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The microscopic theory of fourth sound and of the superfluid fraction for perfect one-component periodic
solids has been derived. It is applicable to finite temperatures and is restricted to the case of well-defined

excitations. One finds that the superfluid fraction is a tensor p p/po and that the fourth-sound velocity C, is a
tensor (C4) p ——(Bpo/Bpo) 'p'&, where JLIO and po are the spatially averaged values of the chemical potential

(per unit mass) and of the number density. In addition, the exact nonlinearized hydrodynamics is derived, and

for fourth sound is found to give agreement with the microscopic theory. Because the superfluid velocity for a
periodic solid cannot be generated by a Galilean transformation, we find that elastic waves are loaded by the

average mass density of the system. This is in contrast to the result of Andreev and I.ifshitz, which involves

only the superfluid fraction. Therefore one cannot look to (hydrodynamic) elastic waves for an obvious

signature of superfluidity. A study of the effect of a transducer indicates that fourth sound will be generated

to a non-negligible extent only when the crtystal is imperfect (i.e, , it has vacancies, interstitials, or impurities).

On the other hand, a heater might be an effective generator of fourth sound, provided that the mean free path

for umklapp processes is sufficiently small. In the limit of zero crystallinity the theory shows that second

sound, rather than fourth sound, occurs. Detection of superflow by rotation experiments is also considered. It
is pointed out that, because the superfluid velocity is not Galilean, two-fluid counterAow does not occur.
Hence, it appears that rapid angular acceleration or deceleration would be the best technique for

bringing the superfluid into rotation.

I. INTRODUCTION

In 1969 and 1970, two papers appeared which

considered the possibility of superfluldlty ln

solids. The first, by Andreev and Lifshitz, con-
sidered the ac properties of a superfluid solid. '
The second, by Leggett, considered the question
of dc superQow, Since their appearance, no
experimental evidence has accrued to indicate
that either phenomenon occurs. Probably the
single most significant reason for the absence of
such evidence is the damper put on experimental
research by the earliest estimates of the super-
fluid fraction of solid He at temperature T =0,
which ranged from 10 ~ to 10 6.2 s More recently,
however, two calculations~' ' have raised the
superfluid fraction to the order of 10 ', so that the
phenomenon now must be taken more seriously,
(It should be noted that Fernandez and Puma4 have
raised an objection to their own calculation, an
objection which depends upon the nature of the
ground-state wave function. This point is discussed
in detail in Sec. VI of the present paper. ) An addi-
tional motivation for considering this phenomenon
is the recent realization that there are a number
of new candidates for superfluidity, both in the
liquid and in the solid state. ' Here~ we refer to
'H, 'H, and 'H (for which a 50-KG magnetic field
can suppress the formation of molecular' H, ). By
analogy to the quantum theory of corresponding
statesa' ' one can expect solid 'H to be more de-
localized than is solid ~He; given the sensitivity of

the superfluid fraction to the extent of delocaliza-
tion, ' the superfluid fraction for solid 'H might
well be close to unity. Such a system would truly
be a superfluid solid. Note that, in the (uncertain)
belief that the elementary excitations of a Fermi
solid will show some remnant of their behavior in
a Fermi liquid, we tentatively discount the possi-
bility of superfluidity in solid 2H and solid 3He.

%e therefore believe it is appropriate to under-
take further theoretical study of the superfluidity
of periodic solids. In Sec. II we develop the micro-
scopic theory of the superfluid density p' at finite
temperature T, thus extending the work of Ref. 5.
In Sec. III we develop the microscopic theory of
fourth sound at finite temperature, finding after
much calculation that its velocity C~ is given by
the tensor (C', ) =(sp, /s p, ) 'p', whe, re p, , is the
average chemical potential (per unit mass) and p,
is the average number density. Thus both ac and
dc superf low have the same transition temperature
T„a not unexpected result. In Sec. IV we derive
the nonlinear hydrodynamics of superfluid solids,
incorporating the property that the superfluid
velocity V' for a periodic solid cannot be generated
by a Galilean transformation. In Sec. V we
analyze hydrodynamic elastic waves, -fourth sound,
and second sound. We find that: (i) elastic waves
[Eg. (5.32)] are only slightly affected by the pre-
sence of the superfluid state (in contrast to the
finding of Andreev and Lifshitz); (ii) an ordinary
transducer will not generate much fourth sound in
a perfect crystal [Eq. (5.36)], and (iii) a heater
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might generate fourth sound [ Eq. (5.41)J if the
hydrodynamic regime can be realized. Section VI
provides a summary of the paper with particular
emphasis on its implications for experiment.

Ho=- - dr/ r V'|II' r

+— d r d r' V(r r') g—t(r) gt(r' ) tjI(r') p(r).
2

(2 1)

Here g(r) is the field operator, which may obey
either Bose or Fermi statistics (commutation or
anticommutation relations). The dependence on
time is suppressed, in order to condense our no-
tation. V(r —r') is an instantaneous two-body in-
teraction.

It is assumed that the underlying symmetry of
H, is not shared by the class of equilibrium states
which we will consider. Namely, these states will
have crystalline symmetry, with a given set of
sites to define the crystal lattice. Note that a non-
primitive translation gives a nonidentical system
possessing essentially the same physical proper-
ties.

We now consider the effect on the energy and
momentum of a nonuniform, time-dependent gauge
transformation g(r)-p'(r) =e'~~'~g(r), where p(r)
is a c number function of space and time. One then
finds from the Heisenberg equation of motion for
P' (r) that the equivalent Hamiltonian H for g(r)
is given by"

H=HD+m dr pr Op 2 V r +5@, r

+m drV' r ~
~0 r (2 2)

where the number density p,p and number flux
density j„,(or the momentum density per unit
mass) are given by

[p(r)]., -=rj'(r) |j (r), (2.3)

[),(r)].s -=(@/2mz) [P'(r) Vy(F) —V y'(r) rj(r)],

(2 4)

and the superfluid velocity V' and the "shift in
chemical potential" 5g are given by

0'(r) = (k/m)Vy,

h Bp5V(r) =- ———
~

m at

(2.5)

(2.6)

II. THEORY OF p' AT FINITE T

We wish to generalize the theory of Ref. 5 to in-
clude T ~ 0. Consider a single-component, spin
zero system of atoms with mass m and Hamiltonian

E~ +m dr keg V' r ~
~ r p jn|yg +0

=Es„+(V' ~ (kn~p (kn)), +0(( V) )s, (2.9)

where the subscript denotes the G=|) Fourier
component, or spatial average, of the appropriate
quantity, and p—=mV]~, p with V being the volume
of the system. (The argument r has been deleted
from V' and p. ) In addition, the state (kn) be-
comes

(kn) +g (Es„-Es ) ' (V' ~ (km(p(kn))s( km),
m

(2.10)

where only k' =k states are mixed in by the per-
turbation if V' is of the form'

Vs (r) +Vs &G 'r
c

(2.11)

In Eq. (2.10) the prime indicates that the m=n
term is not included in the sum. Since V'(r) is a
real quantity, VG =(V'G)*. Similar relations hold
for pc~ '5pcy and ~c.

