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The theory of the angularly dependent photoemission from a semi-infinite crystal as a one-step process is
briefly reviewed, starting from the formulas of Adawi and using surface-matched wave functions in both upper
and lower states and absorption in the upper state. We derive conditions under which the three-step model
can be justified. The angle-resolved photoemission from Ag(l11) is calculated from the three-step formula
with transmission factors and matrix elements obtained from a self-consistent potential for Ag, and compared
with experimental data of Gustafsson et al. The transmission factor has a small effect, amounting to a nearly
constant factor of 0.55 at all angles over the energies of interest; the dependence on the angle of incidence of
the radiation is much stronger and is in agreement with observation.

I. INTRODUCTION

In the last few years there has been a growing
interest in the study of the directional dependence
of ultraviolet photoemission from single-crystal
surfaces. It has been shown that the emission de-
pends on the polarization of the light,'~* that it
varies with the polar®~® and azimuthal? angles of
observation, and that the emission can be differ-
ent from different faces of the same crystal.”® In
the most recent work it has been possible to map
out the electron intensity as a function of angle in
some detail.®"

These asymmetries arise from the variation in
the electronic states involved in the phototransi-
tion as the geometry of the experiment is changed.
In principle one could hope to examine the bands
of the crystal throughout the Brillouin zone'*!® in
the same manner as the phonon dispersion is map-~
ped in inelastic-neutron-scattering experiments.
The electronic case is clearly more difficult be-
cause there is both a lower and an upper electron-
ic state which are probed rather than the single
phonon in the neutron experiment. Furthermore,
the matrix element which describes the interaction
of light with an electronic system is more compli-
cated than the simple pseudopotential interaction
of the phonon with the neutron.

Contributions from surface states also occur in
the observed spectra,'®!” on the one hand making
interpretation of the experiment more complicated,
and on the other hand increasing the variety of in-
formation which can be obtained. At the energies
at which the emitted electrons are collected, only
those electrons from a few outer layers of the
crystal are likely to reach the vacuum outside the
surface without losing a very large part of their
energy by plasmon or electron-hole pair excita-
tion. Thus the surface states of the crystal, which
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are normally localized in these layers, are found
to contribute to a degree comparable to the bulk
states. It is not yet clear how the altered environ-
ment in this narrow region (it can be as small as
three atom layers) near the surface can modify the
contribution which arises from the bulk states of
the crystal. Some of the experimentally observed
structure presently attributed to surface states
may in fact arise in this way. The work reported
here was undertaken to elucidate some of the ef-
fects noted above, particularly the transmission
of the electrons from the periodic potential of the
crystal into vacuum.

We have chosen the (111) face of silver for study
because the angular photoemission has been mea-
sured.>® The total photoemission as a function of
crystal face and photon energy® has also been mea-
sured for silver. At the low photon energy of 7.8
eV, studied here because the angle-dependent
measurements were made at that energy, only s
and p bands need be considered in the description
of the data. In fact, many of the results can be
explained quite successfully by a simple nearly-
free-electron model using only two bands. The
simple model is not able to explain all features of
the data, particularly the existence of photoemis-
sion for light incident normal to the surface, and
the work reported here gives this intensity prop-
erly. Our results give a better fit to the experi-
mental data than the previous work of Schaich,'®
probably because we have used a self-consistent
potential and an accurate band-structure proce-
dure rather than a pseudopotential approach for
silver. We use a Korringa-Kohn-Rostoker-type
band method and matrix elements formed from the
resulting wave functions to describe the transition.
The photoemission is calculated as a function of
angle by formulas like the usual three-step mod-
el,'® which are obtained in a natural way from the
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single-step formulation of the problem due to
Adawi® and Mahan,?! with no error in the reduction
when the conditions derived for the direct transi-
tion model are satisfied. The calculation we give
of the transmission coefficient through the sur-
face, which comprises the third step, has not been
done previously using an accurate potential, and is
therefore of particular interest. Assuming specu-
lar matching in the surface, we obtain a transmis-
sion coefficient which is essentially constant in en-
ergy and has a value of about 0.55 under those con-
ditions where transmission is permitted by the
simple step barrier model.

