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The repulsive part of the helium-metal physisorption potential is calculated in the Hartree-Fock
approximation. To the lowest order in the overlap (S) between the atomic and metallic wave functions, this
interaction is determined by the change in the single-particle density of states of the metal. Combined with a
previous calculation of the Van der Waals interaction, helium-metal potentials are derived for the simple and
noble metals using a jellium model for the metal. Binding energies and equilibrium positions of the helium
atom are determined. For the simple metals, the binding energy decreases with increasing r,. Its value for the
noble metals is between 40 and 70 K. The equilibrium positions are found to be between 3 and 7 A (relative

to the jellium background) for all the metals studied.

I. INTRODUCTION

The adsorption of rare-gas atoms on metallic
surfaces is an example of physisorption. For
these chemically inert adsorbates, the general
features of the metal-atom interaction have been
understood by analogy with the theory of rare-
gas atom-atom interactions.”? The total potential
energy can be approximated as a sum of two
parts—the attractive long-range Van der Waals® *
(or polarization) potential and a short-range re-
pulsive potential associated with the overlap of
the electrons of the adatom with those of the metal.
Since the metal-atom attraction is due mainly to
the weak Van der Waals force, the binding energy
is relatively small (E ;< 0.5 eV).

In a recent paper® we have derived an expression
for the Van der Waals potential which is suitable in
the problem of physisorption. The present paper
is primarily devoted to the repulsive part of the
metal-atom interaction. In calculating the re-
pulsive potential, it is of course important to ex-
plicitly account for electronic exchange between
the atom and metal. The simplest theory which
includes these effects is the Hartree- Fock ap-
proximation; the repulsive potential is therefore
defined in terms of the Hartree-Fock interaction
(Sec. II).

It is found that the overlap of the unperturbed
metallic density with the electronic density of the
adatom is a convenient expansion parameter. For
helium adsorption it is sufficient to treat the prob-
lem to first order in this parameter, since the He
atom is located far from the metal surface. To
this order, a number of simplifications can be
made which allow a quantitative determination of
the He-metal potential. The importance of higher-
order terms for the other rare-gas atoms makes
a similar theory for these atoms considerably
more difficult. For this reason, we restrict our-
selves to the theory of He physisorption.

To lowest order in the overlap, it is found that
the Hartree-Fock interaction can be reduced to
the calculation of the single-particle density of
states for a system of electrons whose motion is
determined by the effective potential due to the
metal and the Hartree-Fock potential due to the
bound He electrons. The change in the density of
states which results from the He-metal overlap
is calculated for a jellium model of the metal
(Sec. III). This model incorporates the essential
characteristics of the metal (valence electron
density and work function) which are pertinent to an
accurate estimate of the overlap. The results of
Sec. III are then used to define He-metal potentials
for the simple and noble metals (Sec. IV). The
use of a jellium model for the latter metals is
again justified on the basis of the large metal-
atom equilibrium separations; at these separa-
tions, the valence-electron density produces the
main contribution to the repulsion. Furthermore,
recent studies® of Xe absorption on Ag indicate
that even for the smaller metal-atom separations
in this system, the close-packed surfaces are re-
markably smooth, justifying the use of a model
which is translationally invariant along the sur-

" face.

The calculated He-metal potentials are used to
determine various characteristics (e.g., binding
energy, equilibrium position, etc.) of the adsorbed
atom. Trends in these quantities as a function of
the metallic density, %= (3773)"", are found to dif-
fer notably from the results of Kleiman and
Landman.” The differences stem partly from their
incomplete definition of the repulsive interaction;
these aspects are discussed in more detail in
Secs. III and IV.

The conventional division of the full physi-
sorption interaction into an attractive and repulsive
part, which we follow in the present paper, is
of course not strict. However, in the particular
case of the He-metal system,we believe that be-
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cause of the small polarizability of the atom, the
present treatment gives a good account of the
physisorption potential.

II. METAL-ATOM INTERACTION
A. General considerations

We are considering the situation depicted in Fig.
1 of an atom located at a position Z relative to a
metallic surface. Quite generally, the potential
energy of the atom is defined as the change in the
ground- state energy of the system that occurs as
the atom is brought in from infinity, i.e.,

V(Z)=E(Z) - E()
= (W, |H |¥,) — (¥, |H|v.). @.1)

Here, [\IIZ) is the many-body electronic wave func-
tion for the metal-atom system with separation Z.
The Hamiltonian H consists of three pieces,

H=H,+H,+H,,, (2.2)

where H, and H,, are, respectively, the Hamilton-
ians for the isolated atomic and metallic systems,
and H,,, is the mutual interaction between these
two subsystems. Explicitly, this Hamiltonian in-
cludes kinetic-energy terms plus the Coulomb in-
teractions between all the charges in the system.

In the following, it is convenient to separate
V(Z) into the Hartree- Fock (HF) result Vy(Z)
and a remainder which is conventionally referred
to as the correlation contribution:

V(Z)=Vyp (Z) + Vol Z) . (2.3)

The HF contribution is obtained using an anti-
symmetrized product of single-particle wave func-
tions which are solutions of the usual HF equa-
tions. For the case of He on a simple metal, one
of the states lies below the band of metallic
states® (see Fig. 1) and corresponds to the core
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FIG. 1. Schematic illustration of the nonlocal helium-
atom potential near the surface of a metal. As drawn,
the metallic potential is representative of aluminum.
The position of the atomic potential is at the calculated
equilibrium position of a He atom on an aluminum sur-
face. The origin is chosen at the edge of the positive
background.

state of the He atom. The remaining wave func-
tions describe propagating metallic states which
are perturbed in the vicinity of the atom.