As a consequence of Eqs. (2.9)-(2.11), Eq. (2.8)

(Properly, this naming of 5p cannot be done until
the hydrodynamics is established, in Sec. IV.)

Note that p„ is unaffected by the gauge trans-
formation, but that the total number flux density
[associated with P'(r)] is

[I (r)]o =[p(r)1o V (r)+[Jo(r)lo ~ (2 7)

For a uniform system, one can develop a V'w 0 by
giving the system a Galilean "boost" (which would
also affect other velocities in the system). In the
present case of a periodic solid, one must distin-
guish between the nonuniform V' developed by
the gauge transformation and the uniform V' de-
veloped by a Galilean "boost." For the remainder
of this paper, by V' we will refer only to that V'
developed by the gauge transformation.

We now take the thermal expectation value of
Eq. (2.7), thus replacing [p(r)],s by p(r) = ([p(r)],s),
[I (r)],„by I (r) =([j(r)]„), etc. Assuming that only
the thermal excitations contribute to ([js(r)]„),
and that they are long lived, we can then write

I (r) = P(r) V' (r) +g f (Es„)(kn
~ [Is(r)],r ~

kn) .
an

(2 6)

Here k denotes wave vector, n denotes the band
index,

~
kn) denotes the wave function of the kn

excitation, and f (E„„)is the thermal occupation
number of the kn excitation. The second term on
the right-hand side simply represents the mo-
mentum of the excitations.

At finite V'(r), the energy E„„becomes (on ap-
plication of perturbation theory):
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fol' ] (f') becomes, wltll the excl'tatloII dl'lft velocity
V„ taken to be zero, and f'(E,„)= sf/sE, „,
I (r) =P(r) V'(r)

+
V

gf'(Ea. )(V'&»lpl»&), &»lp(r)l»&
kff

xR8[(v' ~ &»l plum&), & kmlP (r) lan&f.

(2.12)

Defining the 6 th Fourier component of I (r) by

is the strain (ns is the vector describing the dis-
placement of the lattice sites from equilibrium),
and XIs is its thermodynamical conjugate (a stress
density); p is the average number density and m p,

is its thermodynamical conjugate (making p, a
chemical potential per unit mass); g is the aver-
age total momentum density per unit mass and
m V„ is its thermodynamical conjugate (V„ is the
normal fluid velocity), and V, is the average
sllpel'flllid velocity (= Vo) alld m]~ ls its tllel'lllo-
dynamical conjugate (j, will shortly be shown to be
the average momentum of superf low, per unit
mass }. Note that

g =av. +&.. (2.20)
8 S

~C ~C C' ~G
G

one has, from Eq. (2.12),

(2.13)

Note that p~ c has the following properties:

(pg, c) s =(p' g, g )*s,
(p'g, g ) s=(p g, g)s,
(Pg g')as =(Pc' g)Ij

(2.15a)

(2.15b)

(2.15c)

These may be interpreted most easily by intro-

ducingg

p'(r, r')-=Q pg g exp(i G r —i G' ~ r'), (2.16)
CGI

j)'G C. =PC C. I+— ' Ek„kn P kn C kn P kn

+ ~kn ~kn @kmmV k„

xHe[&I)mlp l»&g &» l

pl�&m&-c

1 ~

(2.14)

Thus j, is given by

(2.21)
S ~ I)) ~ pg g

From Eq. (2.2) we find the excess energy of super-
flow. (Note that a Galilean "boost" by V„changes
8 and g, but not j,. This implies no counterflow. )
Letting V'-V'+ 5V' in Eq. (2.2), we find, on com-
parison with Eq. (2.13), that

3s =3C~ (2.22)

Thus j, is indeed the average momentum of super-
flow per unit mass. The superfluid density is
then defined as

(2.23)

Employing Eq. (2.13) one finds that, to lowest
order in V' and sv, „,

and noting that one may write '(Vg, )((t').s =
Q (4 ), ,(~.'") . (2.24)

(r) =- dry (rr V'(r')=+I 8' '
(2.17)

Then Eq. (2.15a) is a consequence of the fact that
p'(r, r') is real, since I (r) and V' (r) are real;
Eq, (2.15b) implies (and is implied by) the sym-
metry of p'(r, r'}[=p' (r', r }];and Eq. (2.15c) is
the statement (in reciprocal space) that p'(r, r')
is Hermitian.

To obtain ~p, the superfluid density (which is a
tensor in noncubic crystals), one must introduce
thermodynamics. The energy density differential
of a superfluid solid is taken to be' "

dC = TdS+ A&k Cto&k+m P,dP+mV„~ d g+m], ~ dV, .
(2.18)

0 ~ j —0

so that

(2.26)

Equations (2.21) and (2.23) imply that p's = ps' .
Note that Eq. (2.23}, our definition of p', involves
only macroscopic averages, just as one would
hope. It was not obvious, however, that Eq. (2.22)
would be true.

In order to evaluate Eq. (2.24) one may take
(p', ~),„ from Eq. (2.14). However, 8(Vg„)/s(V;s)
must be determined from the steady-state flow
pattern, which is determined by

Q ~ j -O (2.25)

ol

Here 8 is the entropy density,
6 PG Gs VGs (2.27)

N]k = 3 ~ Qk (2.19) Considering VG 0 as the driving term, one may
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solve Eq. (2.27) for Vc», as done in Ref. 5 for a
model of (fictitious} fcc 'He at T =0. Then write,
for G' W5,

V', ,= (N/m)G'y, ., (2.28)

(2.29)

BCC' =G'~C, G'e G ~ (2.30)

an operator which can be inverted only in the
GtO, 6'tO subspace, we have

[B"')c'cG'Pc, o' Vo
I

(2.31)

~ y

~ ~ ~

~

~~ -s ~
~i Zn

PG Gs QGP PC p Vp
I

where Z' indicates that the G' =0 term is deleted.
Setting

(3 4)

where (B p/Bp) cc=,s-p, c/Bpc, . These equations in
troduce two coefficients of linear response, p~ G,

and (Bp/Bp)«, . Calculation of the first has been
discussed in Sec. II; calculation of the second will
be discussed now.

