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The Gutzwiller's scheme is extended to finite temperature in order to study the properties of electrons in

strongly correlated metals. Using the quasichemical approximation we have constructed an orthogonal set of
trial functions. These functions have a one-to-one correspondence to the Slater determinants with Bloch states.
Our scheme for constructing this set of basis functions is independent of the perturbation theory. Based on

this orthogonal set, the entropy of the correlated electrons has been derived from the thermodynamic

equations. It has the correct behavior in the metallic phase except in the vicinity of the metal-nonmetal phase
boundary. The electron effective mass and the Pauli spin susceptibility are found to be enhanced in a way

similar to the Brinkman-Rice result for a correlated ground state. The Knight shift is also enhanced but the
enhancement factor is much less than that for the susceptibility. However, the electronic specific heat is

enhanced only for k~T/6 ~ 0.11 (6 is the bare bandwidth). For k~T/6 0.11 we need to consider the

collective excitations such as paramagnons in order to have a complete treatment of the specific heat, Using

an ellipsoidal density of states we have performed model calculations for a nonmagnetic state in order to
illustrate the characteristic features of the strongly correlated electron system.

I. INTRODUCTION

In 1963, Hubbard, ' Gutzwiller, ' and Kanamori
proposed a simpl. e Hamiltonian to investigate the
magnetic ordering and the Mott transition4 in

highly correlated metals with narrow energy
bands. The model Hamiltonian, which is usually
referred to as the Hubbard Hamiltonian, includes
the intra-atomic Coulomb repulsion and the one-
electron hopping energy. The Hubbard model,
although simple in form, is not easy to handle
mathematically. The ground-state properties
have been extensively studied by many authors'
with various assumptions. Many of these treat-
ments closely follow Hubbard's Green's-function
decoupling scheme. '

Another approach, which is basically different
from Hubbard's is Gutzwiller 's scheme. '
Though very different in mathematical structure,
the mechanism for the metal-nonmetal (MNM)
transition is the same in both types of approaches.
Brinkman and Rice' have used Gutzwiller's method
to show that a half-filled band becomes noncon-
ducting when the number of doubly occupied atoms
becomes zero due to strong correlation. In Hub-
bard's approach some atoms are doubly occupied
because the two subbands overlap. As soon as
the Mott-Hubbard gap opens under strong cor-
relation a MNM transition occurs and all the atoms
become singly occupied.

Brinkman and Rice' were also the first to show
that for zero temperature the variational method
gives simultaneous enhancements of the Pauli
susceptibility and the el.ectronic effective mass
by the same order of magnitude as the MNM tran-
sition is approached from the paramagnetic metal-

lic side. Furthermore, they suggested that the
electronic speeifie heat is enhanced in a similar
manner. This property is important for highly
correlated metal. s as Mott' has pointed out.

The finite-temperature regime of the Hubbard
model was first investigated by des Cloizeaux. '
His results derived from the Hartree-Fock ap-
proximation have been largely extended by Langer,
Plischke and Mattis, ' Kaplan and Bari,"Blaekman
and Esterling, "and Bari and Kaplan. " At large
U/6 (U is the Hubbard parameter and 6 is the
bandwidth) Kaplan and Bart, 'o Kimball and Schrief-
fer" and Plischke' found a Neel temperature
kT„-6'/U. Ramirez, Faltcov, and Kimball"
have given a discussion of an entropy-driven MNM
transition in a related model as the temperature
rises. Nevertheless, none of these works de-
scribes the important features of the enhancements
of the susceptibility, the specific heat, and the
electronic mass, as well. as the effect of electron
correlation on the Knight shift in the metallic
phase.

It is therefore an important problem to gen-
eralize Gutz wilier 's approach to finite tem-
peratures as well as to extend the Brinkman-
Rice results to this case. This is the main pur-
pose of the present paper. " Since we are in-
terested in the highly correlated metallic phase,
we will not consider the antiferromagnetie ordering
which often appears in the insulating phase of
the half-filled-band Hubbard model. We should
point out that in the variational scheme, the origin-
al Gutzwiller's trial functions should be drastic-
ally modified in order to take into account the
antiferromagnetic ordering due to the electron
virtual. hoppings. " Therefore our results for

15 1656



15 GUTZWILLER THEORY OF ELECTRON CORRELATION. . . 1657

paramagnetic state are not valid when the anti-
ferromagnetic state is approached at the l.ow-
temperature and large U j4 limit.

In Sec. II we briefly summarize Gutzwiller's
scheme for the ground state. Its general. ization
to finite temperatures is given in Sec. III for the
general ease. We then consider the special case
of a paramagnetic state with one el, ectron per
atom, and perform a model calculation using an
ellipsoidal density of states. In terms of this
model. calculation the validity of our generalized
finite-temperature Gutzwil1er's scheme will be
discussed in details. The Pauli susceptibility,
the Knight shift, and the electronic specific heat
are derived in Secs. IV-VI, respectively, together
with numerical calculations to illustrate the elec-
tron correlation effect. A short discussion is
given in Sec. VII. 0, =g A., (G)@(G), (2)

and number operators for an electron of spin. a
at lattice site g. The quantity t« is the electron
hopping energy and U the Coul. omb repulsion be-
tween the electrons on the same site.