Because of the localization of these wave func-
tions in the respective subsystems, V;(Z) is
an exponentially decreasing function of Z and for
sufficiently large separations, V... (Z) dominates.
This latter contribution is just the Van der Waals
interaction between the atom and the metal and
can be calculated by perturbation theory. Since
the overlap between the atomic and metallic wave
functions is negligible in this region, the anti-
symmetry requirement for the interchange of
electrons between the two subsystems need not
be imposed. This interaction has been obtained
previously®™® and takes the form

Vcorr: - C/(Z“' Zo)3 . (2.4)
The constant C is a measure of the strength of the
Van der Waals interaction and Z, defines a refer-
ence plane with respect to which the position of the
atom is to be determined. Values of C and Z, for
the He-jellium system are given in Ref. 5.

At intermediate and small separations correc-
tions to the asymptotic form of the correlation en-
ergy (2.4) will occur due to electron overlap. How-
ever, since the equilibrium position of the He
atom is in a region where the metallic density is
small (see Sec. IV), it is reasonable to expect
the asymptotic form to be a good approximation.
In using this result, one is neglecting those cor-
relation effects related to a metallic electron
being found near the atom. Owing to the rigidity
of the He ground-state wave function, these cor-
rections are probably small.

Our basic assumption therefore is that the po-
tential energy can be determined from (2.3) with
the correlation contribution given by (2.4). Al-
though this procedure is not rigorously justified,
it has frequently been used in discussions of
molecular interactions® and should work equally
well for the helium adsorption problem. In any
case, the quantities considered and evaluated
here would still be required in a more complete
theory which includes those modifications to the
correlation energy arising from the wave-function
overlap.

B. Hartree-Fock interaction

In the Hartree-Fock approximation, the wave
function is given by the antisymmetrized product

v=4 [Jv.,6, (2.5)
i
and the corresponding ground-state energy is

EHF=22’L: e— ;‘(ZOWL ’U l’”‘"}" (Mu[v [ UAY) .
’ (2.6)
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Here the electronic spin degeneracy is accounted
for explicitly and the index A refers to the orbital
part of the single-particle wave functions; ¢, are
the energy eigenvalues of the HF equations; and the
remaining terms are the direct and exchange ma-
trix elements of the Coulomb potential.

For the problem we are considering, the single-
particle wave functions #,(¥) satisfy the HF
equations (atomic units)

<_gvz__i.+v,(f)+zfdf' SALIA NG

fary LOUREOLE) _ym e

T~

Theterms (- 2/7)and v (), respectively, represent
the potentials of the He nucleus and the positive
metallic background.

On subtracting the HF energy for the separated
systems, we obtain

VHF(Z)=ZZ:661+26€G - 5;(2@']' [o|djy = Gj |v |ji))

-{aa|v |aa) - 22(2(1’(1 |v |ia) - (a |v |ad)
7

+{aga, |v |aay - 2v,(R,) . (2.8)

Here we have distinguished between the atomic
(a) and metallic states (i,j). R, is the position of
the adatom nucleus. The first two terms in (2.8)
give the change in the single-particle eigenvalues;
the next term is the change in the Coulomb energy
of the metallic electrons; and the last term is the
electrostatic interaction between the He nucleus
and the positive background. The HF wave function
for the isolated He atom is denoted by y3(T)
=(7F |ao).

Equation (2.8) can now be simplified by obtaining
an expression for the shift in the atomic eigen-
value €,. In terms of the unperturbed atomic HF

Hamiltonian
Or=ry 2
fd" ““r)' 2.9)

the HF equation for the atomic state can be written
as

Hy=-3 V2~

(Hy+ 57)9,(F) = €, 4, (),

where 6‘7 is a small perturbation of order the
overlap between the atomic and metallic states.
Specifically, a measure of this perturbation is
given by the parameter

5= [ am® R @7,

(2.10)

(2.11)

where n,(¥) is the unperturbed metallic density.
This overlap parameter is basically proportional

t0 (¥o/7 5,100 » 7o Peing the atomic radius and 7
the Wigner-Seitz radius corresponding to the
average metallic density in the atomic region.
For large separations, S is indeed small and is
the appropriate expansion parameter to be used in
the following.

Taking the matrix element of (2.10) with the
atomic state ¥,(¥), we obtain

s,loc

€,={a|H, |a)+{aa |v|aa) - {aa, |v]aa,)
+Z(2(ia |v |ia) - Ga |v |ai)) +(a|v, |a) .

(2.12)

Since the expectation value of H, is stationary about
the unperturbed atomic state, we have

(a|H,|a)= (a, |H, |ay+0((64,)?)
= €24 0((5%,)%) (2.13)

where 89,(F) =, () — ¥°(¥) is the change in the
atomic state. As stated previously, 69, is of order
S, the overlap. Thus, to first order in S, the
first term in (2.12) can be replaced by €.

Using (2.12) and (2.13) in (2.8), we find

Vip(2)=2D ¢, - 6 ; @5 | |ij) - Gj |o [ji)

+{aa |v |aa) +(a,a, v |aa;) - 2{aa, |v |aay)
+2{a v, |a) - 20, (R,). (2.14)

The atomic matrix elements of the Coulomb po-
tential cancel to order S. In addition, a similar
consideration of the HF equations for the metallic
states reveals that the last two terms in (2.14) are
in fact cancelled to O(S?). Thus, (2.14) finally
reduces to

Vip(2) =2 b€, - 5; @Gj |v |4 = (ij |v |ji)

+0(S?). (2.15)

To lowest order in S, the atomic state does not
appear explicitly in the HF interaction. To the
same order, the metallic states y,(T) are de-
termined by (2.7) with §,( ) replaced by 39 (¥).
Thus, to this order, Vyz(Z) is simply determined
by the change in the HF energy of the metallic
electrons induced by the nonlocal HF potential of
the He atom.