The quantity (Bp/Bp}«, (at fixed pc„, for all
G" eG') may be obtained by inverting the matrix
(BPIBp)cc, (at fixed gc.. . for all G" oG'). The
latter may be obtained by considering the perturba-
tion V= fdr[p(r)]„BP(r) and then finding the in-
duced density change Bp(r) by linear-response
theory. It is not difficult, using, e.g. , the meth-
ods of Ref. 12, to show that

so

Vc = —G [B ]cc,G' pc. ,o' Vo.
I

(2.32)

Bp(r) = ds (U(s) [Bp(r)],g,

where

(3.5)

This permits us to write Eq. (2.24) as

p'=Pa 0 — po c 'G(B ']cc,G' ' pc. o. (2.33)
ct

Equation (2.33) will be useful in simplifying certain
important results in Sec. III, which treats fourth
sound.

III. MICROSCOPIC THEORY OF FOURTH SOUND

&
= Tr(e s 0&)/Tr(e s o)

Since (V(s)&=(V&, one finds that

(3.6)

V(s) = e'""Ve '"" P = (k T)-'

5[p(r)].,= [p(r&]., —&p(r)&,

and the angular brackets denote an equilibrium
average:

Qp—+v' ~ j =0s (3.1)

In this section we derive the microscopic theory
of fourth sound. The fourth-sound velocity turns
out to have a very simple form, closely resembling
that for an ordinary superfluid. The reader who
wishes to know the result only, or the reader who
wishes to know the result before undertaking to
follow the lengthy calculation, is advised to turn
to Eq. (3.41).

There are four basic equations describing this
form of superf low. Two of them are familiar
equations of motion (mass conservation and the
equation for superf low):

which at T=0 becomes

(3.7)

= 0 p „p ,„0 —0 p „0 0 p ,„0,
(3.8)

where ~0& is the ground state.
The matrix Bp/B p has symmetries quite similar

to those of p', and for the same reasons. First,
because p(r) and Bp,(r) are real, the quantity Bp(r)/
B p(r') defined by

1 -, Bp(r)
Bp(r) =— dr', Bp,(r')

Bp(r')

a vs
Bt

+ v'5p, = 0. (3.2)
C) C G)C22

(3.9)

3G- ~ ~G, G' " C'B
G'

(3.3)

[In Eq. (3.1) we have set g= j„under the assump-
tion that V„=O for fourth sound. See Sec. V. Note
that Eq. (3.2) follows from Eqs. (2.5) and (2.6).]
Two of them are constitutive relations; in recipro-
cal space they read

is real. This implies that

(3.10a,)

as can be seen explicitly from Eq. (3.7) when one
makes use of the fact that [p(r))„ is real: pc„

Second, ([pc(s)].,p c .g = ([p cps)).,pc.,&

implies that
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(3.10b)

which says that Bp(r)/8}i(r') = Bp(r')/8}i(r) is sym-
metric. Combination of Eqs. (3.10a) and (3.10b)
gives

3.10c

which is the statement (in reciprocal space) that
Bp(r)/8}i(r') is Hermitian.

Inversion of Bp/Bp, gives Bp./Bp, which has the
same properties described by Eqs. (3.10). Given
that 8}ilsp is calculable (in the long-wavelength
low-frequency limit), we turn to the solution of
Eqs. (3.1}-(3.4) for slowly-varying disturbances
(~, lkl-0):

Bp, X/2
1/2=Q Sg g&&g-g-) Sg-g

ac cd
(3.18)

9p,
A „g„g——P Sgsg — Sg gs

a&c2
2

(3.19}

is the diagonalized form of the Hermitian matrix
8}i/Bp, and S is the similarity transformation (a
unitary matrix) which performs the diagonaliza-
tlon. lth

Bggz = (k+ 6) p gg (k+ G ) (3.20)

We next establish that Eq. (3.15) has a solution
with &g'~ Ikl' as Ikl-0. This is not entirely ob-
vious. We can prove this, however, by introducing
the quantity

Bp(r) eik r ifst P-Bp eig ~ 8

a

Vs(r) eik r i&at P V-s eig r

a

Then Eqs. (3.1) and (3.2) can be written

igi5-pg+i(k+6) 'Q pg g, 'Vg, =0,

(3.11)

(3.12)

(3.13)

we may rewrite Eq. (3.15) a,s

Mcc, Cal- (r0 Cc
at

where

g~ l/2
Cg, = P — &pgs

alt ~p ata tt

(3.21)

i&dVg, +-i(k G+)g'— Bpg. = 0.
aa-

(3.14) (3.23)

Therefore fourth sound must satisfy

-&d'Bpg+ (2+6) g pg g, {k+6')
atctl ~pp- act

Note that for a fluid this becomes

&patt = 0 s

(3.15)

-e'6po+ k'p' —~po = 0, (3.15)

as should be the case.
It should be observed that Eq. (3.15) has more

than one solution, However, since the response
functions psg, ,g: and (Bli,/Bp)g, g,. are calculated in
the &g-0, Ikl-0 limit, only solutions having &ti-0
as Ikl-0 can be expected to be valid. More spe-
cifically, one expects that igk" Ikl' as Ikl-0 We
first show that a solution of Eq. (3.15) exists with
&d =0 and k= 1}. This is done by setting these quan-
tities to zero, so Eq. (3.15) then reads, on using
Eq. (2.30),

%e now argue as follows. First, Bac, is Hermi-
tian because by Eq. (2.15c) pg g, is Hermitian.
Second, (Bp/Bp)'~' is Hermitian because S is uni-
tary and A. is Hermitian (in fact, real and diagonal}.
Therefore M, being the product of three Hermi-
tian matrices, is itself Hermitian. As a conse-
quence, its eigenvalues +' are real. Note that

may be negative, indicating unstable behavior.
This occurs for T& T„ thus defining the transi-
t' t p t T,.

To show t at ~'~ lk I' as lk I"0, we employ
perturbation theory about the dc solution (ig = 0)
which occurs when k=5. Because of the form of
B, we may write M in the form

M=M"'+k M"'+k M(') k, (3.24)

Baal 5+at 0 ~
(o) (3.17)

When u& = 0, Eq. (3.2) implies that Brig. = 0 except
for 6' = t|. Since Bgiogi, = 0 if either 6 =||or 6' = 5,
Eq. (3.17) permits the unique nontrivial solution
6p, oW 0. This corresponds to uniformly changing
the chemical potential of the system.

