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Renormalized atoms: Cohesion in transition metals
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The renormalized-atom method is used to calculate the cohesive energy of the 3d and 4d transition-metal

elements and the equilibrium lattice constant and bulk modulus of two representative elements, Ti and Cu.
The results agree with experiment to within 20% for most elements. The method of calculation allows the
cohesive energy to be decomposed into a number of contributions whose relative importance can be

investigated both as a function of valence and as a function of density. No evidence of d-d repulsion is found
for the transition or noble metals. Instead the "spring" which holds the atoms apart is the result of the
increasing kinetic energy of the conduction electrons as the density is increased. The d-d interaction is

uniformly attractive and produces the minimum in the Signer-Seitz radius near the center of a transition-

metal period. Band structures calculated from renormalized-atom and Xa potentials are compared and the
relationships among them are discussed in some detail.

I. INTRODUCTION

With a few notable exceptions, theoretical work
concerning the cohesive energy of transition met-
als did not represent a major effort until the ad-
vent of large-scale computers. This situation
should be contrasted with the systematic efforts
for alkali metals. " Fuchs' was the first to cal-
culate the cohesive energy of a transition metal
using the Wigner-Seitz technique. In his work on

copper he assumed the d bands could be treated
as core states. Hartree free-atom wave functions
and potentials mere used and the effects of ex-
change mere taken into account to first order in
perturbation theory. His results yielded essential-
ly the correct equilibrium density and cohesive
energy, but the bulk modulus was too small by a
factor of 4. Fuchs postulated that this error was
due to the neglect of exchange repulsion between
the filled copper d shells, an effect which this
paper will show to be absent. Estimating this
repulsion with a modification of the Thomas-Fermi
model he was able to reproduce the experimental
bulk modulus, but the calculated density was 20%
too high a.nd the binding energy was only 50% of
the experimental result. Similar results were ob-
tained by Kambe4 20 years later using the quantum
defect method to generate the effective crystal po-
tential. In both cases it mas assumed that the use
of atomic potentials was sufficient for calculations
of the cohesive energy of solid.

Stern' performed very careful calculations for
Fe which included investigations of the equilibrium

valence-electron configuration and band-structure
effects. Exchange contributions were neglected
and the s and d bands were treated as separate and
noninteracting. (The first band caicuiations to
include s-d hybridization effects fully mere those
of Segail' and Burdick' for copper. ) In spite of
these approximations the calculated Wigner-Seitz
radius, cohesive energy, and bulk modulus were
all in excellent agreement with experiment. Fur-
thermore, Stern found it unnecessary to include an
ad hoc core-core repulsion term.

Qne of the key puzzles was mhy the cohesive en-
ergy of Cu was approximately twice as large as
that of K mhich also has only a single electron
outside closed shells, Van der Waals interactions
among d shells' as well as s-d hybridization ef-
fects' mere postulated as sources for this increas-
ed cohesive energy in the noble metals. Wigner'
and Friedel"' pointed out that in the case of tran-
sition metals the formation of a partially filled d
band accounts for the general parabolic trend of the
cohesive energy across a transition-metal row.
This observation was justified in greater detail
by later calculations of Ducastelle and Cyrot-
I.ackmann. " In the same spirit, Kollar and Solt"
attempted to calculate the trends of cohesive pro-
perties across the Sd and 4d rows using a model
which rather crudely grafted together a nearly-
free-electron conduction band and a tight-binding
d band, but neglected s-d hybridization. The agree-
ment with experiment mas qualitatively'reason-
able, but not quantitative.

More recently there have been a number of de-
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tailed self-consistent calculations of transition-
metal cohesive energies. " Although such calcu-
lations represent the current state of the art and
yield reasonable agreement with experiment, it
is difficult to dissect them in order to obtain phys-
ical insight about which components of the cohe-
sive energy are the most important.