The solution of (2.7) for the metallic states re-
mains a formidable problem in view of the ap-
parent requirement of self-consistency. How-
ever, since the main perturbation is the presence
of the atomic potential, the requirement for self-
consistency is actually of secondary importance.
In particular, it is sufficient to evaluate (2.15)
using the solutions of the following equation
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. O(3ry 12 \ o
(-tv- 2oz far T HER )i

_fd‘r’rz zphO('xT)zp;’*('f:zzZi(F') - gi IZ',- (-f) .
A

| T-71 (2.16)

If the metallic density generated by ¥;(¥) is denoted
by #(%), the difference between n(¥), the correct
self-consistent density, and #(¥) is everywhere
small and of the order of the overlap, S. Thus,
due to the stationary property of the metallic HF
energy, evaluating (2.15) using the solutions to
(2.16) introduces an error of the order (S?3).

The HF energy using the solutions of (2.16) is

Er=2 3206+ 252 [o [i) - 2o [o [ido)

- ;(<ijlv [76) - 2(ijg [0 7). (2.17)

Here, (¥|i) denotes #;(F) and |i,) is the unperturbed
metallic state. We now subtract Ef; from (2.17)
and expand |#) as |i)=[ig)+ |i,). Carrying out

this expansion, we find

VHF(Z) ~2 Zéé’i
+2 3 (2000, v igde) = (iydy [V doie)
ij

doee, (2.18)

where the dots represent higher-order terms in
|i,). Since the product y(F)oy*(¥)is at least of
order S, the matrix elements in (2.18) are of

O(S?) and can be neglected. Thus, to lowest order,
Vur (Z) can be approximated as the sum over the
eigenvalue shifts. In effect, the Coulomb inter-
actions can be neglected and the interaction en-
ergy is the same as would be obtained for a sys-
tem of noninteracting electrons.

The sum of the eigenvalue shifts is determined
most conveniently in terms of the change in the
metallic density of states Ap(€). Once Ap(e) is
found, Vyp(Z) is given by

€
Var(@)= [ T de(e= eap(e), 2.19)
0
where € is the Fermi energy.

In Sec. III we take up the problem of determining
Ap(€). In doing so, we simplify (2.16) by replacing
the unperturbed HF potential for the metal by a
local effective potential vm(F). Our actual numer-
ical results are based on the Lang-Kohn'® self-
consistent potentials for v,,,(?). Since these latter
potentials include correlation effects they are not
equivalent to the HF potential required in (2.16).
However, since Ap(¢) is sensitive to the metallic

density far from the surface, it is important

that this density be accurately reproduced. For
this purpose, the Lang-Kohn potentials are the
most satisfactory which are available. In a certain
sense, their use can bethought of as going beyond
the simple HF theory to the extent that an accurate
representation of the metallic density is used.

It is of interest to compare our result given in
(2.19) with the recent work of Kleiman and Land-
man.” These authors consider the repulsive energy
as due to the change in the kinetic energy which
results when the atom overlaps with the metallic
density. Using the density functional formalism,
they evaluate this energy by making a local ap-
proximation to the kinetic-energy functional.
Further, they assume the metallic density to be
unchanged from its free metal form. This pro-
cedure is inadequate for a number of reasons.
Most importantly, the interaction energy is
not simply the change in kinetic energy but is in
fact more closely related to the shift in eigen-
values as either a noninteracting electron gas
model or our explicit derivation in the HF approxi-
mation shows. In neglecting the energy associated
with the metallic electrons interacting with the
atomic potential, they have overestimated the
repulsive contribution. Secordly, the use of the
unperturbed metallic density in the vicinity of the
atom is a poor approximation, as demonstrated
in Fig. 6, and so their estimated values for the
change in the kinetic energy are unreliable.

III. CHANGE IN THE SINGLE-PARTICLE DENSITY OF
STATES

The problem of obtaining Ap(€) as posed in the
previous section is analogous to the usual Friedel
impurity problem, although complicated somewhat
by the reduced symmetry in the adsorption geo-
metry. Nonetheless, a formal result due to
Langer and Ambegaokar'! can be used which gives
Ap(e) in terms of the $ matrix,'

8p(€) = 5o Tr 5= ns(e). @3.1)
The 8 operator is defined in terms of the T matrix

8(€)= 1~ 2mi 6(e -~ H)T (e +10) , (3.2)
where

T(€+76)=V[1- G(e+id)V]™". (3.3)

G%e+i6)=(e+i6— H°)™ is the Green’s function for
the unperturbed metal; H® is the metal Hamilton-
ian; and V is the potential of the adatom which
here represents the impurity. The trace opera-
tion in (3.1) is taken over a complete set of states,
|€’2). Owing to the structure of (3.1), the trace
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can be restricted to those states |€\) having the
energy ¢,'?

)

Ap(€) = 2mi de

Tr, In[1 - 278 T(e+i6)] (3.4)

where T(e+1%6) is the on-shell T matrix,
(| T(e+10) [Ny =(ex |T(e+i8) [ex’) . (3.5)

When the adatom sits far from the surface, the
matrix elements of T are small, being of the order
of the overlap. The logarithm in (3.4) can there-
fore be expanded in powers of 7. Retaining only
the lowest-order term,
8p(8) =~ 5 Try T(e+i0)+0(S?). (3.6)

It should be emphasized that this is an expansion
in S, and is not equivalent to an expansion in the
impurity potential V, which is a strong perturba-
tion.