(3.25)
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and

(2) —s
G1C2 ~ G1G2 y

(HG&G2) 18(pC&G2)8N+(pG&G2)o)8 28 ) (3.26)

[In Eqs. (3.24) and (3.25), matrix indices have
been suppressed. ] Application of first-order per-
turbation theory then gives, with

(d&
&

——(G!k M"' k!0)

(0 Ik 'M"' IN)(N Ik ' M"'I o)

)(20 N

where

(3.35)

the super flow.
It is now straightforward to obtain an explicit

expression for co(» by the use of second-order per-
turbation theory. We have

co 0+co +(d +'''
(1 ) (2 ) (3.27)

M"'IN) = x„IN) (3.36)

(3.28)

I
p)

I
p) p/(op

I

pp)1/2

where !0') is obtained from Eq. (3.22). Thus

(o )o)= p (")"*op.
* ('"

1 2 3

(3.29)

2 2
C2

(3.30)

In the above we have employed the Hermiticity of
S)1/Sp, the reality of 5p, and the fact that 5)1G = 0
for GW |t. We now show that

(d2(» ——(0 I
k M" '

I
0) .

Here !0) is the eigenfunction of M with eigenvalue
u'= 0. It is taken to be normalized to unity, so
that

defines the eigenvalues X~ and the eigenstates
!N). The above expression may be rewritten with-

out the sum on N by noting that (0 !k M"'I 0) = 0
permits us to write (with (d2 for (d2(»)

&d'=(0!k M"' k!0)

—g (0
I
k ~ M(»!N)i(N! [M' '] 'k M

I
0)

=k (0!M"'—M"'[M"'] 'M"'!0) k

=—k 'C4 'k, (3.37)

thus defining the fourth-sound velocity. It should
be noted that our result is similar in form to the
result of Born for elastic waves, also obtained
by using a version of second-order perturbation
theory.

We now evalua. te &d2 explicitly. From Eq. (3.37),
it has two pieces, the first of which involves

(0!k ~ M"'!0)-=Q CGk MGG. CG, =0,
C, G'

so that &(1) 0 To do so we will apply

(1) ~n(1)

and

Cc= C*G.

(3.31)

(3.32)

(3.33)

(o')M"')o'l=(o')
( ) p'( ) )o')

This last equation is true because 4pG= 6p*G. As
a consequence of Eqs. (3.32) and (3.33), Eq. (3.31)
becomes 5 6

Q CGk MG 'G, CG, = —Q C Gk'M"G', GC*G,
G, C' C8 C'

~"G3] G G ~G ~P'p P pp ~

C3G4

= —Q CGk MG 'G, CG, ,
G, C' The second piece involves

(3.38)

(3.34)

thus establishing Eq. (3.31). Note that it was es-
sential, in the above demonstration, that the k= 5
state was a state of uniform change of 6p, . The
perturbation theory is built about this state, not
about. the state of dc superf low. Physically, by
Eq. (3.2) a nonuniform chemical potential induces

(O'
I

M" &[M' '] 'M" '
I
0')

1/2 1/2
(0p

I
H(1)(II(o &] -&II(1& p

I
0p)

Bp ep

(5p )2(H(&)[~(0)]-1B(&))

1 2
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Combining terms, we then have

C', =(Bp,, Bp,) '(Bp,,)'

Po, o Pocz'Gz 8 ~ca G2'Pc2o
C) C2

1

p00 — pOG
' l[ ]C,GGk'pg 0

l 2

BPo
'
p. (3.41)

This simple result was by no means obvious.
Equation (3.41) has a number of important con-
sequences. First, both dc and ac superf low in a

.periodic solid have the same transition tempera-
ture T,. (Probably this is also true for nonperiodic
solids, where Fourier sums must be replaced by
Fourier integrals. ) Second, of all the complicated
response functions (Bp/Bp, )oo„only the G=G'=5
component need be computed. This is an immense
simplification of the problem. Qne can thus im-
mediately employ Eqs. (3.7) or (3.8). If, as is the
case for liquid 'He, (Bp, /B p,,) is not very tempera-
ture dependent, then one can employ Eq. (3.8) to a
high degree of accuracy. Further, since (0~ p„j0)
= po is trivial, and since

(olo„p, „lo&= o, ' fooo, (olo()o(,)lo&, ,

is the double integral over the pair-correlation
function (a quantity which is studied in actual cal-
culations on quantum solids), it should not be too
difficult to evaluate Eq. (3.8). Lastly, p' can
easily be evaluated by Fourier techniques at T = 0.'
Therefore fourth-sound velocities at T = 0 should
not be difficult to obtain.

IV. HYDRODYNAMICS

The hydrodynamics of Andreev and Lifshitz' was
derived under the assumption that the superfluid
velocity V, is a Galilean velocity. However, as

(3.40}

We write (Bp,/B p, ,) ' because it is at fixed Bp, c= 0
for Ge6. Note that the primes on the summations
indicate that the G, = 0 and G, = 0 terms are to be
deleted. This is because [B(o)]~'o exists only in

1 2
the G, c 0, G, w 0 subspace. It is the presence of
the B"' terms to the right and left of [B"']' that
permitted us to write [B"'] ' at all. One may con-
sider the B"' terms sandwiching B(n&] ' to serve
as projection operators into the G, IO, G, t0 sub-
space for which [B"'] ' exists.

Comparison with Eq. (2.33) permits us to re
write Eq. (3.40} as

P efgf

g&+8„0 ~=0

j,+a,8=0,
S + Bi(SV„,+q;/T) =R/T (R &0),

(4.4)

(4.5)

(4.6)

(4.7)

where II,„, 8, V„„q„and R are unknown, and
(ii) determining these unknowns by requiring that
Eqs. (4.1)-(4.3) and Eqs. (4.4)-(4.7) are consistent
with conservation of energy

j +9]Q,.=0, (4.8)

where Q,. is also unknown, and to be determined.
By suitable combination of Eqs. (4.1) and (4.4)-

(4.8) and some manipulation using the laws of dif-
ferentiation, one can write

R=-Bi(q( —TSV„i —qi+~ikiik- V„krr
—j„8—V„k&ik- ppv„, )

-(q, /T)B;T+(uk- V„,)B(&, +(p, —B)B;j„
-(II,k+ k;)BkV„, —V„;(SB(T+ps(le) . (4.9)

The last piece of Eq. (4.9) may be rewritten, using
Eqs. (4.2) and (4.3), as

V„,(SB,T+ps—, p)= B,(PV„,)+PB,V„,+V„,~„B,
+t()' Q. V +p TI 8. '

nick i ' nk ni ' nk iJnk (4 10)

shown in Sec. II, V, is generated by a gauge trans-
formation, and cannot properly be considered to
change under a.Galilean "boost." Therefore a re-
derivation of the hydrodynamics is required. The
derivation is given in some detail because it con-
tains some simple but essential steps which per-
mit the full nonlinear equations of hydrodynamics
to be derived. By contrast, Ref. 1 derives only
the linearized equations.