The experimental data of Gustafsson, Nilsson
and Wallden® contain a 40% component that does
not show the angular variation which follows from
the direct-transition condition resulting from our
theory. This component must arise from some
type of surface photoemission. It cannot arise
from scattering of bulk electrons in the neighbor-
hood of the surface because it is found to persist
even when there are no bulk electrons.?? Feur-
bacher and Fitton” also found that such emission
associated with the surface is necessary to explain
much of their data on tungsten. The explanation of
the data of Nilsson and Eastman® probably also
requires the further assumption that there was ad-
ditional scattering in the surface of their samples.

II. REDUCTION OF THE ONE-STEP FORMULA
TO THE THREE-STEP MODEL

Adawi has derived a formal expression for the
photoemission from the surface of a crystalline
solid using a general formulation of scattering
theory.?® He finds that the current density pro-
portional to the light intensity, at a final energy
Ef =E! 17w, in a solid angle dQ is given in Gaus-
sian units by®

dl, = —(emk,/4n°1%) dQ | M,|* , )
with

M, = (¥E*H o)

H'=(-ieli/mw)8(¥) -V ,

&(F,1) =2 Re[E(Pe™*!]

where & is the wave vector of the outgoing elec-
tron, g(f) is the electric field vector, w the angu-
lar frequency of the light wave, 7 is Planck’s con-
stant over 27, c¢ is the velocity of light, and e and
m are the charge and mass of the electron, re-
spectively. The matrix element M, contains the
vth initial wave function q),", at an energy E* below
the Fermi level, and ¥X* the complex conjugate
of a wave function which would describe the low-
energy electron diffraction of an electron coming

from the direction of the photoemission detector
at the energy E! +hw. The final wave ¥%* is nor-
malized to one electron per unit volume in the out-
going wave in vacuum, i.e., the outwave is a plane
wave of unit amplitude, and the initial wave ¢! is
normalized to the volume of the crystal V. We
have changed the arrangement of numerical fac-
tors slightly from Adawi’s paper. Adawi actually
assumed a model in which the crystal potential de-
pends only on the distance into the crystal, but his
formalism remains unchanged when this assump-
tion is dropped.

The wave functions in this formula all have the
same reduced wave vector in the plane of the sur-
face k, = (k, ky), which is determined by the angle
of observation. An initial state ¢! in photoemis-
sion is a wave function consisting of a propagating
Bloch wave moving toward the surface plus the re-
flected Bloch waves, propagating and evanescent,
necessary to match this incident wave to evanes-
cent plane waves in vacuum decreasing away from
the surface. There may be a number of such ini-
tial states which give contributions to the photo-
emission. We do not include possible surface
states as initial states in this work, although this
could be done.

The formulation of Adawi describes the photo-
emission from a single initial state. For the pho-
toemission considered here, there are many such
initial states which are extended over the whole
crystal. As we shall see, only the part of each
wave function near the surface actually contributes
to the emission. The proper normalization of this
initial state can be obtained by requiring that a
standing initial-state Bloch wave between the front
and back surfaces of the crystal be normalized to
the crystal volume. The density of states is then
obtained by counting these same states.?* It is
clearly possible to restrict the integration in the
matrix element to the volume in a cylinder under
a single unit mesh of the surface, provided we
multiply the resulting matrix element by the num-
ber of meshes in the surface of the crystal. If we
change the normalization of the initial wave func-
tions to this same volume, we must multiply the
resulting matrix element by the reciprocal square
root of the same factor so that this factor occurs
in the final full expression to the first power. We
need only consider initial waves with components
ky, Ry, of reduced k in the plane of the surface
which match up with the corresponding k& compon-
ents of the final state, but there will be a large
number of states closely spaced in their values of
k, perpendicular to the surface which fall within
the range E,E +dE of initial energies. The
number of states with k, falling within the re-
quired range is 2DdE/(ndE,/dk,), where D is the
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thickness of the crystal, and E, is the band energy
of the vth incident Bloch wave. Here a factor of 2
arises from summing spin states. By making the
further change of the normalization of the initial
states to a unit cell of the bulk rather than a cylin-
der through the crystal under a surface mesh, we
can eliminate the factor D occurring in this form-
ula in favor of a factor of “a,” the thickness of a
unit cell measured perpendicular to the surface.
Hence it is convenient to introduce a new initial
wave function normalized to 1 over an “average”
unit cell, which is related to ¢} by

¥, =(V/Aa) %0,

where again V is the volume of the crystal, and
Aa is the volume of a unit cell. These changes give

2
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and the integration is over a column of area A,
depth D. Here S is the area of the surface, A is
the area of a unit mesh in this surface, and the v
summation is over initial states with incident
Bloch waves with group velocities v,,.