In the form given in (3.6), we require only the
(diagonal) matrix elements of T. These matrix
elements are related to those of V by'?

Ty (€) =X [ T(e+i0) [N =(eX | V]|ex+) , (3.7)

where fex+> is a scattering state satisfying the
Lippmann-Schwinger equation

|ex+) = |eN)+Go%e+id) V |ex+) . (3.8)

In coordinate representation, this equation be-
comes

IR B =9+ [aFCOF ¥, e+ i0)VENGF).

(3.9)

() is an eigenfunction of H°. We have here
indicated that V is a local operator although the
following development does not depend on this
assumption. The evaluation of (3.7) is thus reduced
to finding the solution to (3.9).

This solution is obtained by noting that equation
(3.9) is equivalent to the Schrddinger equation

[e-H - V)] (F)=0. (3.10)

Assuming V(¥) to have a finite range, 7,, the in-
tegral in (3.9) is restricted to | ¥ |< 7, Sub-
stituting V(#)y?(¥) from (3.10) into (3.9) and

Gy yme (€)= 11m fdnfdsz Y1) G(ry =1, 2,75, , €)Y 1. (Q),

: d
Gl prme (€ =lim [dQ [ dQ' Y5, (Q) o= C(o=1, 2,7, 9, €) |1y ¥Vpore(Q),
n=0 dr o

making use of Green’s theorem, we obtain
- =y PP
-’)+de’ (GO( I’ ) Zpek (r )

6G°(" ¥.,¢)

LD yp@)=0 @1y

with |F |<#, Here the integral is taken over the
surface of a sphere of radius 7, surrounding the
adatom; 8/8n represents an outward normal de-
rivative. Similarly, (3.7) can be written as

Trro(€)= fd? (zp * (%) a‘l’e(I')(*) a‘/}el(-’) :;2()>
(3.12)

The integral equation in (3.11) is now reduced to
a system of linear equations by expanding 2, (»)
and 9§’ (#) for |7 |< 7, in spherical harmonics:

D@ = Y an(€R, (7, €)Y, (R) (3.13a)
Iym
and
)= 20 b, M)Y,(Q) - (3.13b)
Iym

The function R,(7, €) is the solution of the radial
Schrédinger equation (Rydberg units)

1 d/, d\ 1@+1) } ~
[— pral <” a;>+—;z— +V(r) | Ry(r,€)=€R,(7,€)
(3.14)
which satisfies R,(r,,€)=1. The expansion co-
efficients b,,(ex,7) are given by

bylen, )= f AQY ¥ ()40, (F) . (3.15)

Using these expansions in (3.11) and taking the
limit |¥ | =»,, we obtain the inhomogeneous sys-
tem of linear equations

72,2 [ Gl 1o (€) = L1 (€)G 1 10ms (€] @ s (D)

1y m*

=b (e, 7). (8.16)

Here we have defined

(3.17a)

(3.17p)
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and the logarithmic derivative
L,(€)=R\(r,, €)/R,(7,,¢€). (3.18)
Similarly, (3.12) reduces to

T @ =7 3 (b0, 7 2,0

Iym
- 2 bTm (e)\,';fo))a,m(ex') .

ar,
(3.19)

In order to explicitly evaluate T, ,,(€) we therefore
require: (i) the free-metal Green’s function
G°(T, T, €) and the matrix elements G,,, ;.,,» and
Gim, 1+me (i1) the unperturbed metal eigenfunctions
°.(F) and the expansion coefficients b,,(e X, 7,);
(iii) the logarithmic derivatives, L,(¢); and (iv)
the coefficients a;,(e)) as obtained from (3.16).
These various aspects are discussed in the fol-
lowing.

A. Free-metal Green’s function
The Green’s function appearing in (3.9) is the
causal (or outgoing) solution of
[V2+e-0,H)]GCF,T,e)=0(F-F). (3.20)
The metallic potential v,,(¥) is assumed to be a
function of z only and is indicated schematically
in Fig. 1. Because of the translational invariance

along the surface, we take the Fourier transform
of G°(F, ¥, €) with respect to the variable (5- 5’):

G°(z,z',e,q)=fd(5— 564 GO T o)
[f=®,2)], (3.21a)

G°(F,?',<)=/?2£7%f AECIIGOG 20 ).
(3.21b)

G%z,z’,€,q) is the solution of the following dif-
ferential equation:

(?g‘f"f' €—q2—'Um(z)>Go(z,Zl,€,q)=5(Z—Z').

(3.22)

We are of course interested in solutions to (3.22)
for energies ¢ less than the barrier height, v,.
Since ¢® ranges between 0 and «, there are two
cases to consider depending upon whether ¢ - ¢*
is greater than or less than zero.

, Case (i): e-q%2 <0
In this case we have exponentially decaying solu-
tions everywhere. Using standard techniques,*
the solution to (3.22) can be obtained in terms of
two linearly independent solutions of the homo-

geneous equation:

(;:2 —Kz_vm(z)>g1,2(z)=0; K2=q2—-€>0.
(3.23)

The two solutions of (3.23) are chosen to have the
following asymptotic behavior

g,() . e, B=k+v,

24 ©

(3.24a)

and
g2 (Z) ~v e-l-KZ .

Z* w0

(3.24b)

In terms of these solutions, the Green’s function
is given by
“g1(z)g2(zl)/w[g17gz] ’ z> Zl

Gz,z",¢,q)= { —g;_(z')gz(z)/w[gugz ] , z2<z’
(3.25)

where W(g,,g,] =2,85 - glg, is the Wronskian. In
this energy range, the Green’s function is real.