The derivation begins by writing down the energy-
density differential, the energy density, and the
associated Gibbs-Duhem relation. To conform with
the usual notation in hydrodynamics, in this sec-
tion we let p be the mass density, and g and j,
be momentum densities. Then

de = TdS+ &,kdi()(k+ Iidp+ V„' dg+ j, dV» (4.1)

e=TS —P+Xiku)ik+ pp+V g+j V, , (4.2)

0='SdT- dP+se, d&,„+pdp, +g dV +V dj

(4.3)

Note that one sometimes see h for our j,." P is
the pressure.

The derivation of the hydrodynamic equations
of a superfluid solid is accompiished by: (i)
writing down mass and momentum conservation,
an equation for superf low, and an equation express-
ing the law of increase of entropy
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The third and fifth terms on the right-hand side of Eq.
(4. 10)alsomayberewritten. Making use of the
property that 8««»»«»= 8—«(9J««») =9&w«», and of the laws
of differentiation, the third term can be x'ewritten

V.««»'«»9«~«» = 9«(V»«~«»~«» —~«»V.««»'»»)+ V.p'«»8«~«»

+ (X»»«» «» ~»»~«» 6»»)9»V„» .

(4.11)

Similarly, use of the propex ty that e,V,~
= 8~V,&,

and of the laws of differentiation, permits the fifth
term to be rewritten

V.«V.»'«j. »
= '«V. » V.»j.» -&.«V.»v, »)+ V,»v.»8»j, »

"{V.«j.»- j»V.«6«»)9»V.

Note that E«ls. (4.11) and (4.12) are essential to the
nonlinea, r hydrodynamics. Combination of Eqs.
(4.9)- (4.12) gives

R = 9.{—q« q.——[{Ts—P+ ««p+ &«»«»„+j»V„}&«»+ri„,]V„,. + («»»- V„,+ V„,«»'»)&«»- {8 V„—»V»»)j„j.
-(q«/T)8, T+(6,—V„„+V„,~,„)9,&„+(«» 8+—V„„V„)9,j„
-[II« —(+- X «« —j,V )8»»+X «

—V„„g»- V «j -X„««»»«&JB„V„». (4.13}

Since the five terms on the right-hand side of
E«I. (4.13}are independent, and R&0, the first
term (which can have either sign) must be zero.
The other terms must be such that R&0, Thus we
have

'«»=-"«»- [(&-~«»«»»»-f'. »V, »}5«»

—~»«+ V.»a+ V„j»+~»»«»;»J

« = »»«»9-»T »9-»h» (4.14)
~ jk)haft fft ff l ~i% l ~ail & (4.16)

d, —= V„» —u» —V„«m»« =-(»»/T)8» T- P«»8»&»»

(4.15)

q'=- 8- (««+ V„V„,) = $„9,-V„, —}Is,j„. {4.17)

The first term of E«l. (4.13) yields, upon use of
E»ls. (4.15)-(4.17):

Q =q +(»'««P)V. +[ ~,+V. g, +V„j„+~„„+„]V.+d,~,+(««+g')j„.

=[TSV„+pj ]+[q«+d A. „+4j «+ «V„„j +[V,g +V j «
—X,. +X«,.«0 &jv„ (4.18)

The second bracket of E»l. (4.18) contains the dissi-
pative contributions, the third bracket contains the
nonlinear flow and the stress terms, and the first
bracket contains the usual terms for superf low
without dissipation and with the neglect of nonlinear
flow and crystalline stxess. As discussed in Ref.
1, the ~, &, P, q, f, and y are kinetic coefficients:
v is a thermal conductivity; q, f, and g are vis-
cosities; and n and P describe diffusion and ther-
modiffusion of defects. '~ Fleming and Cohen have
derived the (linearized) hydrodynamics for ordin-
ary solids, where & and p do not appear. "

To complete our characterization of the full non-
linear hydxodynamics of a superfluid solid, we
~v've the dissipation function:

R =-(q«/T)8, T —d»9»A«»- 4'9«j,
«
—»»«»9.»V„«. (4.19)

The requirement that 8 &0 imposes certain inequal-
ities upon the kinetic coefficients; for example,
the diagonal elements of x are positive. We have
not investigated these inequalities any further.

The significance of the derivation is twofold.
First, the full nonlinear hydrodynamics has been
obtaU1ed, permitting the treatment of oscillations in

We will restrict our considerations to unstrained
crystals, and treat only the linearized theory for
that case. As a further simplification, dissipation
will be neglected. E»luations (4.4)-(4.7) then be-
come

p+ 9)g,.= 0,
e

k

{5.1)

(5.2)

crystals subject to a finite static strain. Second,
the superfluid velocity V, is driven by gradients in
the chemical potential per unit mass ««[thus vali-
dating the identification in E»l. (2.6)]. 1'his is the
usual result, despite the fact that V, no longer has
the pxoperty of being a Galilean velocity, Note that
one can write g,. = p', ~ V,~+ p",„V„„,where V™,„=-V,~
+ V„~ a.nd g~=p~, ~- p', ~. This is the usual form, but
only in the limit of zero crystallinity is V„driven
by B~p„,

In Sec. V we shall study some of the implications
of the hydrodynamic equations.
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Vsk+ BkI" =0
y

S+SB]V„l=0,
where

al = p]k V.k+ pV. ~

lk $k kl

(5.3)

(5.4)

(5.5)

(5.6}

(5.7}

+ 0~k + -1$ «k ~ 1 B&hk

p 20fl g

s0= —& )sg+qf qk plk &slBp

(5.17)

and the following relationships hold, treating p, S,
and u, as the independent variables:

~p, Bp, , Bp,
+qfqkp&k B

+p SBS ~fl p B jnl.P Wf

B p, =—B p+ —B $+ B.gg
Bp, Bp,

fk~
fk

B O' — B p+ BS+ BSU
B«k B«k
Bp BS nfl

(5.8)

(5.9)

(5.18)

Introducing the notation [(5.17)],.~, , and [(5.18)],,
for the terms within the large brackets in Eqs.
(5.17) and (5.18), these equations can finally be
put in the form

In Eqs. (5.8) and (5.9) the partial derivatives are
understood to be taken with the appropriate vari-
ables held constant.