The calculations reported in this paper bridge
the gap between ad hoc models and the most so-
phisticated state of the art calculations. They are
based on the renormalized-atom method for cal-
culating structure-independent properties of tran-
sition metals, which was introduced in a previous
series of papers. " " The method provides both
a technique for generating an effective one-electron
potential for a metal from atomic wave functions
and a means of estimating gross features of the
band structure and cohesive energy without the
necessity of performing detailed band calculations.
While the principal justification for this view
comes from a comparison of renormalized-atom
and band calculation results, some other aspects,
for example, the approximations used to calculate
the band limits of the d and conduction bands of
transition metals, have been discussed explicitly
by Andersen. "

The adequacy of the renormalized charge den-
sity obtained from this approach has been sub-
stantiated by the work of Berggren and co-
workers ' on the electron momentum distribution
determined from Compton profiles. For the two
elements studied, Ti and V, the renormalized-
atom electron momentum distribution is signifi-
cantly superior to that for the free atom. In fact,
the renormalized-atom results agree with experi-
ment essentially within the statistical accuracy
of the measurements and thus obviate the use of
explicit band calculations.

The present calculations include the full effects
of band formation on the sum of one-electron en-
ergies. The placement of the bands is such as to
produce substantially good agreement with experi-
ments measuring one-electron excitations. How-
ever, the calculations themselves are not self-
consistent. The double counted two-electron terms
in the metal are calculated using renormalized-
atom wave functions rather than band eigenstates.
The calculations have the advantage of being
structured in such a way that it is possible to
separate the energy of formation of the metal
starting from free atoms into a number of terms
and examine the importance of each, in particular
its dependence on atomic radius and valence.

Section II reviews and extends the renormalized-
atom method for estimating band energies without
carrying out a full band calculation. Section III
presents a complete set of calculations of the

cohesive energy of the 3d and 4d transition metals
at their experimental density. The results improve
upon the previously published" renormalized-atom
estimates. Section IV extends the cohesive-energy
calculations to calculation of the equilibrium Wig-
ner-Seitz radius and the bulk modulus for K, Cu,
and Ti. Section V presents a simple explanation
of the trend of the equilibrium radius across the
transition-metal rows. This explanation is sup-
ported by a calculation of the equilibrium Wigner-
Seitz radius of all 3d metals based only on the den-
sity dependence of the band structure of Cu.

Appendix A reviews the construction of the re-
normalized-atom potential. A detailed comparison
is made between this method and the common tech-
nique" of overlapping free-atom Hartree potentials
and using a Slater" p' ' exchange potential, and the
origin of the differences is discussed. Appendix
B presents a detailed description of the cohesive-
ener gy calculations.

II. BAND-STRUCTURE INFORMATION FROM

RENORMALIZED ATOMS

One of the goals of the renormalized-atom meth-
od is to abstract the structure-independent pro-
perties of metals without the computational cost
of a full band-structure calculation. In particular,
one would like to know the limits of the spectrum
of eigenvalues of states of a particular character,
such as the energy of the bottom of the conduction
band, the location of the top and bottom of the d
band in a transition metal, and the Fermi energy.
Approximate values for these quantities can be
determined from the single-site potential without
making use of the periodic structure of the solid. "

The construction of the renormalized-atom po-
tential given the atomic wave functions is describ-
ed in Appendix A. To summarize, the atomic
valence wave functions are truncated at the Wig-
ner-Seitz radius (defined by 4iiR3iiii /3 = V/N where
V/N is the volume per atom) and multiplied by a
normalization constant within R» ..

I
N„,R'„", "( ), -R„,. ( )=I 0

Here R'„', " is the atomic radial wave function for
the state with quantum numbers n and l, and A„,
is defined by

~vsQ-2 [Ratomic (+)j 2+& d+
0

A single-site L-dependent crystal potential is con-
structed from these wave functions just as the
free-atom Hartree-Fock potential is generated
from atomic wave functions. This implies the
use of the nucleus-centered Wigner-Seitz ex-
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change-correlation hole which eliminates the
self-Coulomb interaction: an electron at a neutral
site with nuclear charge Z sees the potential due
to the Z —1 0they electrons with different quantum
numbers on the same site. The Hartree localized
exchange approximation" is used to eliminate the
energy dependence of the exchange term.

In Appendix A the renormalized-atom-potential
band structure of Cu is compared with results
calculated from overlapping-atom potentials using
either the Slater' or Kohn-Sham" forms of the
local exchange potential. It is seen that there are
significant differences among these results in the
placement of the bands relative to the atomic zero
of potential and relative to each other. The most
basic cause of these differences is the radial de-
pendence of

&p(r) =p""'(r) —p'" (r),

where p~" and p"' are the charge densities of
the solid and the free atom. The renormalized
atom yields an essentially constant 5p(r) while the
overlapping-atoms prescription leads to a 5p(r)
strongly peaked in the outer regions of a Wigner-
Seitz cell. The greater screening for the renor-
malized atom results in d bands which lie higher
relative to the conduction band. This Hartree po-
tential difference can be offset by varying the
strength of the p'~' exchange potential. Since it is
stronger in the small-radius region where the
amplitude of the d wave functions is large, sealing
down the strength of the exchange potential also
raises the d bands relative to the conduction bands.
Finally, the methods make a different choice of the
zero of the Hartree potential which leads to the
different placement of the bands relative to the
atomic zero.