Owing to the particular geometry we are con-
sidering, we are interested in the case when z
and z’ are both large (2,2’ -+ ). In this region,
g,(2) behaves as

g,(2)~ ae™ +be* (3.26)
so that (3.25) simplifies to

a 1 - ’

G%z,z2’, e,q)l (2 20) im0~ = T EE g B(z+2")
1 =Blz=z]
-3 e . (3.27)
The constants a and b depend upon the details of
the potential v ,(2).
Case (ii): e~q*>0
Defining ¥*=€ - ¢°, g, ,(z) satisfy

(e +7 = 00(0)) £,,20)=0. (3.28

It is convenient to choose these solutions to have
the asymptotic form

(3.29a)
(3.29b)

g (z)~ae®? asz =4+,
g,(2)~ a,ef? as z =40

where g2=v,- k%, The normalization of these
functions is chosen such that g, ,(z) are sine waves
of unit amplitude for z = — «:

g1,2(2) ~sin(kz + 7, ,) . (3.30)

The two phase shifts n, and 7, are functions of .
Imposing the condition that G°(z,z’,¢€,q) repre-
sent an outgoing Green’s function, we find
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0 ' =
G (Z’Z ,€,q)- kSil’l(Th—

1 { ' Mg, (2)g,(2') - £,(2)g,(2") } »2>2'
1) PN g, (2)g, (") - g,(2")g,(2)

(3.31)

, 2<z’

Again we are interested in the large (z,z’) limit for which (3.31) reduces to

G%(2,2",€,q) | (z50y= 4

~ (1/k)[cot(n, -

It can easily be verified that the imaginary part
of this function is the same as obtained by using
the usual spectral representation.

Combining the results in (3.25) and (3.31),
G°(T, ¥, €) can be represented generally as

GO(F, ¥, €)=G,(T,¥,¢) +G (F,¥,¢), (3.33)

where the “direct” propagator has the behavior

d(* " ) (z.z"-;i», o e-o‘h‘-rll/4ﬂ iF_ ?,l;

af=v,—€. (3.34)

This is just the free-space propagator at negative
energies. The “reflection” term G,(F,T'¢) comes
from that part of G°(z,2’, €, q) which behaves as
e™@") for large z and z’. Although a closed-
form expression cannot be obtained for G,(F, T, €),
it is clear that it is a much smaller term than
G,(T,¥,¢) is this region (in fact, it is of order S
relative to G,). This property is clarified by
referring to Fig. 2, where it is seen that the pro-
pagation along path (b) is much longer than along
path (@). Since the particle is at negative energies
in this region, the propagators along these paths
are exponentially decreasing. Thus, if the adatom
is sufficiently far from the surface, only G (T, T, €)
need be considered.

Using the form given in (3.34) for G% ¥, ¥,¢),
Eqgs. (3.17) can be evaluated straightforwardly with
the result

G 1, 1rme = 01100 e @ GV )R IV (E2) (3.35a)
and
G,Im, ’m = éll’émm' iazj,(iaro)hg”'(iaro) 3 (3'35b)

21+1 (1 -m)!

1/2 1
b,(ekm):e'ﬂz< T m) f_l AxP(x) J,(q7 (1 = % 2)V 2, (74 %)

and

b1 (elem) = e <21+1uy_>1/2 [ C PR (ry %)
-1

2r (I+m)!

772) _ l] Ial |ze-B(z+z') _

(1/2B)e™B1z-='1 | (3.32)

where 7,(x) and 2{" (x), respectively, are the
spherical Bessel function and spherical Hankel
function of the first kind.®

B. b, (e\ro)

In evaluating b,,(eX,7,) we have chosen the un-
perturbed wave functions to be
Com = (272 26i ™0 (qp)u,(z), €=q®+k* (3.36)

where J,(x) is the cylindrical Bessel function of
order m,'® and uk(z) is that wave function denoted
as g,(z) in (3.28). These functions satisfy the
orthogonality condition

S AT O () = 8Bl — €100 = )
(3.37)

and the completeness relation

el/2
f de f Ak, (F) 40 (F1) = 0(F — 7).
(3.38)
Using these functions, b,,(ex,7;) and

db, (X, 7,)/dr, can be written as

bys(€km,7) =8,,zb1(ekm) (3.392)
and

dbis ,

ar (€hm, 70) = 0yabi(ekm) (3.39)

In the region in which u,(z) behaves as shown in
(3.29a), we find

(3.40a)

X {%q(l _ xz)llz[Jm-l(qu(l _ xZ)l/Z)_ Jm+z(q7'o(1 _ xz)1/2)]

- Bxd, (g7 (1= x2)1/ %)},

(3.40b)
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Here P}(x) is the associated Legendre function'® and Z is the position of the adatom about which the ex-

pansion in (3.13b) is performed.

C. Logarithmic derivatives, L,(¢)

The required logarithmic derivatives are obtained from the numerical solution of (3.14) in which V(») is
the HF He potential. Writing R,(r, €) =u,(r)/7, (3.14) reduces to the following in the region where v, (2) is

a constant:

0

1( )+ <l(l+1) §+4fwd7'7"Rfs(7‘/);};+Uo—E>u1(7’)

r r
- ZZi lRls(/") <A17’H1+7’-l f d1,11,11+1Rls(7.1)u1(,},/) _ ,VI+1 J’ d?"?"-lR I)u ( )) , (341)
0

with

A,:f drr 'R, (Pu,(r) , ry=max(r,r’).

(o]

0

(3.42)

R,(7) is the He HF radial wave function. The numerical solution of (3.41) is discussed in Sec. IV.