We assume that there are N electrons in a
simple lattice of I sites. N can be arbitrary ex-
cept that N ~ I (if N & I we can consider the holes
instead of electrons). Among them let N(o) elec-
trons have o spin, and N(o) is also arbitrary as
long as N(i)+N(4} =¹To describe the wave func-
tion of these N electrons, we use a set of lattice
sites G(o) =[g(o)„.. . , g(o)„«&].to specify N(o)
Wannier functions Q, (r —g) through the relation
g~ G(o'). lf G represents both G(0) and G(4), then
the many-electron wave functions in the local. ized
representation have the general form

II. REVIEW OF GUTZWILLER'S SCHEME
FOR THE GROUND STATE

Gutzwiller's scheme' was originally formulated
for the ground state in an orbitally nondegenerate
narrow band. It has been generaliz ed to include the
orbital degeneracy, "and subsequently used to treat
the low-lying excitations. " In the finite temperature
version to be discussed in Sec.IIIwe will, however,
only consider the case of a simple s band. In view
of previous results" generalizations to more com-
plicated band structures are straightforward.
Already the simplified s-band theory is useful,
however, and can be applied to realistic system,
such as phosphorus-doped silicon. The impurity
band in Si:P is a narrow nondegenerate band
separated from the conduction band by about 20-
40 meV, depending on the impurity concentration.
For example, the susceptibility of Si:P has been
measured through a temperature range from
I to 77'K (equivalent to about 10 meV) and shows
enhancements suggestive of strong electron-el. ec-
tron interactions. Hence the relevant theory
should be able to cope with effects of electron
correlation in a wide range of temperature.

The mathematical structure as well. as some
of the fundamental physical concepts in our gen-
eral. iz ed finite-temperature Gutzwiller approach
are similar to those in the ground-state Gutz-
willer method. It is therefore instructive to
first summarize Gutzwill. er's ground state scheme.
The reader is referred to the original works for
detail. s.

Consider the s-band Hubbard Hamiltonian

H= Z tggta~~a~.

~+Using)age,

«0
where the sum g, g' is over al. l. lattice sites and

at~„a~„and n„are the creation, annihilation,

where

The summation in Eg. (2) runs over all possible
configurations G.

The coefficients A, (G) must satisfy. two con-
ditions: In the atomic l.imit where all, the atoms
are neutral, A, (G) is a finite constant if G does
not contain doubly occupied sites and zero other-
wise. On the other hand, in the band limit where
U = 0„%, reduces to an antisymmetrized product
of Bloch states g'. I.et K(o') be a set of k vectors
such that the Bloch state g~(r) with the k E K(o) is
occupied by a v-spin electron, and K represents
K(0) and K(4). Then the corresponding wave func-
tion at this band limit is simply

e(K) =II Q '„.
~ 0). (4)

a ke.r(a)

By means of the transformation

a' =1.-'~'~ e'~a'
ka . ~ ago

4(K) can be decomposed into

e(K) =g A(K, G)+(G),

in which the coefficients A(K, G) are wel. l defined
and known.

To construct A., (G) for the general case of finite
U, we note that the configuration G is character-
ized by the n,umber of doubly occupied atoms, v.
As the correlation energy U increases, the con-
figurations which have large value of v are more
likely to be projected out. Accordingly we pro-
pose the trial form

A, (K, G}=q B(K, G)A(K, G),
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where 0 (q ( 1 is a parameter which measures
the intra-atomic correlation strength: g = j. at the
band limit and g = 0 at the atomic limit. The fac-
tor B(K, G) is introduced to account for the less
important interatomic interactions. They satisfy
the condition B(K, G) =1 when there is no correla-
tion. The correlated wave function can then be
written

e, (K) =P q "g B(K, G)X(K, G)e(G),

where the primed sum includes the configurations
which have the same value of v. Note that at the
band limit 4' (K) reduces to q'(K).

In this section we consider the ground state only.

Let K~ be the set of k vectors which specify the
Fermi sea. Then the trial function for the cor-
related ground state is

0', (K~) =P q"Q B(K~, G)A(K~, G)4(G). (9)
v C

The expectation value of the energy with respect
to this function

(K,lffIK, &,

=(q', (K, )l ffl q', (K&)&l& q', (K, )l e, (K,)& (10)

wil. l. be computed in the quasichemical approxi-
mation" (QCA). We compute only one hopping
matrix element

(apl t, at, a...I Kz&, = p q"'"' p' B+(K~, G)B(Kz, G')~+(Kz, G)g(Kz, G')(e(G)l t«.a„a, , l e(G')&
u'Il c.c'

(11)

as an illustrative example. The matrix element
on the right-hand side describes the hopping of
an electron from site g' to site g, changing the
initial configuration G' to the final. configuration
G. Depending on the atomic configurations at
g and g' this hopping alters the number of double
occupancies from the initial value v' to the final
value v. Therefore, due to the intra-atomic
Coulomb repulsion, the bare hopping probability
is modified.

The bare hopping probability is also affected
by the interaction between the hopping electron
and the surrounding electrons not localized on
either g or g'. Such a long-range interaction
is measured by the factors B(K~, G). As an ex-
ample„ let us consider the electron hopping from
a singly occupied site g' into another singly oc-
cupied site g„ increasing the number of double
occupancies by one (i.e., v= v'+1). The motion
of the surrounding N- 2 electrons is so restricted
that when they move around they cannot localize
on either g or g'. That is, they are restricted
to a lattice of I.—2 sites. Accordingly, QCA is
the exact treatment of a correlated two-site sys-
tern embedded in a medium which is treated by
the "restricted" random-phase approximation.
Instead of knowing the exact form of B(Kv, G),
this approach imposes certain conditions on

B(K~, G). It has been proved that @CA gives ex-
act solutions at both the band limit 3nd the atomic
limit, and that it is a good approximation for the
case of narrow energy bands in general.

The main feature of QCA is that the "correlated"
hopping probability remains invariant with respect
to translations by a lattice vector. Therefore,
a band picture is preserved though the electrons

e (ok) =e + —~D(o)t .e "l' ' '
c Q CS (13)

D(o) =(N(o)[ L —N(o)]]

x ([N(o) —v, ] 't' (L —N+ v,)'i'

+ v,'t'[N(-o) —v,]'i'j' ( l. (14)

The quantity e, (ok) in Eq. (13) has the form of a
spin-polarized energy band centered at &„ the
energy of an electron in the atomic limit. This
energy eQ spreads into a "band" due to the cor-
related hopping which is reduced from the bare
hopping by a factor D(o). Accordingly this "band"
should be narrower than the bare energy band.
We can adjust the zero-energy reference so that
cQ 0 From now on we wi 11 ther efore drop cQ.