Let us now consider al.l varying quantities to do
so with a dependence e'~ ~ '"', so that the ac re-
sponse of the system may be studied. We take
p, S, V„, and V„,. as the independent variables,
so that Eqs. (5.1) and (5.4) may immediately be
used to eliminate p' and S' (where the primes de-
note the deviation from equilibrium) from Eqs.
(5.2) and (5.3). Noting that

p =(q&/&)gi

S' = (q, /~)S V„, ,

Jq=-(q)/ )v„q,

(5.10)

(5.11)

(5.12)

and Eq. (5.3) can be rewritten as

(5.13)

(dV =q — g +——SV — —V
p. q. Bp. qf qf

sk k Bp (g) f B$ nf . Bgg + nl

(5.14)

Equations (5.13) and (5.14) can be handled relative-
ly easily be employing Eq. (5.5) to eliminate g„
and by considering

which follow from Eqs. (5.1), (5.4), and (5.6),
Eq. (5.2) can be rewritten

BO'lk
~q B0'lk qf B+4k qf-~g =q ~@+ —SV — —V

Bp ~ BS ~ nf B~ ~ nl
fl

Bp

+(~'6;, + q, q, [(5.17)],,„,)j„„ (5.19)

0=(~'6;i+q, qa[(5»)];;sr'fj. i (5.21)

This is what should occur for an ordinary solid.
Second, note that in the limit of zero crystallinity,
the longitudinal elastic wave becomes ordinary
sound.

Our special case will be that of a cubic crystal
with q, j„and j„along the [100] direction. This
is a longitudinal motion, which a superfluid can be
expected to engage in. Noting that p', ,= p'5, k in a
cubic crystal, and letting

ll80'

Bp
(5.22)

(5.23)

0= —(d'5, f+qfq P',.„—g,f qfq P', 5.18 f, j„,.t Bp sg

(5.20)
Equations (5.19}and (5.20) are still quite com-

plicated. We will not attempt to solve them in full
generality. Rather, we will consider a special
case which should illuminate the broad features of
their solutions. First, however, note that for T
& T, ( p';~ = 0) Eq. (5.20) implies that j„=0, so that
Eq. (5.19) has the elastic waves given by the solu-
tions of

s
~sf Plk vsky

j.; =- pV. ]

(5.15)

(5.16)

SBP= '—"=c'
40& (5.24)

as the independent variables. Multiplying Eq.
(5.14) by p*,.~, and eliminating g,. from Eqs. (5.13)
and (5.14) we find that

6 = p' [(5.18)]„=p' —+ p 'S——p
'

11

(5.25)
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Eqs. (5.19) and (5.20) become

o = (~'/q'+ ~)j.+ (~'/q'+(3)i. ,

0= (- (u'/q'+r) j,+ Bj„.

The wave velocities c = w/q are thus given by

(5.26)

(5.27)

c' = 0 [(r —5 —JB) + [(r —5 P—)' 4-(« —IBr)]""}.

(5.28)

Note that P is the largest term in this equation,
and that 6 may be rewritten, using the chain rule
for differentiation, as

~= p —'" 1-p 'S —,
'P

S, w~k ik

Bp
+p .-„)..

—= C' 5 (5.29)

This is a small quantity for two reasons: (i) the
bracket 6 is small because the third term will
cancel the first term in a perfect crystal, and be-
cause the second term will be rather small at the
low temperatures of interest here; (ii) p' may be
much less than p (in Ref. 5 we estimated that 0.05
~ p'/p & 0.20 in solid 'He at T =0, for an imaginary
fcc phase). The quantity o. can be rewritten

S w P S w P S w I S w P S w S

= —p 1+p ' Bp —p-'8 — = —,c,',5. (5.30)
Bp p

11 S, u

Here we have used the rules of partial differentia-
tion, Eq. (4.3), and the Maxwell relations (BA»/
Bu), .=-(BPIB~„)... (»IBp)&, = (Bp/»-)„
Equation (5.28) can thus be written, for small 6,
as

5(1 —Bp/p')C40
4 40 C2 C2 t

10 40
(5.31)

(5.32)

Equation (5.31) describes a type of fourth sound, and
Eq. (5.32) describes an ordinary longitudinal elastic
wave. Note that Eq. (5.32) differs from the result
of Ref. 1. This is in part because Ref. 1 takes j„,
—= ( PB;, —p';, )V„„which implies that the effective
crystal mass is decrea. sed by the factor (6,» —p',.~/
p). We believe that such a j„,. is incorrect. Equa-
tion (5.31) is essentially in agreement with Ref. 1,
which treated only the T = 0 case.

From Eq. (5.27) we can find the ratios of j, to j„.
They are

o = [(j./j .), + 1]j."'+[(j,lj.),+ 1]j."',
so use of Eqs. (5.33) and (5.34) gives

(5.37)

in tha, t case. As T- T„C'„-0and ( p/p')(C«&/C'„)'
-0, so j„"'/j„"'-0 in that case. Thus, generation
of fourth sound by a transducer which produces
only V„appears very unlikely. Since V, is deter-
mined by a gauge transformation (and thus V, is
unaffected by the Galilean "boost" that enables a
transducer to produce V„), such a transducer is
probably a typical one. Further, since, when Bp/
Bw„= —p (as for a, perfect crystal, or in the limit
of fluidlike behavior), both 6 and a vary as BT/Bp
(essentially the thermal-expansion coefficient),
this case is the analog of the ordinary transducer
against an ordinary superfluid (where, analogous-
ly, very little second sound is generated).

Case 2. We consider here a heater which pro-
duces a temperature variation T' but no momentum
g. Then, following Khalatnikov "

2 2 -1
(

' /' )
C10 C40 1 P

40
(5.33)

j(4) ~ C2
n 10.(1) ——

C4o

-1 —-1
1 ——, +1p

p
(5.38)

(j,/j„), = Bc'„/(c'„-c,',). (5.34)
In terms of the ratio of the time-averaged energy
density E, where"

These relations are relevant to the generation
of fourth sound. We will consider two hypothetical
generators. "

Case Z. If a transducer can produce V„WO but
V, =O, then

E= p'V,'+ pV„',

we have

4~ s +1 n

(5.39)

(5.40)

o = (j.lj.),j."'+ (j.lj.).j „"'.
Hence, use of Eqs. (5.33) and (5.34) gives

(5.35)
Thus the ratio of the time-averaged intensities I is

j (1) ps C C2 (5.36)
~I C,„E, (p Bp/Bp) p

C10E1 C1o
(5.41)

As T-O, 5-0 for a perfect crystal, so j„'4'/j„"'-0 If p p, Bp/=Bc'„at all T, then
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(5.42)

If p'/p~0. 1 at T=O, then T,/1, =3 at T=O. This
is the least-favorable case for the generation of
fourth sound.

