and the electron o cannot
distinguish the two processes illustrated in Fig.
1,diagram(d). Therefore the value of the first
term in Eq. (6.4) vanishes in the limit of smail
external field 6& =0. The nonvanishing contribu-
tion calculated from the second term in Eq. (6.4)
is given by the first two terms in Eq. (5.13). The
series leading to the first term in Eq. (5.13) gives
the correlation between the electron o at site A
(represented by [2 —(Ns (t))]] and the second
electron 0 which fluctuates between sites 8 and
8". The series leading to the second term in
Eq. (5.13) gives the motion of the electron o from
A' to A, but the motion of the other electron o
is limited to between 8 and 8', and it can not go
to an arbitrary atom 8" in the lattice.

The foregoing discussion will be helpful not only
for improving the result obtained in this paper
but also for comparing it with other results. In
Hubbard I, all diagrams in Fig 1 except (b) are
neglected. The result in Eq. (5.3) obtained from
Q, should be compared with Eqs. (37)-(40) of
Hubbard III which includes only the scattering cor-
relation, and also the CPA result obtained by
Soven by freezing the motion of electrons with
opposite spin c. In fact, Eqs. (37)-(40) of Hubbard
III may be rewritten

n -.(I —n-, )f'Q.
[(d —(1 —n —,)I]' —[ur —(1 —n —,)I]Q, '

(6.5)

where

terms linear in &„, it is also paral. iel. to our first
term in Eq. (5.14) if [(d —(1 —n-, )f]Q, is replaced
by n —,(I —n —,)I". Since G», (~) is not equal to
G(„(((() but is given by a k-independent quantity
N 'Q~ G(,~, (~), and since Hubbard III has ne-
glected the correlation function (Ns (N~ =-n —)),
it is difficult to make a more precise comparison
between the present results and the Hubbard III
result. It is not surprising that the Hubbard III
result becomes equival. ent to Soven's result ob-
tained by freezing the motion of electrons o, since
(N„,,(N„—n——,)) =—0. Note that our first term in
Eq. (4.11) is exactly the same as the corresponding
term obtained by Esterling and Lange' and Fedro
and Wilson, "showing that the results by these
authors correspond to our zeroth-order result
and are not correct through linear in terms E.

The resonance broadening correction in Hub-
bard III should correspond to Fig. 1, diagram (d).
However, the motion of an electron o. is decoupl. ed
from that of an electron o and replaced by an
average field in Eq. (47) of Hubbard III and there-
fore the dynamical correlations between two elec-
trons o and o given by Q, are not included. In
fact, the results given by Eqs. (51) and (52) of
Hubbard III has no resemblance to our result
given by the second term in Eq. (5.14), and, in-
stead, it resembles the first term in Eq. (5.14).
As we have discussed before, our second and
third terms in Eq. (4.11) have a factor and a sign
different from the corresponding results by Ester-
ling and Lange and by Fedro and Wilson, but these
differences are unimportant. After the term is
calculated correctly through terms linear in &,

the form is modified drastical. ly as is shown in
the second term in Eq. (5.14). Note that there
is the difference by a factor (1 —2n —,) between the
results of Esterling and Lange and of Fedro and
Wilson. This difference is also the same order
of magnitude as the difference between our pre-
liminary result in Eq. (4.11) and their results,
illustrating that their results are obtained under
arbitrary approximations. The ca1.cul. ation in
Paper III will indeed show the instability of their
results.

Q =F —[2((G ((u)] (6.6)
APPENDIX A: CALCULATfoN OF 7t [6]

If one replaces G», (~) by G(„((d), Q becomes
equal to e, and the third term in Eq. (6.5) be-
comes equal to our first term in Eq. (4.11) through

The expression for sf&] given by Eq. (3.26) can
be calculated by inserting Eqs. (3.8) and (3.10);
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v[tt», (tt')j = f dt, g g A. —,(0) e(RR, ot)I A. —,(Rt) p A. —,(0)B-,(Rt)e(RR, ot)
~ttp R1 2+R R &83