Finally, we apply the variational method to min-
imize the energy by varying vQ The condition

a, (uk)+, U)
=0

Q a a q-- rp-(a)
(15)

are correlated. It has been proved that for given
correlation strength 7), the sum over v in Eq. (11)
is sharply peaked at the most probable number
of doub1. e occupancies vQ. Hence we can approxi-
mate the sum by this dominant term. We note
that this particular value of vQ is the same as the
optimum number of double occupancies in Van
V leek's theory. "

The QCA result for energy can then be expressed
as

(K I &I K &.=g 2 e, (ok)+v, U,
a acE+(a)

where
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determines vp as a function of the correlation
energy U. Here we must point out that because of
the QCA, the calculated minimum energy has
not been shown to be an upper bound on the exact
ground-state energy. For this reason, this scheme
is referred to as the Gutzwiller variational method
after the pioneering work of Gutzwil. ler. '

Before we proceed to the finite-temperature
version we note that the total energy Eq. (12) may
be written in the more general form"

E,=g D(o)g f» e(k)+ voU,
a

where e(k) are bare band energies and f » occupa-
tion numbers specifying the uncorrelated state

Evidently the sum of f, must equal the total
number of electrons also when the system is cor-
related. For Sec. III it is al.so important to note
that within QCA the correlated wave functions
satisfy the orthogonality condition' '

(&I &') ~r, x

Furthermore, it is noteworthy that the interaction
term in Eq. (16) does not depend explicitly on
oeeupation numbers. This is because only intra-
atomic interactions are considered. Different
configurations (f» jJ associated with a particular
Hartree-Pock energy and f)f(f)/N(4) ratio there-
fore give the same correlation energy through
Eq. (15).

order to cope with the antiferromagnetic state,
the Gutzwiller trial function should be much modi-
fied" and will be outside the interest of the pres-
ent paper. In this respect our formalism has
similarities with the thermal Hartree-Fock theo-
ry in which the same assumption is usual. ly made.

I et the energy of the system be sharply peaked
at a specific value E, , i.e., we assume a micro-
canonical ensemble. The energy is then given
by an expression similar to Eq. (16) in which the
occupation numbers f» are now some kind of mean
occupation numbers. f„will be treated as the
variational. parameters which minimize the free
energy. The free energy of the correlated sys-
tem can consequently be expressed as

F, (T, v(T)) =E, (T) v(T)) —TS, (T) v(T)). (18)

The entropy S, and the energy E, must satisfy
the thermodynamic equation

B~c B~c
BT BT

or

BE BE Bv BS 88 Bv+- =T ' + q
BT ff Bv 2 BT BT y Bv y BT

But the free energy must have a minimum at the
optimum number of double occupancy v(T). This
condition yields

III. GUTZWILLER'S SCHEME AT FINITE TEMPERATURE

In order to extend the previous results to finite
temperature we will. assume that we are dealing
with only one kind of states, normally nonmag-
netic ones. Our results are valid for the strongly
correlated metallic regime where the system
does not show antiferromagnetic ordering. In

BE, BE, BS,
BV & BV & BV

and consequently Eq. (20) simplifies to

BE~ 8Sc
BT p BT

This equation has a special solution as

(22)

E, (T, v(T)) =Q D(&x, v(T))g f(T, e(k))[e(k) —9]+v(T)U (23)

S, (T, v(T)) =- —kap D(o, v(T))g[f(T, &(k)) lnf(T, e(k))+[1 f(T, e(k))] ln-[l f(T, e(k))]j+S,-(v(T)),

(24)

where S, ( v(T)) depends on T implicitly through
v(T), and

f(T, v(T)} =(exp[[ e(k) —l»]/ksTl+1} '. (25)

It is easy to check that when Eqs. (23)-(25) are
substituted into Eq. (18) the free energy satisfies
exactly the conditions BE, (T, v(T))/Bf(T, e(k)} =0
for al. l k. This is crucial since as in the thermal

Hartree-Pock theory our free energy should be
minimized with respect to the occupation num-
bers f( T, e(k)). We should point out that as T- 0,
the energy expression Eq. (23) reduces to Eq.
(16) if the energy is so normalized that a com-
pletely fill. ed band has zero total energy. Since
D(o, v(T)) -1 for either small U or large T, hence
both E,(T, v(T)) and S,(T, v(T)) approach to their



n(T, o, k) = f I - D(tl, v(T. )) j ftI(tt)/I

+D(o 1 v(T))f ( T, t:(u}). (27)

n(o. , /e) or n(l', o, k) then consists of two parts: a con-
stant[1 —D(o)]Ã(o)/L or [1—D(oxt v(T)) ] IV(o) ~'I.

throughout the who J.e band corresponding to the loeal-
iz ed properties of electrons due to the strong

correlat-

ionn, RQd R scRled Fel ml dlstrlbution function
D(o)f~ or D(tr, v(T))f(T, c(k)) corresponding to
tl'le correlation-reduced electrol'l hopping. The
ent1"opy 1A a correlated system ls determined
by this dual localized-itinerant characteristics
and should reduce to its correct values at both
the band limit and the atomic limit. Accordingly,
the physical meaning of Eq. (24) is very clear:
The first terlTl 1P due to thP delocallzatlon oi Plec-
trons, and the second term S, ( v(T)) accounts
fo1" tile spin degeneracy when the eJectrons become
localiz ed.