Following Mahan,?' we can transform this form-
ula to an expression representing the usual three-
step model of photoemission when the electron
mean free path in the upper state is sufficiently
long. We shall review this transformation here
because we wish to examine the conditions under
which it is valid. A more complete treatment of
the theory of photoemission has been given by
Feibelman and Eastman.?®

We split up the integration in the matrix element
into the sum of an integral over the surface region
of the crystal and an integral over the column of
undisturbed bulk cells underneath. The integration
over the surface region will include a contribution
from the region of the potential step between crys-
tal and vacuum, from any adsorption layers, and
from any greatly disturbed layers of substrate
atoms. The integral over the bulk region under-
neath can be split into integrals over an infinite
number of cells of identical structure. In the bulk
of the crystal both the lower and upper wave func-
tions of the transition, ¥* and ¥* can be repre-
sented in terms of propagating and evanescent
Bloch waves in the form

‘IIL = Zﬁ;bn(}’ —En)Ef) ’
n

‘1’1{/ = ;Bﬁmbm(i En,E‘) .

Vy =
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The summation in the expression for ¥, the com-
plex conjugate of the final state, includes only
Bloch waves carrying flux into the crystal as in the
low-energy-electron-diffraction (LEED) experi-
ment, but the expression for the initial state con-
tains waves carrying flux both toward and away
from the surface. Note that when k,, k,, and the
energy E of a Bloch wave in a given band are
known, k&, is determined, but there may be differ-
ent states from different bands at this energy with
the same &, and k&, but differing &, values. We la-
bel these different propagating waves, along with
the evanescent waves which occur for the same

k., R, and energy, by the m and n indices, and in-
clude them all in the sumas. Complex k,’s arise

for evanescent waves and will occur more gener-
ally when inelastic scattering effects are included
below. Each propagating or evanescent Bloch wave
satisfies the relation

by(x t83x,Y A3y, 2 +a32,E”,E)
=expli(ka,y +hyaq, +ka)lby (T, K ,E) , (4)

where 3, is a lattice vector into the crystal form-
ing a primitive set with two lattice vectors in the
plane of the surface, and a,, =a, the cell thickness
used in (2).

In finding the wave functions in the solid, partic-
ularly that of the upper state, we consider a
Schrddinger equation which includes an imaginary
contribution to the potential and find solutions for
real &k, k,, and E but complex k,, as has been done
in low energy electron diffraction studies.?®"?° It
can be verified that the formalism of Adawi is still
valid when this is done. When this imaginary term
is present, the difference between a propagating
Bloch wave an an evanescent Bloch wave is not
sharp, but the &, value of a propagating wave is
nearly real with a small imaginary part resulting
from inelastic scattering, whereas an evanescent
wave has an imaginary part both from inelastic
scattering and from a band gap which localizes it
more strongly to the neighborhood of the surface.
The amplitude of the light wave has the z depen-
dence

E(F) =802, (5)

where q, is the absorption constant (of the inten-
sity). We have assumed here that the light has a
long wavelength compared to the electron wave-
lengths.

Using (3)—(5) in (2), the contributions of the
cells in the successive layers of the bulk below
the surface form the terms of a geometrical ser-
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ies, which may be summed to give

Py & kaS a0 dE
213 mwi A
1 . . 2
XS = M5+ Y Bl BhAmme M B,
v vV mn
My = [ wr@emos 28, Fu@ dr (6)
SL

a .
M,’,’,,,=f e~%0%/2 gy fbm(f)go-Vb,,(i')dxdy ,
‘A

o
Apn =11 —exp[i(kl, + k% + 3iay)al} ™" .

Here the second integral is taken over a typical
cell in the bulk, assumed to begin a distance d
down from the surface, and first integration is
over SL, the volume under a unit mesh of the sur-
face containing the surface layer down to a dis-
tance d.