D. 4, (e\)

The fact that G, ;»,,» and G}, +,,» are diagonal in the approximation in which G°(F, 1", €) is replaced by
G,(T,T’,€) simplifies (3.16) to an algebraic equation with the immediate solution

6 uml7(ckm)

agm(€km) = arjGar)ian Gary) - L (eh®P (Gary)]

It is clear from this expression that az(ekm) re-
duces to 0,;bj(ekm), as it should, when the
adatom potential is zero. It should be noted, how-
ever, that this solution fails if the bracketed
quantity in the denominator vanishes. This hap-
pens if the adatom potential has a bound state at
the energy €. This resonant condition implies
that GO(¥, ¥’€) cannot be approximated by

G,(F, T, €) even in the large (z,2’) region. The
full Green’s function as defined by (3.25) and
(3.31) must be used and one must revert to Eq.
(3.4) to obtain the change in density of states.
For the helium adsorption problem this situation

ATOM

FIG. 2. IHlustration of the two, contributions of the
metallic Green’s function G° (r b , €) in the region of
the atom.

(3.43)

r

does not arise and the approximations leading to
(3.43) are justified.

To summarize the results of this section, we
recall that Ap(e€) is given by (3.6). For the choice
of the unperturbed states in (3.36), the quantum
numbers X in (3.6) are m and & and the trace
operation is explicitly

e1/2

Trgy =23 f (3.44)

M==c0

where the factor of 2 accounts for the electronic
spin. Using these results, (2.19) becomes

VHF(Z)f de 2}:f

M=w=co

e1/2
Tym, em(€) 5

(3.45)

with the 7 matrix given by (3.19). This is the
basic result determining the metal-helium-atom
repulsive interaction.

The asymptotic form of Vy(Z) can be deter-
mined from (3.45) by noting that T,,, ,.(€) is
proportional to e"?#Z, In particular, if we define

i Tom, em(€) =03 (R)e™%L (R €) (3.46)
we find
_2(4,)1/22
Vur(Z) 2 v (2/kp)a (ke )tk 5, € P
(3.47)
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The quantity ¢(k z, €) is a property of the atomic
potential and depends only on the position of the
Fermi level relative to the vacuum zero. The re-
maining factor is proportional to the density in the
asymptotic region.!®

IV. APPLICATION TO HELIUM ADSORPTION

In this section we discuss the evaluation of (3.45)
with T,,, ..(€) given by (3.19). In calculating
b,(ekm) and bj(ekm) from (3.40) we require u,(z)
in the form a,(k)e™. The asymptotic amplitude

a, (k) is determined by the details of the free metal
surface. In our calculations we have used the
Lang-Kohn (LK)!° self-consistent potentials for
the jellium model to determine a, (k) subject to
certain modifications. The LK potentials, which
are given for integral values of 7, were scaled
such that the potential barrier had unit amplitude.
The potential for an arbitrary value of », was

then obtained by linearly interpolating between the
LK results. Since the scaled LK potentials varied
smoothly as a function of 7, this interpolation
should be reliable. Finally, this interpolated po-
tential was rescaled such that the effective barrier
height, v,, had a magnitude equal to (k%+ ®),
where & is the (experimental) work function. By
using the experimental work function we have
attempted to reproduce the correct asymptotic
density. The amplitude a, (k) was then obtained by
numerically solving (3.28). In the region of the
equilibrium position of the He atom, the asymp-
totic form a,(k)e™®* was found to be a good approx-
imation to the wave function u,(z).

The logarithmic derivatives, L,(e), used in our
calculations were obtained by numerically solving
the HF equation (3.41). The atomic He wave func-
tion was taken to be

TABLE 1. Hartree-Fock logarithmic derivatives as a
function of the energy (relative to the vacuum level) for
1=0,1, and 2 at a radius »;=4.5 a.u.

—€ V) L, L, Ly,
0 0.1090 0.2136 0.4435
2 0.2487 0.3390 0.5341
4 0.3677 0.4474 0.6174
6 0.4722 0.5435 0.6948
8 0.5659 0.6304 0.7672

10 0.6512 0.7102 0.8355
12 0.7300 0.7842 0.9001
14 0.8035 0.8534 0.9616
16 0.8728 0.9188 1.0204
18 0.9386 0.9807 1.0767
20 1.0022 1.0397 1.1309

Rls(’}") =2.95256 6-1'4537-}- 1.799 14 29067
(4.1)

This form was chosen since it had previously been
used'” to define zero-energy e -He pseudopoten-
tials and it was of interest to compare the results
based on the HF ard pseudopotential logarithmic
derivatives. The pseudopotential in the HF ap-
proximation is discussed in an appendix.

The infinite range integrals in (3.41) were
truncated at » =5 a.u. and the resulting equation
was then solved iteratively. The logarithmic
derivatives computed from this solution at »=4.5
a.u. are given in Table I as a function of the ener-
gy. The truncation at »=5 a.u. introduced a neg-
ligible error; the variation of the logarithmic
derivative between »=4.5 and =5 a.u. in fact
corresponded to the zero-potential behavior.

Using the above results, Vyp(Z) was calculated
as a function of Z for the simple and noble metals
listed in Table II. It was found to be sufficient to

TABLE II. Characteristic properties of He adsorbed on various metals. The energies are given in hoth meV and

degrees Kelvin.