A qualitative analysis of the entropy of a cor-
related system I'or different values of T/& (&
Ls thP. bare bandwldttt) Rnti II(A wil. l. Ilelp us 'to

de'tel'mitlP St ( v(T)). Fol" Sltllpllcity, let tls Rs-
sume one electron. per atom. At, the atomic l. imit
II/6 -- ~, the spin degenera; y yieMS an entropy
per electron 8 =- k„ ln2„For &J,/& -f 0 the degeneracy
1S lifted and tl'le energy oi the many-electron sys-
tem spreads into a band. At T==-0 only the non-
degenerate ground state is occupied and therefore
S =- 0. Il U/tt 18 sufflcietltly large, 'this tlotldP. —

generate ground state should be antiferromagnetic
insulating. """"'As T/6 rises, the correlated
electron system goes either (a) first to paramag-
n.etic insulating and then to paramagnetic metal-
lic or (b) directly to paramagnetic metallic, de-
pending on whether I!/h is greater or less than
a crittcal. value "" I"or case (a) the entropy
S will first rise rapidly even at rather low tem-
perature from zero to k~ ln2, the value for an
insulating nonmagnetic state as 4'//& increases.
Around Itd T/4 - U/4 the entropy wil l rise again
and approach to the Limiting value 2k'~ ln2 as pre-

correct band limits if we require S,( v(T)) approach-
ing to zero w1th suff1C1ently small U or large 7

The physical interpretation for the sojution
Eqs. (23)-(2b) fltlcls its ortgl t tin Gutzwtlier 8
origina. l work. - VYith @CA, the occupation proba-
bility It(o, 0) ltl the 1'eclpl'ocRI. spRcP. Ri; T = 0 llRs
b(Ben (&erlved by Gutzwl'tier as

"(& 0) = f 1 —D(tl)l&(tt)/I, D(tJ) -f. a.

Since we are dealing with only one kind ot states
the ene1 gies oi which are sharply peaked at R

specific value E, , we can readily extend Gutz-
willer's zero-temperature results to finite tem-
peratures as

F, ( T, v(T)) =g D(o, v(T)) I'(o, T) + v(T)U,

(2(I)

where I'(g, T) is the free energy of tile uncorre-
lated tr-spin electrons. If we define Z(cr, T) as
the average bare band energy per o.-spin el.eetron
and S(o, T) ihe entropy of. the uncorrelated tt-spin
el.ectrons, then

f (a, T) =IV(o.)Z(tt, T) —TS(o, T) (29)

In. Secs. IV-VI we will investigate the Pauli
spin. Susceptibility, the Knight shift, and the elec-
tronic specific heat in a half-filled narrow band
with no magnetic ordering. Hence we must first
justify the validity of the "metalLic: solution" for
this special case of one electron per atom. It is
most conven1ent and convlnc J.ng to justify it with
a very general model. calculation, For the non-
magnetic state with one electron per atom, N(4)

N(tt) = , f,. Then D(0, v(T))--=-D(0, v(T)) =D(T),

dieted from the band theory. For case (b) the
entropy should increase smoothly with tempera-
ture from zero to 2k~ ln2.

It is then clear that in order to determine the
entropy, one must know exactly how the many-
electron eigenfunctions evolve from the atomic
Limit &:;rhere the V~3.Anger states are exact to the
band limit where the Bloeh picture is correct.
Deep in the metallic region where D(o, v(T)) is
c ose to one, S, ( v(T)) is negligibly small and
therefore can be dropped. Eaterwewill show
that the role of S, ( v(T)) becomes important only
when the system is very near to the metal-non-
xnetal transition. However, the var iational method
does not g1ve Rn accul"ate descriptk. on on the de-
tailed coupl1ng of dlffex'ent conf lgul atlons ln the
vicinity of the metal-nonmetal transition. Without
such crucial informations, it is impossible to
obtain the correct S, ( v(T)) for al. l values of U/6
RBd T/4. InsteRd of us tug dlffet'en't RpproxllllR'te
forms of S, ( v(T)) for different regions in the
U/6 —Tjr phase diagram we found that: it is .,uf-
ficient to use the simple metallic solution"
S, ( v(T)) =-0 and determine the conditiotls for its
validity. This is not unreasonable because our
main interest is the correlated metallic properties
which happens to be not depending cruc. ial. ly on
a very accurate entropy. ln fact, the fol. lowing
numerical results indicate that for the physical
quantities we are interested in, this simple
"metallic solution" is valid even for very strong
electron correlation.

From now on we will. restrict ourselves to the
meta. llic solution S, ( v(T)) = 0. The free energy
Eq. (18) can then be written
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+[1-f(T,e(T))]

x in[ 1-f( T, e(T))]), (30}

F(T) = e(T) —TS(T),

S, (T) =D(T)S(T)

F.(T) =D(T)F(T)+ ~(T)U.

The reduction factor D(T) is computed from Eq.
(14) as

D(T) = 8 v(T) [ 1 —2 v(T)] .
If we define the cluantity

U, (T)= —8F(T) o- 0,

then the optimum number of doubl. e occupancy
takes the simple form

(T) =-'[1 —UIU, (T)].