Under conditions where the escape depth is not
too short, coherence of the waves excited from
different layers requires that the reduced %, of the
initial and final Bloch waves involved in the pho-
ton-induced transition be at least approximately
opposite. This is really the condition that the k&,
of the final state, understood to be the complex
conjugate of the LEED wave function, be nearly
equal to that of the initial state, i.e., the usual &,
conservation in the three-step model of photo-
emission. Such a condition is usually satisfied by
at most one pair of waves in the double sum in Eq.
(6). As discussed by Mahan, the absolute square
of a typical term of the double sum contains the
factor |A,,|? of the form

|l = 1 = exp(=a/1)
+4 exp(~a/l) sin®(Aka/2)]7" , (7)

where

1/l =Im(k, +k%,) +3a,, Ak=Re(k,+k,) .
Note that the imaginary parts of both k’s give a
positive contribution to I. The expression in Eq.
(7) is plotted in Fig. 1 for several values of a/l,
where we see that this function approaches a &
function in Ak, and thus that k, is conserved, ifl
is greater than about four layers. For transitions
between propagating Bloch states the principal
contribution to ! comes from the mean free path of
the electron in the upper state, and since ! mea-
sures the decay of an amplitude, it is given closely
by 3 the value of the mean free path in the upper
state. The total area under each of the curves
shown in Fig. 1 is 2n/[1 — exp(-2a/1)], so that the
total photoemission increases with I and becomes
proportional to wl/a for large I, as given by

Mahan. In silver the value of [ varies consider-
ably with energy according to simple estimates,*

~ but is always greater than five layers, so that &,

conservation in transitions between Bloch states
must always be closely satisfied. Since different
Bloch waves have different &, values, we may as-
sume that at most one pair of initial and final
Bloch states contributes to the bulk part of the
photoemission in Eq. (6). In fact one can expect to
find k, conserved, and hence a nonzero term only
along a curve in theta, phi solid-angle space. The
spread of the curve in Fig. 1 should be observable
experimentally as a spread in angle about these
curves in angle space given by the directtransition
model. Since the detector in the experiments con-
sidered here collects all waves for which the final
k, is nearly equal to the initial k,, we may use the
integrated area multiplied by the & function &(aka)
for the expression in Eq. (7) as suggested by
Mahan,

27
2~ =
|8 == 1 - exp(-2a/1)

To obtain formulas nearer to those usually given
for the three-step model, this & function can be
replaced by v,0(E* +iw —E?), where v, = 8E ok, is
the group velocity of the final Bloch wave directed
toward the surface. Furthermore, since the inte-
grated area for the usual propagating waves having
large I’s will be much larger than the area for
evanescent waves at the surface which decay ra-
pidly into the crystal, we shall also neglect any
contributions to the photoemission from evanes-

o(aka) . (8)

I
f=
20 (l-e"o/2f +4e0lgin(Aka/2)

0 —

1

w2 T
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FIG. 1. Magnitude of the photoemission as a function

of APa, the deviation from 2, conservation, for various
values of the mean free path Z.
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cent waves. Note that the factor 2n/[1 ~ exp(-2a/
I)] contains and describes the probability that the
electron reach the surface from the point of emis-
sion. No further analysis or approximation is re-
quired to take this process, the second step of the
usual three-step.model, into account.

For a surface that preserves its bulk structure
up to the vacuum, d is nearly equal to zero and
the first term in Eq. (6) will contain only the pho-
toemission from the potential step from vacuum to
crystal discussed by Mitchell®! and Makinson.*®
The square of this term should give a contribution
with a broad slowly varying distribution over
angle, and we shall not consider it further. The
interference between the surface and bulk terms
should modify the observed angle dependence, but
we will not calculate this effect here. For light
normal to the surface the first term and hence also
this interference effect disappears.

Hence we are left with only the contribution from
at most a single pair of initial and final states in
the second term conserving all components of k.
It is shown in the Appendix that when we sum over
all possible initial states v the factor |g},|?/v,
gives the factor 1/v,, for any Bloch wave m which
is normalized to unit volume.?® Hence we shall
make this substitution. This gives

d*I =
T nZmw, [1 - exp(-2a/1))

(9)

The factor | B%|%;, is the flux produced in a LEED
experiment in the time-reversed form of the nth
Bloch state. Since the incident LEED wave was
assumed to have a standard flux incident on the
surface, this quantity is closely related to the
transmission coefficient through the surface, and
describes the third step in the usual three-step
model of photoemission. Thus the usual expres-
sions for the three-step model can be reduced to
the expression of Eq. (9). Actually, for angular
photoemission measurements the & function in A%
contained in Eq. (8) is more appropriate than the
6 function in energy replacing it here, because the
deviations from delta function behavior can mani-
fest themselves in angular spreads which are more
easily interpreted in terms of a spread in Ak.