As was shown previously, " the energy of the
bottom of the conduction band (bonding s level)
and the bottom and top of the d band (bonding and

antibonding d levels) can be determined to within
a few hundredths of a rydberg from appropriate
boundary conditions applied at the Wigner-Seitz
radius.

For bonding states,

d
[R,(R„a, e „)]=0,

for antibonding states,

R,(R„a, e ) =0.

As an example, Fig. 1 shows the Cu logarithmic
derivatives, R, (dR, /dr), evaluated at the Wigner-
Seitz radius for angular momentum l=0 to 2 plot-
ted versus energy. For fcc crystals the bonding
s and P levels correspond to states of I', and I„
symmetry, respectively, while the bottom and

0,2

La(F) 0 0 Lo&(E)

-0.2

-1.0

FIG. 1. Logarithmic derivatives evaluated at the
Wigner-Seitz radius of the renormalized-atom Cu po-
tential for l =0, 1,2 plotted vs energy. The zeros and
singularities of I &(E) determine the band extrema. .

Note the compressed vertical scale for l =2.

top of the unhybridized d band correspond to bond-
ing and antibonding states having X, and X, sym-
metry. The arrows in Fig. 1 denote the location
of bonding states, and the asymptote that of the
antibonding d state.

An approximate value for the Fermi energy can
be calculated from the phase shifts of the single-
site potential. Lloyd" has derived an expression
for the integrated density of states, N(E), of a
cluster of muffin-tin potentials which has the form

N(E) =N, (E)+ —g (2 l+1)r, (E) +N„(E),
2

l

where N, (E) is the integrated free-electron den-
sity of states, proportional to E' '. The second
term, also structure independent, is a function
of the phase shifts 5, (E) of the single-site potential.
N (E) includes the modifications due to scattering
among multiple sites. The approximate Fermi
energy is determined by neglecting the structure-
dependent term and solving the equation

Z N(~, ) N=, (er)+=—g (2l+1)a, (~,),
2

1

where Z is the valence of the atom. The primary
effect of the neglected multiple-site scattering
term is to broaden the relatively narrow resonance
in the l = 2 phase shift into the d band. This implies
that the maximum error in the approximate Fermi
energy determined from Eq. (6) is smaller than
half the d-band width, and that the approximation
is least accurate for a nearly empty or nearly
filled d band.

Figure 2 presents a comparison of energy levels
calculated using these single-site renormalized-
atom approximations for the 4d transition metals
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FIG. 2. Comparison of band calculation results for
the 4d series gine) with the single-site renormalized-
atom estimates (open circles) for the bottom of the s
band (I'&), p band (L2. ), and d band (X'3), the top of
the d band (X5), and the Fermi energy (Ep-).

with corresponding fec structure band calculation
results based on the same potentials. The connect-
ed points and the open circles correspond, re-
spectively, to the band results and the renormal-
ized-atom estimates. The agreement for the band
extrema is comparable to that obtained previously. "
I', is predicted to within 0.005 Ry; I. . X„and
X, are given to within 0.05 Ry or better. The
Fermi-level agreement is less satisfactory with a
maximum difference of 0.09 Ry for Ru. Part of
the difference may be the result of inaccuracies
in the Hodges scheme used to calculate ~~ from
the band eigenvalues when it is applied to metals
with such broad d bands, and part due to the
crystal-structure dependence of the Fermi level.
Pettifor" calculated the integrated density of
states for the same potential on fcc, hcp, and
bce lattices and found the maximum difference
ez~'(1V) —ez" (N) =—0.02 Ry for 6 electrons per atom.

These simple single-site approximations permit
the gross features of the electronic structure of
the metals to be quickly and easily calculated.
They may be useful in obtaining estimates of the
optical absorption edge of noble metals and their
alloys, and in investigating other structure-in-
dependent electronic properties of metals and
alloys.