The corresponding D(T) and F, (T) are easily
calculated as

D(T) = 1 —[ U/U~(T}]

(34)

(35)

(36)

(37)

F, (T) = F(T)[1 —U/Uo(T)] '. (38)

e(i, T) =Z(k, T) = e(T), S(0, T) =S(k, T) =. S(T), and
F(t, T) =F(0, T) =F(T). For convenience, we will
normalize v(T} by dividing it with N=L, and re-
define S(T), F(T), and S, (T) and F, (T) as the
entropy and the free energy per electron of the
uncorrelated and the correlated system, respec-
tively. They can be written

S(T) = — g [f(T, e(T)) lnf(T, e(T))2k~

=0 defines a boundary between the metallic and
the nonmetallic phase. " For the true wave func-
tion the exact number of doubly occupied atoms,
v,„(T) vanishes only at a/U =0. In Gutzwiller's
scheme only the direct hoppings of el.eetrons are
considered. It was pointed out in Ref. 17 that the
v in Gutzwiller's scheme is only the number of
double occupancies in the zeroth-order wave func-
tion. It has been shown ther(b. by second-order
perturbation theory which is valid for large U/b.
(or for small v) that when the virtual hoppings of
el.ectrons are included, v,„is very small. but finite
even at v=0. Although Ref. 17 is for T=O, the
same conclusion should also hold for finite tern-
perature. For v,„(T)=0, the correct value of
entropy is S, (T) =ks ln2 since the number of quan-
tum states is 2" al. l. of which have the same ex-
pectation value of the Hamiltonian Eq. (1). There-
fore, the correct value of entropy as v(T)-0
shoul. d be very cl.ose to k~ ln2.

To determine the minimum value of v(T) above
which the metall. ic solution is a good approxi-
mation, we have performed a model calculation
using an ellipsoidal. density of states normalized
to one el.ectron per atom. The density of states
centered at & =-0 and has the width ~. The detailed
calculation is outlined in Appendix A. In Fig. 1
we plot the constant-v(T) contours in the ks T/
h —d, /U plane. The numbers in the figure are the
values of v(T) for different contours. Two con-
stant-entropy contours are also given as the dot-
ted curves A and B. Curve A has entropy S, (T)
=1.6k~ ln2, which is 80% of the maximum entropy
an uncorrelated electron can have, namely, the
high-temperature Hartree-Fock l imit. Therefore,
above curve A. we are deep in the metallic region

These expressions are similar to Brinkman
and Rice's results' for orbital. ly nondegenerate
ground state, and to the results obtained earlier
by one of the authors" for a degenerate ground
state. For a given temperature, the critical cor-
relation energy Uo(T) is a well-defined number.
As the electron correlation increases the optimum
number of double occupation v(T) decreases mono-
tonically to zero at U =U, (T) according to Eq.
(36). If the "metallic solution" is correct also
for small values of v(T), then v(T) =0 defines a
boundary between the metallic and the nonmetal-
lic phases. However, as we pointed out in the
previous discussion, the entropy Eq. (32) does
not approach to the correct limit ks ln2 as v(T)
-0. Hence in the vicinity of v(T) =0, or near
the metal-nonmetal boundary our results become
doubtful.

We would clarify what we mean by saying "v(T)

KBT/5 )(I-

0.5-

FIG. 1. Contours for constant v{T) in the k&T/4-6/U
plane. Values of v(T) are indicated by the numbers.
The dotted curves are the constant-entropy contours and
the darked area is the antiferromagnetic {AFM) phase
estimated from the Hef. 17.
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I KBT/5

I'IG. 2. Optimum number of doubly occupied atoms vs
temperatures. The dashed curves are the constant-en-
tropy contours and the dark area is the AFM phase
estimated from the Ref. 17. The dotted curves are the
possible alternative solutions at very low temperature.

where S, ( v(T)) should be negligibly small and
the metallic solution is correct. As we mentioned
before, along the contour v(T) =0 the correct
value of entropy should be S, (T)= ks ln2. How-
ever, the S, (T) =As ln2 curve from the "metallic
approximation" calculation is curve B while the
calculated entropy along v(T) =0 contour is zero.
Since SS, (T)/BT must be non-negative for given
value of &/U, in the region to the left-hand side
of curve B and for 4/U& 0.59, the correct value
of entropy must be substantially greater than
that obtained from the metallic approximation.
Consequently, the approximation breaks down
in this region. For ~/U& 0.6 we find that the
constant-entropy contour approaches the T = 0
axis continuously as the entropy drops to zero.
So the metallic solution should be a good approxi-
mation between the curve B and the horizontal
axis. From Hefs. 10, 13, 14, and 17 one can
estimate the Neel temperature as a function of
6/U and expects an antiferromagnetic phase as
indicated by the darked area. The metallic so-
lution should also break down if the electron sys-
tem is sufficiently close to the antiferromag-
netic-paramagnetic phase boundary. We then
conclude that the metallic solution is valid for
v(T)& 0.08, namely in the region to the right of
the v(T) =0.08 contour. Though these analyses
do not precisely answer the question of where

the metallic solution starts to break down, it is
sure that the metallic approximation fails for
small enough 4/U.

The above discussion manifests itself to a more
convincing argument in Fig. 2 where we plot the
optimum number of double occupancy v(T) in solid
curves as functions of the normalized tempera-
ture for various values of 6/U. The dashed curves
A and B again correspond to S, (T) =1.6ks ln2 and

S, (T) = ks ln2, respectively, and the dark area
indicates the antiferromagnetic phase. At

high temperature all the solid curves ap-
proach the Hartree-Fock limit ~ as one ex-
pects, In this region above the curve A the
metallic solution is certainly excellent. One should
note that for 6/U& 0.59 our expressions Eqs.
(36)-(38) reduce to the correct Brinkman-Rice
results' at T =0 where the entropy has no con-
tribution to the free energy. Since the curves
in the high-temperature region must approach
their T=0 limi. ts smoothly, our results should
at least be good estimates in the region between
the curve A and the vertical axis. The exact so-
lutions are indicated perhaps by the dotted curves
if we can obtain the correct expression for
S, ( v(T)) (the dotted curve for 6/U =0.5 near T=0
is our conjecture and should not be taken too
seriously). The difference between the dotted
curves and the solid curves cannot be large be-
cause at low temperature the entropy does not
contribute much to the free energy of the metallic
phase. Consequently we can say that the metallic
solution gives fairly accurate values of v(T) in
the metallic domain even for v(T)& 0.08 as iong
as &/U& 0.6. On the other hand, the difference
in the slopes Sv/ST between the solid curves and
the corresponding dotted curves may be significant
at very low temperature. This is the reason why
later we discover in this temperature range our
model fails to predict the correct behavior for
the electronic specific heat which depends on
sr/BT, in contrast to the Pauli spin susceptibility
and the Knight shift which are functions of v(T).