III. METHOD OF CALCULATION

The calculational procedures used in this work
are an adaptation of the methods, and in fact the
computer programs of Janak, Williams, and Mor-
ruzzi® for calculating angle and surface-averaged
bulk photoemission, to a single-crystal face with
the inclusion of an accurate calculation of the

—e°kaS d dE | p%|?0,6(EX - E' - fiw) VEAE
mn M
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transmission coefficient from the crystalline me-
dium to vacuum. For the (111) face of an fcc
structure like the silver lattice, six reduced zones
each Zth of the full Brillouin zone were consid-
ered, since the symmetry of the crystal is lowered
by introducing the surface plane. Following Janak,
Williams, and Morruzzi, each reduced zone was
divided into 10 100 small cubes, and for each pos-
sible energy of the escaping electron, line seg-
ments were found within some of the cubes along
which momentum and energy conservation were
properly satisfied to lowest order in the cell size.
The lengths of these line segments were multiplied
by the matrix elements and transmission factors
to a given detector and the result summed over
the contributing cubes. Generally the transmis-
sion into several detectors subtending different
solid angle sectors around the sample can be
summed in the same calculation. Since unpolar-
ized light has been used in the experiments, the
square of the matrix element was averaged over

E field directions in a plane perpendicular to the
incident direction of the light. The effects of in-
elastic scattering of the electrons were neglected
in the calculation of all quantities other than the
damping factor [.

The calculation of the transmission coefficient
through the surface requires new procedures
which were adapted from the methods and com-
puter programs used in LEED calculations.3* In
the formalism used in the LEED work, the ampli-
tudes B}, 85,83, . . . of Bloch waves moving into the
crystal from the surface and the amplitudes
BI,B5,Bs,... of Bloch waves moving from inside
the crystal toward the surface can be related to
the amplitudes al, a3, @i, ... and a}, a;, a],... of
the matching plane waves in vacuum by matrix
equations of the form3*

G(a;'"Olf"‘)T=(ﬁT“'ﬁI'“)T (10)

(where superscript T for transpose indicates the
column vector), and G is a matrix depending on the
crystal. In this work, unlike the LEED work, we
choose one Bloch wave moving toward the surface
to have nonzero amplitude and require that there
be no plane waves in vacuum moving toward the
surface. Equation (10) then reduces to a set of
linear equations for the amplitudes of the plane
waves leaving the surface in vacuum. The flux in
each of these waves can be calculated and hence
the transmission of a Bloch wave of unit flux
through the surface to plane waves into any solid
angle outside the crystal.

The procedure just described is slightly differ-
ent from the prescription specified by the one-
step model of photoemission. However, if only
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one Bloch wave in the upper state takes part in the
emission process we may apply the principle of
reciprocity.®® The transmission through the sur-
face found above is shown by reciprocity to be the
same as for a source of electrons outside the crys-
tal at the position of collection in the experiment
and a detector inside the crystal sensitive to this
Bloch wave. These latter conditions describe the
transmission coefficient given by the LEED wave
function. However, the calculation of the trans-
mission out of the crystal is slightly shorter.

IV. RESULTS OF THE CALCULATION

Calculations were performed for the (111) face
of a silver crystal using the wave functions ob-
tained from the self-consistent Hartree-Fock-
Slater potential of Snow®® with the exchange-cor-
relation coefficient @ =2 The intensity of the light
in the crystal and its rate of absorption were ob-
tained from the measured optical constants®” in the
obvious way. The mean free path of the excited
electrons was estimated from the data of Kanter,3®
and fitted to the random % model of Kane® as de-
cribed by Janak et ql.*®* The result obtained for
the lifetime in rydberg units was ¢ =150(AE) ™36,
where AE is the energy above the muffintinzeroin
rydbergs. A continuous hyperbolic-tangent step
about 7 a.u. wide was used as the interface between
crystal and vacuum in the calculation of the trans-
mission factor. This was chosen to approximate
the sharp step used by us in similar calculations
on surface states.?” In our model the crystal is
oriented so that an atom of the top layer lies at the
origin with neighboring atoms of the top layer on
the x and y axes taken at an angle of 60 deg. An
atom of the layer beneath the top layer was located
at (3,%) in units of the surface mesh.