. 5Gss) o(t t, ) 5Gzz, (t t))
5e(RR,ot ) 5e(RR,at" ) 5e(RR,&rt ) 5e(RR,ot )

, 5G„„„(tt, ) . 5Gss~, (t t, )y e RA3gt i — ' — ' - C A3Rgt i —t+'

',~, '
5&(RR,&t--I '

5e(RR,ot")3"

X e AA3Ot i ','-- —& A3ROt i. 5Gzz, a(t t, ) — . 5Gzz, a(t t, )
5e RA, ot'

+F,(Rt) g-A-(0)e(RR, ot)I ' i tt(RRvt ) , ttt(RRttt")),

i ——i -

+ m —I '~~~ ~ tt, —m '&~„~ tt, G~'~i~ t t', Al5e RR,ot 5e RR,ot

where t and t, respectively, denote time arguments infinitesimally larger or smaller than t and
t . Second derivatives of G can be evaluated by the following relation:

"0 Mp

5Gz,g, t)(t, t~) G5,set (ttt, t')

5c(RRo t ) 5e(RRo t)
1

(A2)

which is obtained from Eq. (3.24) by differentiation. The last term in Eq. (Al) still involves 5t). /5e
but it can be evaluated again by inserting the expression for 6 ' . By repeating the above treatment, the
correction term m can be calculated up to any order.

The value of v calculated from Eqs. (Al) and (A2) by neglecting the term involving t) i') is proportional
to &'. The term involving third derivatives yield a value proportional to &' and so on, showing that the
contribution from m is of higher order and may be neglected in the present paper.

APPENDIX 8: CALCULATION OF $(' &

We want to calculate the correction term g(' introduced in Eqs. (4.3) and (4.4) correctly through terms
linear in e. Since the expression in Eq. (4.4) is linear in e, it is sufficient to calculate 5(g/5e(F) through
terms of order e'. This can be carried out by inserting Eq. (4.1) into E(l. (4.13). The result is
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0C'-tc-t
= tE, (R,t')[F,(0)] ' G„„,, (tt—')G~,„,(t'—t')

+ 2

-is
dt, g g ~.(Rt, ) G„„,—.(tt, )C„...—.(t,t')

Ry B2 &R~

»(cL.(&,&c„.»,», &&c'..»,&c,.{t,»
)

(Bl)
-i8

By inserting the trivial identity {G,) '=G '+Z into the second term on the right-hand side of Eq. (Bl), the
double integral may be reduced to

5(x„..(t')) „
t&e R&R;(Tt'

dt, Z X,(Rt) (&(Ats, .(t, )&

In case R =R', therefore, Ecl. (Bl) is rewritten

xc» —(tt, )p~ „~(4t,)ca „.(t t+2—) .

Et, ( Rt' )[F (0)] 'G„R ,(tt')G„,„,.—{t't')+iA, —(R t') ',-c» ,(tt')—
-49

dt, Q A. ( Rt, ) G„s,
—(tt, )G~,„—(t, t+)

Rg R2saRy

+2

5 C„,~ t, Cg,,o t, 5 Cg, o t, CR, fI f.,

dt, g P G„;,(tt, )

f(Ns, .(t, ))
5E' B~R~o'f

(B3)

Since Z is at least linear in e, t&(1g/5e is given by

Zt. ( Rt' )[F.( )]0-' „G,,—.(tt') „G,.;.(t't )+t~.{Rt') „",, -G,„-.(tt") ~O(e).

Similarly,

o(Rgt'){Cs, ~C„),&i Gas, »(tf')Gs)s~(t't)-- A~(R~ t')(Ca ~C„»&tc» ~(tt')G„)„~(t't)i&(N„,(t))

+tk-.(Rt')
5

R"R tc- {tt')+. O(-e), f(A. —.(t'))
t'&» R;R&o t'

By inserting Eq. (BS") into Eq. (B3'), we find that

A(tj; ab)i G„„,(tt')G„,„,(t't)+o(e),«~;.(t)&

5e;9;(Tt'

where

A{tq; iq) =Z.( tR')[Z. (0)]-"t&...-/[I+~'G». (tt') G».(tt')], -
A(gq; tt) =-A(tq;qj) =~'(ct —.c„,—.) tc,„-.(tt')t ../[I+ a'G„„.(tt') c„,—.(tt )],
A(ij; at&) = 0, otherwise,