VYe have so far restricted our analysis to the
case of one electron per atom. The conclusion
on the validity of the metallic solution applies to
the general. cases nw 1 as well. Furthermore,
since the correlated system can never be insulating
for @4 1 and since the antiferromagnetic ordering
disappears if

~
n —1~ & 0.05," the correlated elec-

tron exhibit even stronger metallic properties.
Consequently, the metallic solution works better
for the general cases n& l.

IV. ELECTRON-SPIN SUSCEPTIBILITY

In this section we investigate the enhancement
of spin susceptibility in the metallic phase. In
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the presence of a small external magnetic field,
H„ let gL antiparallel-spin el.ectrons reverse
their spins; N(i) =(-,'+g)L and N(k) =(—,—g)I. T.he
value of f wil. l be determined by the minimization
of free energy of the electron system in the mag-
netic field, which then gives the spin susceptibili-
ty.

Before formally deriving the susceptibil. ity, it
is instructive to describe the effects of electron
correlation in physical terms. In our correlated
system there are two contributions to the sus-
ceptibility. One is from the itinerant properties
of the electrons ("Pauli type") and the other is
from their localized properties ("Curie type").
The intra-atomic Coulomb repulsion reduces the
electron hopping probabilities by a factor D(T),
which results in a narrowing of the bare energy
band. The density of states or the effective mass
is then enhanced by a factor D(T) '. Therefore,
besides the Stoner enhancement factor, the con-
tribution from the band electrons should be en-
hanced by a factor D(T) '.

The optimum number of double occupancies
v(T) changes with the applied magnetic field, as
a result of flipping fL spins. In other words, the
applied field increases the number of unpaired
localized electrons. The enhanced Curie-like
contribution from such unpaired spins is entirely
due to the intra-atomic correlation. However,
the l.ocalized and the itinerant contributions are
not independent events. We cannot separate the
el.ectron system into two unconnected parts and

say that one is localized and that the other is de-
localized. We have only one system of electrons
which can only be properly described by a dual
itinerantlocaliz ed picture.

With applied magnetic field H, the free energy
is given by the expression

F, (gH, T) =F, (T) 2q, Hg+-
Xp T

oTU 1+U 2UoT
2pe2I 1+U/U, (T)]'

(39)

where Xo(T) is the Pauli spin susceptibility per
atom at U =0. We determine g from SF, (&H,T)/
Bf =0. Then the susceptibility in a correlated
system is

xs(T) =n„(T)x.(T),

where the enhancement factor is

(T) =D(T) x 1 —Xo(T) U[1 U/2+Uo(T)]
2q', [1+U/U, (T)]'

(41)

At T =0 the enhancement factor g„reduces to the

'ls„
IO

0 I I I I I I I I I

0.5

FIG. 3. Enhancement factor for the spin susceptibility
vs temperature (qx 1 as k&T/& —).

V, KNIGHT SHIFT

In order to investigate the effect of electron
correlation on the Knight shift, we have to cal.-
culate the spatial distribution of the o-spin elec-
trons in a highly correlated metal. The standard
derivation starting from the correlated trial func-
tion is very tedious, but the same result can be
obtained easily through the use of Eq. (27). Then
the density of the o-spin electrons is simply

p(T, o, r) =P n(T, o, ~)l 4, (r)l', (42)

where g„(r) is the Bloch state. Let us define

p(r) =g I ea (r)l'

and

(44)

where $(e) is the density of states and the primed

Brinkman-Rice' formula.
Figure 3 shows the enhancement factor as a

function of the temperature. At sufficiently high
temperature, the electrons become weakly cor-
related and so gx approaches one. As the tem-
perature is reduced g„becomes large for values
of 6/U close to the critical ratio. As indicated
in Fig. 2, the computed v(T) has small uncertainty
at low temperature. This uncertainty of course
introduces certain error in the q„. However, the
error is smal. l and will not affect the over-al. l

picture. Yet one should be aware of the fact that
for 6/U& 0.85 and ke T/& & 0.015 the antiferro-
magnetic state sets in. In this magnetically or-
dered region our model is no longer valid.
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The spatial distribution of el.ectronic spins is

&(T, ~)=p(T,-~, ~)-p(T, ~, ~). (45)

We will consider the special case of one electron
per atom with no magnetic ordering. The external
magnetic field Ho for ordinary NMH, experiments
is of the order of 10' G, and gives rise to a mag-
netic energy per electron much less than the Fer-
mi energy even near the metal-nonmetal tran-
sition. With such applied magnetic field, Z(T, r)
is readily obtained as

T(T, &) =nx(T)X.(T)ffo& I ()'a (&)I'& ~

where

„T D T„T, X.(T)UI:i.U/2U. (T)] -'
"x

2p, s2I 1+U/U, (T)]'

(48)

The Knight shift is defined as o.Z(T, x)/H„where
n is a crystal. -structure-dependent numerical
factor. For cubic lattice a = —,n. VYe therefore
obtain the Knight shift in strongly correlated met-
als as

E, (T) =r) (T)K,(T),
'

where

(49)

ff.(T) =o'x.(T)& I &), (~)I'&,, (5o)

is the Knight shift in an uncorrelated system.

sum is restricted to those Bloch states which
have the energies between & and &+0&. Substi-
tuting E(l. (27) into E(l. (42) we have

I(& «& D(~=~(», & J ((~&f(» ~&(I (I.(~)I'&. «
+If-D(o, v(T))]p(~). (45)