The calculation was set up to model an experi-
ment in which the detectors were arranged in the
following way: The range of polar angle from nor-
mal incidence to grazing was divided into nine sec-
tors, each with the same solid angle. The angles
delimiting the sectors thus came out to be 0.0,
27.27, 38.94, 48.19, 56.25, 63.61, 70.53, 77.16,
83.62, and 90.00 deg. The range of azimuthal angle
was divided into 15-deg sectors. A detector mea-
sured all electrons emitted within each combina-
tion of 6 and ¢ ranges.

In Fig. 2 we show the energy distribution of elec-
trons entering each of the counters spanning the
range of polar angle from 27.27 to 38.94 deg. We
note a small but relatively rapid variation of the
number of electrons emitted into the various azi-
muthal sectors as a function of energy. This rapid
variation is probably produced by the reflection of
the electron back to the emitting atom from neigh-

boring atoms and the resulting effect on the emis-
sion process. A similar but more pronounced ra-
pid variation has been seen experimentally in the
photoemission from semiconductors.*®

In Fig. 3 we show the number of electrons enter-
ing each sector in the range of polar angles with
all azimuthal angles included. It is useful to com-
pare these results with the experimental data of
Gustafsson, Nilsson, and Wallden,® who used a
similar arrangement of counters. Comparing our
results with the dashed curve 1, we notice that
both in the theory and the experiment the electrons
from the states of lowest energy come out of the
surface nearer to the normal, e.g., the electrons
below 1.0 eV are almost all in Af,, whereas
dashed curve 2 corresponds to Af,. This effect
has already been explained in terms of a simple
two-band nearly-free-electron model,®® and fol-
lows from the general shape of the bands involved
in the transition, and the requirement of 2 conser-
vation. The emission at large angles is markedly
smaller than at lower angles because this emission
at large angles arises from plane-wave components
of the Bloch state which are zero in the limit of
free-electron bands as shown in Af, and dashed
curve 3. Such emission corresponds to the sec-
ondary cones in the treatment of Mahan.

In Fig. 4 we show the energy dependence of the
total photocurrent for photons incident at three

LIGHT INCIDENT ANGLE O°
’ © =27.27-3894

PHOTOEMISSION INTENSITY (ARBITRARY UNITS)

‘P=30-4'.?j",
oL

i \
- 45-60] \
P 45-60 \

S I R
INITIAL ENERGY (eV)

FIG. 2. Calculated variation of the photoemission in-
tensity as a function of energy for various ranges of
azimuthal angle with the polar angle in the range 27.27
=6 =238.96 deg.



D. J. SPANJAARD, D. W. JEPSEN, AND P. M. MARCUS 15

1734
N
o
ANGLE OF INCIDENCE OF -0
LIGHT : 0° » A8, /\
) PR ol Jo
smmsL \
A N Y 29,
..... .
.
20
86, ?
28,
288,
0 Jo
88,
2 0 EF 05 EfF

INITIAL  ENERGY (eV)

INITIAL ENERGY (V)

FIG. 3. Variation of the photoemission intensity as a
function of energy for the following ranges (of equal
solid angle) of the polar angle in degrees: A¢;=0.00—
27.27, A6,=27.27-38.94, A6;=38.94-48.19, Ag,
=48.19-56.25, A f5=56.25-63.61, A6 ;=63.61-70.53,
A@; =70.53-77.16, Ahg="T7.16-83.62, A6 4=83.62—
90.00. Emission for all azimuthal angles is included in
each range. The dashed curves marked 1, 2, 3 are the
experimental curves of Refs. 4 and 5 covering ranges in
6-1:11-26, 2:3-48, 3:53—-68.

different angles: normal incidence, the [110] di-
rection, and the [11T] direction. The change seen
in the spectrum arises from the dependence of the
matrix element M3, in Eq. (9) on the polarization
of the photons. If the wave functions in this matrix
element are approximated by the plane waves ap-
propriate to a simple nearly-free-electron, two-
band model of the energy states involved in this
transition, we find that, since the upper and lower
states differ by a reciprocal-lattice vector per-
pendicular to the surface, the transition dipole is
in this direction. Thus in this crude approximation
the emission should be proportional to the square
of the sine of the angle of the photon beam from
the normal to the surface. In particular, the emis-
sion should disappear when the photons are inci-
dent normal to the surface. Our calculations with
better wave functions give emission at normal in-
cidence, but show a reduced intensity as one moves
toward the normal, particularly at the lower ener-
gies, where the emission arises from transitions
between nearly parabolic bands. At the lowest en-
ergies the emission arises from transitions near
k=0, where the momentum matrix element must
be perpendicular to the surface by symmetry.