-E,
b2 ct ng (meV) (K)
Metal 7, (eV) (eVAY) (A SHe ‘He

Zero-point energy AEj
(meV) (K) (Z)p(A) (meV) (K)
°He ‘He SHe ‘He ’He ‘He

Al 2.07 4.19 0.202 0.544 3.44(40.0) 3.65(42.4) 1.76(20.4) 1.55(18.0) 3.79 3.73 2.16(25.0) 2.05(23.8)
Mg 2.65 3.66 0.153 0.478 1.65(19.1) 1.78(20.6) 1.12(13.0) 0.99(11.5) 4.27 4.18 1.19(13.8) 1.17(13.5)
Li  3.28 3.1  0.117 0.428 0.77( 8.9) 0.85( 9.8) 0.70( 8.1) 0.62( 7.2) 4.91 4.77 0.63( 7.3) 0.64( 7.4)
Na 3.99 2.7 0.092 0.388 0.41( 4.7) 0.46( 5.3) 0.49( 5.7) 0.44( 5.1) 5.51 5.31 0.36( 4.2) 0.38( 4.4)
K  4.96 2.39 0.070 0.356 0.20( 2.4) 0.24( 2.7) 0.34( 4.0) 0.30( 3.5) 6.23 5.95 0.19( 2.2) 0.21( 2.5)
Rb 5.23 2.21 0.065 0.351 0.15( 1.8) 0.18( 2.1) 0.28( 3.3) 0.25( 2.9) 6.64 6.30 0.15( 1.7) 0.17( 1.9)
Cs 5.63 2.14 0.058 0.345 0.13( 1.5) 0.15( 1.8) 0.25( 2.8) 0.23( 2.6) 6.84 6.47 0.12( 1.4) 0.14( 1.6)
Cu 2.67 4.65 0.225 0.220 3.34(38.8) 3.55(41.2) 1.74(20.2) 1.53(17.8) 3.66 3.59 2.08(24.2) 1.98(23.0)
Ag  3.02 4.0 0.249 0.196 3.34(38.7) 3.53(41.0) 1.61(18.7) 1.42(16.5) 3.73 3.67 2.01(23.4) 1.90(22.1)
Au  3.01 5.22 0.274 0.155 5.61(65.1) 5.91(68.6) 2.39(27.7) 2.09(24.3) 3.23 3.17 3.13(36.3) 2.92(34.0)

2 From Ref. 27. b From Ref. 5.
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include only the terms up to Im[ =2 in the sum-
mation over m. The m =0 term is positive, giving
a repulsive contribution. By contrast, the m #0
terms are negative; their contribution was typi-
cally 25% of the m =0 term in magnitude. Thus,
they represent an important attractive component.
This result indicates that the use of a 6-function
pseudopotential whose strength is determined by
the zero-energy s-wave e -He scattering length
is inadequate in estimating the repulsion. The
rapidly varying metallic density at the surface
means that higher I components in the wavefunc-
tion expansion (3.13b) are appreciable. These
components feel a strong attractive potential.

The calculations were also repeated using a
limiting radius of 7,=5 a.u. The results differed
negligibly from the 7,=4.5 a.u. case, demon-
strating their independence of 7, for »;>4.5 a.u.

The total He-metal potentials, as calculated
from (2.3) with V_,..(Z) given by (2.4), are shown
in Figs. 3 and 4. For the simple metals, the po-
tential systematically weakens as the density is
decreased and the minimum moves out to larger
values of Z. This behavior is essentially due to
the decreasing strength of the Van der Waals in-
teraction as determined by the values of C and Z,,.
Although one would similarly expect the repulsive
energy to decrease with density, this trend is
compensated by the decreasing work function.'®
The net effect is that the repulsive potential
Vur(Z) is rather insensitive to the mean metallic
density. For example, at Z=3.0 A, the value of
Vur(Z) decreases by only 30% as the density is
varied between 7 =2.07 and »,=5.63. This cancel-
lation of the effects of the decreasing density and
the decreasing work function makes the Van der
Waals energy the determining factor in the varia-
tion of the total potential.

These trends for the simple metals are opposite
to those found by Kleiman and Landman.” These
authors used metallic densities which did not cor-
respond to the observed work functions and there-
fore underestimated the amplitude of the density
in the asymptotic region for the less dense metals.
In addition, the variation of Z, with 7 is an im-
portant factor in determining the Van der Waals
potential. Our values for V,,..(Z) correctly in-
clude the effects of the reference plane position
and therefore yield stronger attractive potentials.
The combined effects of the incorrect asymptotic
densities and the incorrect reference plane posi-
tion accounts for the different trends.=®

Our results for the noble metals do not follow
the trends for the simple metals since the Van
der Waals interaction does not scale with the
valence electron density in the same way. The
oscillator strengths for the core electron transi-

tions!® make a significant contribution to C.° As
can be seen in Fig. 4, the potentials for Cu and
Ag are very similar. Although their bulk densities
are quite different, their Van der Waals coeffi-
cients are nearly equal. In addition the relative
magnitude of the work functions compensates for
the density difference in the determination of
Vyr(Z). On the other hand, Au has both a larger
work function and a larger value of C; these fac-
tors contribute to the deeper potential well for
this metal.

Previously, a local pseudopotential was success-
fully used to account for low-energy e -He scat-
tering.'” Because of the computational ease in
using a local potential as compared to the HF
solution, it was of interest to repeat the above
calculations using the local potential derived in
the appendix. These calculations were performed
for the case of Al and the resulting He-Al poten-
tial is shown as the dashed curve in Fig. 3. The
magnitude of the repulsive energy is only slightly
larger relative to the HF result. It therefore ap-
pears that the local pseudopotential provides a
good representation of the e”-He potential even for
those states which have a significant spatial vari-
ation on the scale of the atom itself.