The enhancement factor for the Knight shift
7ix(T) is shown in Fig. 4. The restriction on the
validity of this result is the same as that of
qx(T). Though qx(T) and qx(T) have the same
characteristic features, gr(T) is less than qx(T)
by a factor D(T). The explanation is as follows:
The susceptibility and the Knight shift are en-
hanced due to the increased unpaired spins. As
the number of unpaired spins increases, the
electr ons also become more localized. Since the
Knight shift is essentially caused by the additional
magnetic field generated by the conduction elec-
trons at the nuclei, the localization will lower
the additional magnetic field and thus reduces
the Knight shift. In our model, the localization
of the conduction electrons is measured by the
bandwidth reduction factor D(T). Therefore,
&ir(T) is less than q„(T) by a factor D(T). De
pending on the taste, one may find another equiva-
lent explanation: Both the Knight shift and the
susceptibility are enhanced through the enhanced
density of states at the Fermi surface. However,
the corresponding band narrowing only reduces
the Knight shift by a factor D(T). This important
feature is in accord with the experimental. results
of the doped semiconductors, and we will. discuss
it later in See. VII.

VI. ELECTRONIC SPECIFIC HEAT

The electronic specific heat also contains the
same two contributions as the susceptibility. If
only single-particle aspects are considered, one
would expect the specific heat to be increased by
a factor [D(T)] ' due to the enhanced density of
states, Bs suggested by Brinkman and Rice.' How-
ever, with increasing temperature the electrons
become less correlated and so results in a less
enhanced density of states. When one considers
this effect together with the thermal excitations
of the electrons in a self-consistent calculation,
the enhancement of the specific heat gets more
complicated. One can arrive to the same con-
clusion from considering the motion of electrons
in the real space. As the temperature is raised,
electrons gain more kinetic energy. On the other
hand, it creates more doubly occupied atoms each
of which costs an energy U. Consequently there
is a delicate interplay between the band and the
localized contributions in the present model.

From the energy per el.ectron

E (T) =D(T)Z(T)+ v(T)U, (51)

0 I I I

0 0.5 l KBT/f&

FIG. 4. Enhancement factor for the Knight shift for
different vahles of A/U indicated bg the nQmbers.

the specific heat of a correlated electron system
is obtained as
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carriers. The excitations from the lower band
to the upper band correspond to the creation of
double occupancies. We may say that our metallic
solution ref ers to this kind of density of states.
For ka T smaller than the pseudogap, C, (T)& Co(T)
because the gap suppresses thermal excitations
and hence v(T) increases very slowly with T. For
k~T greater than the pseudogap thermal excita-
tions readily take place and the specific heat gains
from the enhanced density of states in the upper
band. However, collective excitations like pa-
ramagnons are ignored in our model. Their den-
sity of states is the dotted curve in Fig. 6. At
low temperatures the collective excitations should
give a large contribution to the specific heat in
a strongly correlated metal. The third density
of states represented by the solid curve refers
to the free electrons.

FIG. 5. Electronic specific heat in the metallic phase
where the metallic solution is valid. The dashed curve
is for the uncorrelated electrons.

where C,(T) is the specific heat for U=0. Since

sE, (T) BE (T) BE (T) s v

8+ U(y) Bv zr 8T

the slope of the v(T) vs Tcurve -for-constant
&/U plays an important role in the electron cor-
relation effect on the specific heat. As indicated
in Fig. 2, the metallic solution may introduce
a non-negligible error in Sv/ST in the region
to the left-hand side and below the curve B.
Therefore, this region is excluded from our com-
puted specific heat plotted in Fig. 5. The dashed
curve is the specific heat C,(T) of an uncorrelated
electron gas. Under the condition that our model
is val. id, an enhancement of the specific heat is
observed. One should note that the enhancement
is much less than g„.

Another way to view the electron correlation
effects on the specific heat is to compare the
energy E, (T) with the energy per electron in the
Hartree-Fock approximation E„„(T). For fixed
b, /U, E, (T)&E„„(T)at all temperatures due to the
restriction on the number of doubly occupied atoms
by correlation. However, E, (T)-E„„(T)-jU
as T- ~. Accordingly the specific heat must be
enhanced.

In the region to the left-hand side and below
the curve B of Fig. 2, we find C, (T)& Co(T) when

kaT/6 & O. ll. This can be understood from
Mott's' conjecture as illustrated in Fig. 6. This
figure shows schematically three different density
of states. The split-band Mott-Hubbard type of
density of states (dashed curve) is associated
with the singl. e-particle excitations of current

ALL
EXCITAT lONS r

/
/

/

FREE
TRONS

FIG. 6. Density of states for a highly correlated
metal as conjectured by Mott (Bef. 7).

VII. DISCUSSION

We have extended Gutzwiller 's scheme'
for a highly correlated metal. to finite tempera-
tures. Our treatment is based on: (i) the general
expression for the total energy in Eg. (16) and
the assumption that only one kind of states con-
tributes to the thermodynamic properties of the
system, and (ii) the metallic solution for the en-
tropy which is justified when the number of doubly
occupied sites v~ 0.08. As expected, the vari-
ational approach is found to reduce v at low tem-
peratures. Also at T =0 our results reduce to
the Brinkman and Rice' formula which does not
depend on the entropy. At high temperatures,
on the other hand, the electron correlation be-
comes less important so the v approaches its
Hartree-Fock value 4. Our model becomes doubt-
ful when the system is near the metal-nonmetal
phase boundary. As we argued in Sec. III, this
is due to the lack of sufficient knowledge on the
exact quantum states which is essential for the
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determination of the entropy. However, in the
metallic region, especially for 6/U& 0.6, our
calculated v(T) is accurate enough for a, numerical
computation of the susceptibility and the Knight
shift.