This gives the shape of the drop to zero intensity

Q1)

PHOTOEMISSION INTENSITY ( ARBITRARY UNITS)

<1|0>/
<>~ INITIAL ENERGY (eV)
0 Lo 1 iy
-2 -1 0=
Er

FIG. 4. Total photoemission intensity as a function of
energy for three directions of incidence of the light.

seen at this end of the spectrum. The experiment-
al results? show a contribution with a shape very
similar to these theoretical curves, but sitting on
top of a large, apparently diffuse background. The
origin of this background is presently still unde-
termined, although later work has shown that it
cannot be due to secondary electrons. This con-
tribution persists when the photon energy is re-
duced to the point where the upper state would have
to be in the gap between bands.?* Under these con-
ditions the primary electrons which we have de-
scribed do not exist, and hence there are no sec-
ondaries. The emission to be expected from eva-
nescent states at the surface also appears to be
too small with respect to the emission from bulk
states to explain this contribution, based on the
discussion associated with Fig. 1.

The transmission factor through the surface,
which is the principal subject of this work, proves
to have much less effect than the polarization de-
pendence of the matrix element which we have just
discussed. In Fig. 5 we show the “average trans-
mission factor” obtained by calculating the total
photocurrent at each energy, first including the
transmission factor, second with this factor set
equal to 1, and then dividing the first result by the
second. We find that the effect of the transmission
factor is to reduce the intensity almost uniformly
with energy by a factor of about 0.55. In these
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calculations the transition matrix elements were
not included for simplicity, but we expect that the
result would not be changed by including them.

On the basis of what we observe to be happening
within these calculations, we do not expect the
transmission factor to have any greater effect on
angular photoemission at these energies in silver.
It appears that these s and p bands are free-elec-
tron-like and therefore match well with the cor-
responding waves in vacuum.

V. DISCUSSION

The results obtained here explain the structure
observed® in the angle dependence of the photo-
emission from the (111) face of silver, but not the
40% angle independent and probably incoherent
background also observed. The structure obtained
in our calculations arises from the same physical
effects used previously by other authors to explain
the shape of the experimental curves. The struc-
ture of the spectrum is dominated by the require-
ment that there be states at the proper energies
below the Fermi level and above vacuum level with
a k having surface components appropriate to the
collection angle. The illumination angle and polar-
ization dependence come from the angle dependence
of the dipole matrix element. In particular, we
find that transmission effects through the surface
play practically no role in explaining the experi-
mental data. In the future we hope to check
whether these conclusions remain true when the
photoemission involves excitation to d bands or
other more localized states above the vacuum
level, which might couple less strongly with plane

Transmission factor
0601
0.55 |
0.50L
Initial energy (eV)
0.45 " L

-2 -1 O:EF

FIG. 5. “Transmission factor through the surface”
(see text) as a function of energy.

waves in.vacuum. Preliminary calculations have
indicated that our procedures would also give a
calculated photoemission from the (100) face about
an order of magnitude smaller than from the (111)
face, as found by Schaich,'® and therefore much
smaller than what is observed experimentally.
This experimental emission is probably related to
the diffuse component seen from the (111) face. It
should be interesting to see whether including the
local emission from the surface step and bulklike
emission from the evanescent waves at the surface
would make any contribution to this component.

The direct-transition model of photoemission
limits the measured outgoing electrons to states
occupying only a one-dimensional set of 2’s in the
Brillouin zone at which both the initial and final
states have the selected energies. Thus the pat-
tern of electrons coming out of the crystal should
also trace out a curve in the solid angle around the
crystal, i.e., a cone. Experimentally the electrons
are found to come out in much broader angular
distributions. This discrepancy might throw some
doubt on the direct transition model if it did not
give the total emission and the angular variation
of the emission discussed in this paper so well.
Some of the broadening can arise from the fact that
the replacement of the curve of Fig. 1 by a 6 func-
tion is not exact, and the width of the peak mani-
fests itself in a certain angular spread. Second,
there is further broadening produced by phonon and
diffuse surface scattering of the electrons as they
come out of the crystal. Such scattering effects
have been studied in the diffuse background seen in
LEED experiments.*' These sources of angular
smearing can probably explain the spread of the
angular emission discussed here which exists on
top of the diffuse component. The diffuse compon-
ent probably does not conserve the normal com-
ponent of & because it is produced very near the
surface.