We thus conclude that a heater, rather than a
transducer, would be the better fourth-sound gen-
erator. Similarly, one can expect a thermometer
to be a better fourth-sound detector. This assumes
that, during a period of the heater's oscillation,
collisions occur rapidly enough for the exeitations
(i.e. , phonons) to equilibrate to the lattice Su. ch
an assumption is questionable, since it is well-
known that at low temperatures (e.g. , T& 0.5 K)
heaters in He II tend to produce a spray of ballistic
phonons rather than a heat pulse. " Therefore the
generation of fourth sound by this method is quite
uncertain.

There is another reason to be uncertain about
the relevance of the above calculation. It was
assumed, not proved, that the heater puts all of
its energy into just two modes. This is by no
means obvious. Indeed, there are reasons for
believing this is not the case. Specifically, a
heater may merely produce a thermal wave which
does not propagate. If we set p', V„;, u;, and 6

equal to zero in the equations of motion, then one
has thermal diffusion from S+ B;(q,/T) = 0, pro-
vided that (Bo„/BS)&„—- 0 and (Bp, /BS)~ = 0. These
conditions are probably satisfied at very low tem-
peratures. However, at higher temperatures it is
not clear that only thermal diffusion occurs, in
which case a heater might also produce apprecia-
ble amounts of fourth sound. Also note that the
presence of impurities or finite strain might cause
some mode mixing, thus improving the coupling of
a heater to the fourth-sound mode. (The impurity
concentration e, like the temperature, is a scalar.
Strain squared is also a scalar. One can envision
two fourth-sound modes and two diffusion modes,
each involving p, T, 8, and c.} Further, nonlinear
effects in pulse amplitudes might cause a heater
or a transducer to generate fourth sound.

Owing to the significance of observing superfluid-
ity jn a solid, it is probably most prudent to take
the position that experiments can best answer the
question of fourth-sound generation.

We will close this section with an inquiry on how
one might obtain a closer analog of second sound
in an ordinary superfluid. This can be done by
considering q, V„, and V, to be along [100] and
requiring that g; = 0 for second sound. This im-
plies, by Eqs. (5.1) and (5.2) that both p and
o„(=A.» —P) are constants. In an ordinary super-
fluid ~» = 0, so these conditions are equivalent
(if the thermal expansion coefficient is negligible}.
However, in a superfluid solid ~yy depends upon

B,fl, ( ilaw, ), so that if n= V„, then the motion of V„
implied by Eq. (5.4) will prevent o» from being a
constant. The way to make these restrictions con-
sistent is to relax the condition i = V„by permitting
i = 0 yet V„w 0. Although these conditions may
seem arbitrary, they in fact describe the situation
for second sound in an ordinary solid. There, one
observes second sound by operating at a frequency
e such that it is much less than the collision fre-
quency &o„ for normal processes (so that the pho-
nons can equilibrate with respect to one another),
yet much greater than the collision frequency ~~
for umklapp processes (so that the phonons do not
equilibrate to the lattice): &u„«&u «&u„.

Before solving Eqs. (5.3) and (5.4) subject to
g; = 0, we note that g& is no longer given by
@=p';„V,~+pV„;. Returning to Eq. (2. 12), butper-
mitting V„; 4 0, one finds that

8 n
gg =Pie VSI +Psh Vn~ )

where

(5.43)

(5.44)

(Only in the limit of zero crystallinity will one
have p';~+ p";„=p5;~. ) Then Eqs. (5.3) and (5.4) be-
come

Bp,—eV +q —8'=0
S

P

—(u$'+ SqV„= 0 .

(5.45)

(5.46)

Imposing g; = 0 and using Eq. (5.43), one can solve
Eqs. (5.45) and (5.46) to find

p' Bp. p' S' BT
q' p" BS ~

p" p 85
(5.47)

VI. DISCUSSION AND SUMMARY

At this point it would do well to provide some
justification for the conceptual and calculational
labor that has been expended, in this paper and in
others, on the speculation that solids might dis-
play superfluidity. Aside from the intrinsic in-

In the limit of zero crystallinity, this gives the
second-sound velocity of an ordinary superfluid.

To summarize, if ~U«e«co„one will obtain
second sound, whereas if ~« ~~ one will obtain
fourth sound. Note that as ~~- 0 (the limit of zero
crystallinity) the fourth-sound regime becomes
vanishingly small, and only second sound can prop-
agate. Since the limit of zero crystallinity cor-
responds to an ordinary superfluid, this is the ex-
pected result.



terest in finding another superfluid, indeed a
wholly nem type of superfluid, the discovery of
superfluidity in solid 'He mould provide completely
nem ground for testing and extending our under-
standing of the quantum theory of condensed matter.
Most particularly, experimental study of the super-
fluid density would provide detailed information
about atomic localization and about the excitations
in the system. Note that, by doping with 'He, by
freezing in vacancies, and by straining the crystal,
one has a number of mays to provide variations on
the theme in question.

Qne theoretical objection has been made to the
possibility of superfluidity in solid He. This ob-
jection, alluded to in Sec. I, mas made by Fer-
nandez and Puma after they estimated the super-
fluid fraction of hcp 'He to lie between 0.2 and 0.4
at T=O. ' It goes as folloms: for a ground state
wave function 4, made up of a properly symme-
trized set of single-particle wave functions Q;(x„)
(with the ath particle localized about the ith site)
multiplied by a Jastrom function 4'~" one
can show, under a number of assumptions,
that the system does not possess off-diag-
onal long-range order (ODLBO)" and there-
fore cannot be a superfluid. Supporting their
objection is the work of Matsuda and Tsuneto, "
which considers the case 4+= 1 (so that hard-core
correlations are neglected), finding no ODLRO for
nearest-neighbor overlap only of the Q, (x„). It
appears reasonable to assume that the 4 ~W 1 wave
function of Bef. 4 should possess no more QDLBQ
than the 4'~=1 wave function of Ref. 21, since the
4 4 1 mave function is more restricted. If this
assumption is correct, then by Bef. 21 the 4'~e 1
mave function of Bef. 4 should possess no QDLBQ.
However, such a wave function might yield QDLBQ
if there mere vacancies and interstitials.

On the other hand, the following point cannot be
too greatly emphasized: the structure of 0, is not
known. Indeed, recently Lomy and Woo" have
studied the ground-state properties of solid 'He
with a 0, made up of a product of identical, de-
localized but nonuniform, single-particle wave
functions multiplied by a Jastrom function, ob-
taining results comparable to those obtained with
the usual 0,. By letting the crystallinity go to
zero, one obtains a 4, appropriate to liquid 'He,
which is a superfluid. Since the wave functions go
smoothly into one another (unlike the case con-
sidered by Ref. 4), one can expect, the superfluid
densities to go smoothly into one another. This
gives one reason to believe that the calculations
of Befs. 4 and 5 are meaningful.