The expression for the spin susceptibility Eqs.
(40) and (41) is a generalization of Brinkman
and Rice's previous results' for the zero tem-
perature case. Our y~ shows a strong tempera-
ture dependence, a behavior which is in agree-
ment with Mott's conjecture' for highly correlated
metals as well as with certain measurements on
Si:P."'" An important feature of Gutzwiller's
method is the explicit treatment of the localized
electronic properties, as indicated by the fact
that our model is justified even for v(T) reduced
to less than —,

' of its Hartree-Fock value. For
those physical quantities which do not depend on
dv/dT, our calculation is reliable within almost
the entire metallic phase if 6/U& 0.6. This par-
ticular treatment is missing in Hubbard's original
Green's-function decoupling scheme. For example,
Kanehisa and Kamimura' "have used Hubbard's
approach to compute the spin susceptibility and
found a sharp drop at the MNM transition in con-
trast to the present work. In Hubbard's scheme
an energy gap opens at the MNM transition and
consequently the susceptibility becomes zero.
In the present approach the enhancement is mainly
due to the appearance of unpaired localized spins.

Our predicted difference between the enhance-
ment factors for the susceptibility q„and for the
Knight shift g~ is supported by the experimental
measurements on Si: P."'"' ' Figure 4 shows
that qz is less than 10 in the region of our in-
terest. When the electrons become more and
more localized, ( ~ g, (r)~'), in Eq. (50) starts
to have sharp peaks around "P nuclei. There-
fore, the shift of the "P NMR line is much larger
than that of the "Si l.ine. The Knight shift of "Si
eventually diminishes when the insulating phase
is approached, as was predicted theoretically
first by Mott." Kamimura" also obtained a van-
ishing "Si Knight shift from the Green's-function
decoupling scheme. His argument is based on
the zero density of states in the energy gap sim-
ilar to what he did for the susceptibility. ""
Therefore, Kamimura's work fails to explain
the large shift of the "P line observed under ex-
actl.y the same experimental conditions.

Apparently it seems that we have been success-
ful in computing the reaiistic spin susceptibility
and Knight shift. Our results for the electronic
specific heat at low temperatures ks T/b & 0.11
are, however, disappointing since one would
rather expect enhanced values also for this case.
Our results clearly indicate that excitations of

single-particle type cannot alone account for
the electronic specific heat, but that collective
effects like paramagnons would have to be con-
sidered. We may therefore say that our results
support Mott's conjectured density of states as
shown in Fig. 6.

One may ask which remedy could be found for
the electronic specific heat. The expression for
the free energy in Eq. (18) and the subsequent
metallic solution Eqs. (23) and (24) were con-
structed under the assumptions that only one kind
of states contributes to the thermodynamic prop-
erties and that the energy is sharply peaked at
some particular value E, . As mentioned, such
a construction corresponds to a density matrix

p =Z I &)p~«l (53)
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APPENDIX A: MODEL CALCULATION WITH

ELLIPSOIDAL DENSITY OF STATES

We consider noninteracting electrons in a sym-
metric, orbitally nondegenerate band which is
centered at e = 0 and has the width 4. If the band
is half filled, the chemical potential is then equal
to zero at all temperatures T. Let p(e) be the
density of states normalized to one. The average
bare band energy per electron is

in which p~ is defined by the microcanonical en-
semble. Such assumptions may be justified when
dealing with the spin susceptibility and the Knight
shift. In those cases the dominant mechanism
behind the enhancement are the development of
localized spins which can respond freely to an
applied magnetic field. For the case of the elec-
tronic specific heat, however, the collective as-
pects are more important. Evidently the re-
stricted summation in Eq. (53) is an oversimpli-
fication. At finite temperatures there is a set
of magnetic solutions with the same energy as
the nonmagnetic ones. If such states were to be
included the total. magnetization is still zero but
the number of excitation modes is increased,
covering the gap in the Mott-Hubbard density
of states as in Fig. 6. This thermodynamic way
of phrasing the problem of collective modes is
similar to Shibaand Pincus's treatment" of finite
rings. By including all kinds of states these au-
thors did indeed find an enhanced electronic spe-
cific heat.
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6/2
Z(T) = —2 de p(e) tanh

p 8

The corresponding entropy is

(Al)
the quantities in Eqs. (Al)-(A4) are easily eval-
uated at intermediate temperatures by numerical
integration.

At l.ow temperatures they may be expanded as

~(T) e(T)= 2 ln2+-
k~ A~T

6,/2
de!p(e) in cosh

B

and the electronic specific heat

(A2)

Z(T) = (b /3)7)(- 2+ z~ ——„z4——,'„',z6),

S(T)=-,'kzz(l ——,', z' ——,",—,z'),

C,(T)= —,kzz (1 ——„z' —'—,', z'),

g, (T)= 4p, e2[2 ——,'z'(1+,—', z'+ —'„'z')]/z(h, ,

(A6)

(A|)

(AB)

(A9)

6/2
2C,(T)=, pep(e)e'e eh' „).B~ p 8

where z =2zkzT/&. For high temperatures one
obtains

The Pauli susceptibility per el.ectron is

~2 h, /2

e,(T)= e p(e)eeeh' „).T p 8
(A4)

e(T) = --', ~z(1--,'z'),

S(T)= 2kz in2 —~kzz'(1 —~z'),

C,(T)= ', kzz'(1 ———„.'z'),

X.(T)= p.,'(1 —4z')/2k, T,

(A10)

(Al 1)

(A13)

With our particular choice of an ellipsoidal density
of states,

(4/wa)[ 1 —(2e/&)'I'(' lf ) e( &-.&,
p

0 ii( e(&-';~,

where z =b, /4ke T. Because there is only one band
of finite width, the classical limit gives &-0 and

Cp 0 For the same reason the c1assical. ex-
pression for yp differs from the corresponding
free-electron gas expression by a factor of 2.
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