However, simple estimates indicate that the con-
tributions from the evanescent waves and the sur-
face term in our equations should be quite small at
these low energies so that other physical effects
are probably more important. Unfortunately, the
explanations suggested in the literature*®*® re-
quire the treatment of surface roughness, an ef-
fect which would not be easy to include in the
present method. We note that such roughness ef-
fects could also explain the apparently different
results obtained by Nilsson and Eastman for the
same surfaces of silver studied by Gustafsson,
Nilsson, and Wallden.
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APPENDIX

We show here how Eq. (Al11), used in Eq. (9) of
the text, can be derived. To do this we shall make
extensions to a formalism developed in Ref. 29. A
wave function satisfying the Bloch condition in the
coordinates x and y in the surface plane can be
written in the form

»(F) =;¢K(Z)e‘<f“ﬁ”$, B=(x,9) , (A1)

where the K’s are the two-dimensional lattice vec~
tors of the surface. It is convenient to consider
matrix vectors of the form

B {lpx(z)} A2
= 8%(2)% , (A2)

oz

where {px(z)} denotes a vector composed of all of
the components of some wave function as given by
Eq. (Al). Wave-function matching on a plane paral-
lel to the surface can be done by equating ¥’s. In
terms of this vector, the flux carried by a wave
function through a unit mesh parallel to the surface
is proportional to

WXy =—i ), < ff'%w,(?ﬁ) ,
K

9z 0z

0 -1\ (A3)
+7 0

and ' is the conjugate transpose of ¥. This ex-
pression is independent of z by flux conservation,
as can be readily established from the Schr&dinger
equation written in terms of these components. We
assume here that there is no inelastic scattering,
since we shall apply the result obtained only to the
initial states of the photoemission process. For a
Bloch wave we have

where

it

X

B,(f +3,) =exp(ik-3,) B,(¥) , (A4)

where B, =(b,(2),00,(2)/92)7, and by(z) is a vector
like {¥x(z)} in (A2). Equation (A4) is simply a
statement of the Bloch condition, which is satisfied
both by the wave function and its z derivative. For
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two Bloch waves with the same k& we find that

Bl (F +8,)XB, (F +1,) = expli(k, — k¥a] Bl (DXB,({X) .
(A5)

However, the left-hand side of this equation can be
shown to be independent of T by applying flux con-
servation. Thus the left-hand side is equal to

B (F)XB,(F) which gives

{expli(k, - ki¥)a] - 1} BL(F)IXB() =0 , (A6)

showing directly that the cross terms between
Bloch waves do not carry current, a result which
is usually assumed from the fact that packets made
up of the two waves will physically separate with
time. The consequences for evanescent waves are
even more interesting, but cannot be discussed
here.

We shall now make the change of normalization

Br=|BIXB:l"VB, , (A7)

so that the Bloch waves moving into the crystal
form an orthonormal system using the flux expres-
sion (A3) as an inner product. A typical photo-
emission initial state has the form

v,=B; +§;BWB;‘ : (A8)

where B is a propagating Bloch wave moving to-
ward the surface and the B} ’s are propagating
Bloch wave moving back from the surfaces and
evanescent Bloch waves decaying away from the
surface.

Since no linear combination of these initial states
can carry flux across the surface plane into vacu-
um we have

0=¥)Xx¥, =B;"XB; +2 BiBuB;TXB} |
J

where we have dropped the cross terms between
the (=) and (+) Bloch waves which are zero be-
cause of Eq. (A6). Using this same equation we
may drop all evanescent waves and all cross terms
between the (+) propagating waves because they
make no contribution. In this way we obtain

0==by, +; BiBui (A9)

in which only the 8’s corresponding to propagating
waves are included. From Eq. (A9) we conclude
that these B’s form a unitary matrix. This implies
that we also have

Z BikiBu=8;1
v

If we now revert to Bloch waves which are normal-
ized to integrate to 1 over a unit cell (and the in-
cident wave is also so normalized) and choose j =1

(A10)
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this becomes
1 1
E 2 == All
= Iijl v, v, ’ ( )

which is the result required when we consider a

Bloch wave moving into the crystal in Eq. (9). For
a Bloch wave moving toward the surface the re-
quired result is trivial. We note from this discus-
sion that the unit flux normalization is really the
appropriate one for this problem.
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