Because of the uncertainty about the structure
of 4„ I believe that experimental searches for
superfluidity (either by dc or ac techniques) should

not be impeded by the pessimistic forecast of Bef,
4. However, there are a number of other pro-
visos to keep in mind during the design and inter-
pretation of experiments designed to detect super-
fluidity in solids. We will now consider these
provisos, based primarily on the results of Bef. 5
and the present work.

A number of questions immediately come to
mind, the first of mhich concerns the value of T, .
Since we have performed no numerical calculations
of p'(T), this can at best be estimated. Simple
arguments, however, are of little help. Consider
the following. If we accept that p'/pa= 0.1 at T= 0,
one might expect that it should be easier to destroy
the smaller superfluid fraction of a solid than to
do so in a liquid. Qn the other hand, fourth-sound
cavities in He 1I have p'/p, & 1 at T= 0, yet their
T, is nearly the same as that of open chambers of
He II, Homever, this latter argument can be
turned around: if cavity pore dimensions are so
small that size effects matter, then the value of
T, is less than in the bulk; thus, if the solid is
considered to be a fourth-sound chamber with
atom-sized pore dimensions, one can expect a
value of T, much less than that in bulk liquid
(which is in coexistence with the solid). Clearly,
such qualitative reasoning is most uncertain in
value. It is probably best, therefore, to consider
the theory of p'(T) as delineated by Eqs. (2.33),
(2.14), and (2.30).

The first term in Eq. (2.33) equals at T= 0 the
average density p, . In the limit of zero crystal-
linity, it is the only term that appears. The other
terms decrease the value of p' from p, . At finite.
T, the first term decreases, behaving much as
p' does in an ordinary superfluid [providing that
the third term in Eq. (2.14) can be neglected]. It
is not clear hom the other terms behave, owing to
their complexity. If the flow pattern 7' of Eq.
(2.32) remains nearly independent of T, then only
the temperature dependence of p, o [as given by
Eq. (2.14)] is needed. Unfortunately, without a
knowledge of the properties of the exeitations, this
temperature dependence is unknown. Assuming
that the flow pattern V' has no temperature de-
pendence, this means that p'(T) —p'(0) comes only
from the first term in Eq. (2.33), so that only 1(Pq

normal fiuid [as described by the first term ill

Eq. (2.33)] is needed to destroy superfluidity, if
p'/p, =0.1 at T =0. Since transverse phonons
dominate the thermal properties of the system,
one might expect them to provide the dominant
component of the "normal fluid. " However, if one
works by analogy to He II, where rotons produce
the dominant contribution to p„, then it is zone-
edge phonons that must be considered. Since these
have a higher energy than do rotons, and since p,
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depends exponentially on their energy, it would ap-
pear harder to destroy superfluidity in solid 4He than
in the liquid, even if only 10%"normal fluid" will des-
troy superfluidity. Of course, thethirdterm in Eq.
(2.14) has not been discussed, and this might have a
large effect. Nevertheless, without detailed cal-
culations, I cannot help but conclude that T, in
solid He might well be as large as in the liquid
(i.e., T, -1'K}.

One can then ask why there has so far been no
experimental manifestation of this superfluidity if
T, is indeed so high. The results of Secs. IV and

V help to explain this —the system has no anoma-
lous thermal transport properties [no counterflow

by Eq. (2.20)], it is difficult to generate fourth
sound by accident, and the elastic waves are
hardly at all affected by the presence of the super-
Quid. Nevertheless, one is still bothered by the
absence of any thermal anomalies to indicate a
transition from normal to superfluid phase. I can
only speculate about why this could be so: the ef-
fect is there, but subtle and not easily observed
unless very careful measurements are made; the
presence of 'He impurities causes attenuation of
the critical fluctuations which produce the critical
phenomena; the presence of a crystal lattice
somehow eliminates the phenomena associated with
the X transition in liquid 4He.

From the considerations of Sec. V we conclude
that, irrespective of the value of T„ac measure-
ments in a pure, unstrained, perfect crystal are
not likely to yield evidence of superfluidity. In

the case of elastic waves, the shift in velocity
[see Eq. (5.32)] is likely to be very small. " (We
estimate 5C/C = 10 ~ for C2~,/C'„= 10 ', and
'5=10 ' for 0. 1%%d vacancies. ) In the case of fourth
sound, it is doubtful that available sample dimen-
sions are large enough to enable a spray of bal-
listic phonons (generated by a heater} to develop
into a heat pulse. Further, if a heat pulse does
develop, it is not clear that fourth sound will be
generated. Also, fourth sound must be distin-
guished from second sound, a phenomenon which
has already been observed in solid ~He. '~ How-

ever, it should be noted that impure, strained,
and imperfect crystals may behave differently.
The impurities, strains, and imperfections might
aid lattice equilibration, thus enabling heat pulses
to develop, Strain and impurities might aid the

generation of fourth sound or might make the
shifts in the elastic wave velocities more pro-
nounced. Other, unforeseen, effects might de-
velop.

Another approach is to make dc measurements,
as suggested by Leggett. ' Here, one looks for a
nonclassical moment of inertia (NCMI) by mea-
suring the ratio I/e, where I is the angular mo-
mentum and ~ is the angular velocity. If the
superfluid can be brought into rotation, this ap™
pears to be the most direct and unambiguous
method to detect superfluidity in solids. However,
because there is no counterflow, it is not clear
that the superfluid can easily be brought into ro-
tation. For example, stopping a rotating bucket
of superfluid liquid leaves the superfluid in ro-
tation. However, stopping a rotating bucket of
superfluid solid does not necessarily leave the
superfluid in rotation because it probably was not
initially in rotation when the system was first
prepared. Consider the following. First, observe
that by analogy with Eq. (2.20), the total angular
momentum should be given by I, =I&a„+I,&u, (where
1 is the classical moment of inertia, v„ is the fre-
quency of lattice rotation, I, is the superfluid mo-
ment of inertia, and ~, is the frequency of super-
fluid rotation with respect to the lattice). Now

consider the system to be rotating at T&T, .
There is no reason to expect a co, c 0 to develop on
passing to T& T, because I., I„and ~„do not change
on passing to T&T,. Hence e, remains zero. Gn.

the other hand, if the system is rapidly brought to
a stop (or to a start), there exists the possibility
that nonequilibrium processes can occur which
will bring the superfluid into rotation. Therefore
rapid angular acceleration or deceleration would

appear to provide the best technique for bringing
the superfluid into rotation, after which its angular
momentum can be detected (e.g. , by heating to
T&T,}.
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