III. COHESIVE ENERGY OF TRANSITION METALS

An earlier paper" outlined a method for cal-
culating the cohesive energy of metals based on
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FIG. 3. Schematic electronic density of states for Ti
at the various stages in the development of the crystal-
line density of states. The fcc structure is assumed
for the crystal.

the renormalized atom, and presented estimates
of the cohesive energy of the 3d and 4d transition
metals. In this section we will present the results
of full non-self-consistent calculations of the co-
hesive energy of 3d and 4d metals at their equi-
librium density. Section IV will discuss calcula-
tions of the cohesive energy as a function of the
volume per atom.

The cohesive energy of a transition metal can
be expressed as the sum of five terms: (i) the
atomic preparation energy required to excite a
free atom from its ground state to the average
energy of the d" 's configuration appropriate to
the solid"; (ii) the difference in total Hartree-
Foek energy between the free d" 's atom and the
renormalized atom; (iii) the difference between
the average energy of a free-electron band contain-
ing one electron and that of the renormalized
atom s level; (iv) the change in one-electron en-
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ergy per unit cell which results from the broaden-
ing of the renormalized atom d level in the d

band; (v) the change in one-electron energy per
unit cell due to the hybridization of the conduction
and d bands. Appendix B contains a detailed de-
scription of the calculation of the various terms.

Figure 3 displays the density of states of Ti at
each of the five stages in the development of the
full crystalline density of states. The average
energy of the d's configurationis 0.141 Ry above
thed s ground state. When the atom is renor-
malized, approximately 1.06 electrons are forced
inside the Wigner-Seitz radius, decreasing the
one-electron binding energy of the s and d orbitals.
Because of the substantial cancellation of the
double counted electron-electron Coulomb repul-
sion terms, the net energy cost of renormaliza-
tion is only 0.064 By. In panel d the s level has
been allowed to broaden into a free-electron band
beginning at the crystalline 1",. The difference
in one-electron energy between this band and the
renormalized atom s level, E,", is -0.033 By.
The largest contribution to the cohesion of a
transition metal with a partially filled d band
such as Ti is due to the broadening of the renor-
malized-atom d level into the d band. ' This con-
tribution can be calculated from the Hodges inter-
polation scheme" by artificially turning off the ma-
trix elements which lead to finite d-band width.
For Ti the contribution of d -band broadening calcula-
ted inthis manner is -0.375 Hy. In the last panel the
hybridization of the s and d bands has been turned
on. Its effect is to push both s and d states away
from the center of the d band. Since only states
whose energy has been decreased are filled, the
net effect is a bonding contribution of -0.161 By.

The calculated cohesive energy and its compon-

ents for the 3d and 4d transition metals are dis-
played in Fig. 4. For each element the contribu-
tions from atomic preparation, renormalization,
conduction-band formation, and d-band broadening
plus s-d hybridization are indicated from left to
right. The final calculated cohesive energy is re-
presented by the filled block, while the experi-
mental value" is marked by the open block. The
calculations assume the experimental equilibrium
metal density" and the tcc structure.

Examination of the trends of the various contribu-
tions shows that the atomic preparation energy is
uniformly positive (except for the noble metals,
where it vanishes), and is largest for elements
with nearly half-filled d shells.

The renormalization contribution is typically
of order 0.1 By or less. It peaks near the center
of the row because the metallic Wigner-Seitz
radius is smallest relative to the free-atom size
for these elements leading to a maximal renor-
malization of atomic charge. The decrease between
Cr and Mn is due to the sharp increase in Wigner-
Seitz radius between them. There is an uncertain-
ty of order 0.05 Ry in the renormalization energy
for elements in the first two-thirds of the rows.
For these elements the most weakly bound core
p wave functions have non-negligible amplitude
at the Wigner-Seitz radius. For example, slight-
ly more than one-tenth of a Ti atomic 3P electron
lies outside the Wigner-Seitz radius of the metal.
The associated core renormalization effects have
not been included here.

In these calculations the fcc structure has been
used for all elements. The detailed d-band den-
sity of states is structure dependent, but the sum
of one-electron energies which enters the cohesive
energy is only weakly dependent on structure. For
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FIG. 4. Components of
the cohesive energy for
the Bd and 4d transition-
metal rows. For each ele-
ment the experimental
value (Ref. 27) is denoted
by the open box, the cal-
culated value by the filled
box.
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&Eq(N~) = (W/20) [Nq(10 —N~) ].
It vanishes for a filled or empty band, and is a
maximum for the half-filled band. If the true d-
band density of states is more rounded than rec-
tangular, the maximum of &E(N) will be smaller
than predicted by Eq. (7). On the other hand, if
the density of states is concentrated near the top
and bottom of the band, the maximum will be
greater.