(B3")

which is exact up to zeroth-order terms in e. By inserting the above result into Eq. (4.4), 8~'~ is calcula-
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ted exactly up to terms linear in e as follows:

dt, g g P ~-.(Z, t, )~-.(Zt)
R, S ~Z A

(85)

x[A(02; ab)~{ex,rt)tG„, .(tt, )tG„„.(t, t)G„„.(tt, )(G,)-,'„.(t, t')
—A(20;ab)c(Rgc7t)i G» (tt, )i G„,„,~(t, t)Gs „,o'(tt, )(G,)„",'g!~(t,t')]:

The derivative 5(Cz~ (t)C„-,(t))/5e may be calculated by inserting Eq. (84) into Eqs. (Bl) and {82). Use
of the result and an approximate result for Z in Eq. (83) will yield improved 5(A!)/5e and $ "and soon. How-

ever, since the improvement on (~" are of order e' and beyond the accuracy we are aiming at in the pre-
sent paper, we shall not calculate them.

Let us now decompose G», (tt') in terms of the spectral function A», (&u) as follows".

G» "(tt') =

-$(u t-t'. e ' ~' ' ~A». „(&u)[l-f(v)] for it&it',

. 8 i A»!~((d)f ((d) for 2t & it,

where A(v) is given by the discontinuity of G(&u) across the real axis

A((d) = i Ilm [G(CO + $7]) —G((V —27])] (87)

and f(u&) is the Fermi function. In the limit of 5e-0, the Fourier transform of Eq. (85) is calculated as

5'~'& .(~) = —[~-(I—~.)f] 'I'2 Z Z
Ry ~ A

x [e +A(02; ab)A, „,,(,) [1-f (ro, )]A„,„'(&v,)f(z,)

2„' {A»,.(~,) [I-f(~,)] (G.)&',& .(~)

—e+sA(20;ab)A», (&u, )f(!d,)A»„,a'(!d, ) [I f(&,)]j—[e " ' ' '+1]/(& —&i+~2 ~3)

A„„,(~,)f(,) {G,)„' .,(&u) [c„+A(02;ab)A„,„,,{&v,)f(~,)A„,„,,(~, ) [1-f(!d,)]

,A(20;ab)A„, "(~,)[I-f(~,)]A, '(~.)f(~,)tli+ e " ' ' ' ]/(~ ~ + ~.-~.)) {88)

As usual, the Fourier transformations leading to Eqs. (4.11) and (88) are carried o««r compi« fre-
quencies Z„= (mv/-i p)+ p, with odd integer v and then the resulting expressions I» G(&v) and ~(+v) are
analytically continued to G(~) and ((&d) with real frequencies ~.

In order to understand the collision processes involved in Eq. (88), it is more convenient to Fourier
transform it to A space. The result is

gt''(kc, z)= —[v-(l-n-, )t] 'I

x le' 4 .~, (02; ab)[i-f(~, )]f(~.)

—&a I"~,(20;ab)[l-f(~.)lf(~, )][&"' " ' "+I]/(~-~,+~, -~,)

+A„(~,)f((u, )G, '(ko;(d) (~, L. . .(02;ab}f (&u, )[1-f((o,)]

—&! L!!,!!-,(20'ab)f(~, )[i-f(!d,)])[1+& "" &'"' "]/(!d —~, +~, —~,)),

(02 ~ ab) —p g A(02. ab)A, (~ )A (~ )e-ll!'(s-R ) e-~(l! )(I!-I!)
Ry

(810)
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We want to evaluate the value of $~' (ko, +) for &o satisfying G '(v) =G, '(&u) —Z(&u) =0. Therefore, we may
replace G, '(kcr, &u) in Eq. (B9) by Z(ko, &u)+G '(ko, e) and set G '(ko, &u) =0. Since Z(ko, &u) is of order e,
the value of $~'~(kc, ~) calculated in this manner is of order e'.
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