Since the mass of the He atom is small, it is
necessary to take its zero-point energy into ac-
count when determining the binding energy. Using,
the potentials in Figs. 3 and 4, the Schrddinger
equation for the He wave function was solved nu-
merically and the results are listed in Table II
Values for the binding energy —E,, zero-point
energy, the first excitation energy AE,=E, - E,,
and the mean position (Z), are given for both iso-
topes of He. The binding energy decreases mono-
tonically with decreasing density for the simple
metals, varying, in the case of *He, from 42.4 to
1.8 K on going from Al to Cs. The corresponding
mean positions vary from 3.7 to 6.5 A relative to
the jellium background. The atom is very weakly
bound to all the alkali metals and quite generally,
its equilibrium position is far from the metal sur-
face. These results are summarized in Fig. 5 for
the case of *He. As can be seen, the equilibrium
position varies linearly with »; whereas the binding
energy behaves approximately as #3%, i.e., pro-
portional to the density. The binding energy of
He is typically 10% less than that of *He.

In the case of the noble metals, the binding en-
ergy for both Cu and Ag is about 40 K and for Au
it is 69 K. It is of interest to note that recent
measurements'®2° of the binding energy of Xe on
Cu and Ag suggest that the potentials for these
metals are indeed similar. This is consistent
with our results for He, although one cannot just-
ify, at the present time, the similarity of the po-
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FIG. 3. He-metal poten-
tials for various simple
metals. The solid lines
are the results using the
Hartree- Fock potential
[see Eq. (3.41)] and the
dashed curve is based on
the pseudopotential given
in the Appendix. The origin
is chosen at the edge of the
jellium background.

FIG. 4. Physisorption
potentials for He on the

noble metals.
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FIG. 5. Binding energy (O) and equilibrium position
(O) as a function of » for “He on the metals shown in
Fig. 3.

tentials for these two metals, for each of the
rare-gas atoms. Indeed, it should be pointed out
that other measurements®' of the Xe-Ag binding
energy do not support this conclusion.

Although the adsorption of He on solid surfaces
has been studied extensively, values for the bind-
ing energy of monolayer He films on metal sur-
faces do not seem to be available. The binding of
He on argon-plated copper®® appears similar to
our value for the bare surface. Furthermore,
the binding energy on graphite® is of the same
order of magnitude. However, similar measure-
ments for bare metal surfaces are required to
decide whether our theory is quantitatively reli-
able.

In Fig. 6 we have plotted the electronic density
corresponding to the state %), o(f) in a direction
perpendicular to the surface and through the cen-
ter of the atom. This density is in fact similar to
the total metallic density, since far from the sur-
face, only those states with energies ¢ close to
€ and wave vectors k close to k& contribute sig-
nificantly. As can be seen, there is a large pile-
up of charge in the vicinity of the He atom and a
depletion of charge in the region between the
adatom and the surface itself. The difference in
the charge densities with and without the atom is
localized in the atomic region decaying slowly in
the direction of the metal. However, the differ-
ence far from the atom is small and, as stated
previously, of the order of the overlap.

The redistribution of charge indicated in Fig. 6
gives rise to a dipole moment which points away
from the surface. Such a dipole moment has the
effect of increasing the work function and is op-
posite in sense to that observed for Xe on metallic
surfaces.'®* However, it should be noted that there

)
sl et kg0 B2 expl2yF )

| 4(A)
| 2

-2 -
FIG. 6. Charge density of the metallic electrons in

the vicinity of the helium atom. The dashed curve is
the unperturbed metallic density.

is an independent contribution to the dipole moment
which arises from the Van der Waals interaction
itself.?%#2?5 This latter contribution decreases the
work function; in the case of He it is probably
small because of the small atomic polarizability.
Thus, the moment we have calculated, which is
related to the charge overlap, might well domi-
nate. A quantitative estimate of the dipole moment
associated with the He atom would, however, re-
quire determining the fully self-consistent density
and goes beyond the calculation of this paper.

APPENDIX

The total atomic potential in (2.15) is given by
O (&ry 2
Go@=(-2 4 far LEL) 4

- B (*'S*zp(r) o
2 far BEDED) . @y

Following Kestner et al.,'” we introduce a pseudopo-
tential

V,=V+V (A2)
ps R

where V,, is the nonlocal repulsive potential defined
by

Vo) @ =- [ 0@ Fo)@ER®.  (a3)

An approximate local potential fo;' each angular mo-
mentum component ! can be obtained from the above
as follows. Writing

(@) =Ry(1)Y 1,,(Q) (a4)
the radial (pseudo) wave function R,(r) behaves as
r! for small . Assuming that this functional form
represents the main spatial dependence in the atomic
region, the exchange part of the potential in (A1) be-
comes
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I2( 1+

“ar Lo o)+ ) 4iIe0) . (a5)

P

Using the atomic He wave function given in (4.1), (A1), (A3), and (A5) yield the local potential®®
|4 “)(1') =-2.84185¢e7%A7 /¥~ 1,026 18 ¢™347 /¥ = 0.13190e™A7 /7

—4.12921 7247 _ 2,23656 A7 ~ 0.38330e™ A7+ VP (r) + 6,,V5(7), (A6)
where
y [9 915 23((—29-)-‘;,1-} L, (A7) + Iy (A¥) 1) +1.51046 (é%ﬂ)-l— 1, (2A7) + I,(2A7) - 1) ] 00 @A)
and
Ve@)=11.27970e™471 6.873 27247 | (A8)
In (A7), we have defined
t
IL{t)=| dss"e™®, A9
0= [ (49)

and A=1.453.

As a check on the potential in (A6), the /=0,1,2 phase shifts were calculated at 2=0.5 a.u. The results,
compared with the HF values, were 6,=~0.59 (0¥ — 7=~ 0.71), 6,=0.043 (5;F =0.042), 5,=0.00083
(5;”": 0.00084). As can be seen, the local potential in (A5) is a good representation of the nonlocal HF

exchange for /=1,2 in this energy range.
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