The Heine-Hubbard" resonance model of the d
band does not yield a clear-cut separation between
the d-band broadening and s-d hybridization con-
tributions to the cohesive energy. However, some
idea of the relative magnitudes can be obtained by
assuming a constant hybridization contribution,

E„„„,and a d-band broadening term of the form
of Kq. ('f):

E(N) =—n(W/20)N, ~q(10 —N, ~~) + &E~b. (8)

example, Pettifor's" model calculations indicate
that the maximum difference in cohesive energy
among the fcc, bcc, and hcp structures for trans-
ition metals is only 0.03 Ry. In addition the assum-
ption of a common structure has the advantage of
removing a possible source of systematic error.

It is useful to separate the calculated change in
the sum of one-electron energies between the re-
normalized atom and the crystal into the three
components discussed above. Although this separ-
ation is obviously model dependent, the final cal-
culated cohesive energy depends only on the sum
of the terms and is independent of the detailed
separation used. Appendix B presents details of
the method used here.

The s-band broadening contribution tdefined by
Eq. (815)] contributes to bonding, except for Cr.
The magnitude of this term reflects the ratio of
the Wigner-Seitz radius to the atomic radius.
For midperiod elements the d bands pull the atoms
close together compressing the conduction elec-
trons. This raises the conduction band relative to
the renormalized-atom s level and decreases the
conduction-band bonding.

The remaining contributions to the cohesive en-
ergy result from the formation of the d bands and
the hybridization of the conduction and d bands.
From Fig. 4 it is clear that these terms are the
largest part of the transition-metal cohesive en-
ergy. The nearly parabolic shape is a generic
feature of the d-band contribution. In the sim-
plest model the density of states of the d band is a
rectangle of width W placed symmetrically about
the one-electron level of the renormalized atom.
For this model the d-band contribution to the
cohesive energy for an element with N„valence
d electrons is

Here n is a scaling factor to account for the shape
of the d band, and N, ff N Np N is the total num-
ber of valence electrons and N, is chosen to place
the maximum at the correct valence thereby fit-
ting the d-band broadening contribution optimally.
Using the first term in Eg. (8) as the d-band broad-
ening contribution leads to the separation indicated
in Fig. 4. The assumption of a nearly constant
hybridization contribution is consistent with cal-
culations based on the Hodges interpolationseheme.

The agreement between the calculated cohesive
energies (filled boxes) and the experimental values
(open boxes) is better than that found in the earlier
renormalized-atom estimates. " For most elements
the difference between theory and experiment is
less than 0.03 Ry/atom. This agreement may be
partly fortuitous in view of the uncertainty in
some of the contributions. For example, many of
the multiplets of the atomic d" 's configuration for
elements with nearly half-filled d shells are not
identified" which tends to decrease the atomic pre-
paration term. The uncertainty in the renormal-
ization contribution of order 0.05 Ry was discussed
above. The Brillouin-zone integration for the sum
of valence one-electron energies could be in error
by several hundredths of a rydberg. A conserva-
tive estimate of the uncertainty in the final calcu-
lated values would be +0.1 Ry. Because the er-
rors for neighboring elements are correlated, the
uncertainty in trends should be somewhat smaller.

On this scale of comparison the only severe
problem is presented by the result for Ag, where
the calculated cohesive energy is less than half
the experimental value. This is apparently the
result of the renormalized-atom potential placing
the d band too low relative to the conduction band
(see Fig. 2) thus reducing the hybridization con-
tribution. The calculated optical absorption edge
(taken as e~ —L,) is 5.1 eV compared with the
experimental value of 4 eV. Raising the d band
relative to the conduction band would increase the
hybridization contribution and improve the agree-
ment with experiment. Other elements with rel-
atively large errors are Cu (for which the calcu-
lated optical edge is in good agreement with ex-
periment) in the 3d row, and Y and Zr at the be-
ginning of the 4d row.

Self- consistent renormalized- atom calculations'
of the cohesive energy of the 3d and 4d transition
metals based on frozen-core atomic wave functions
yield results in substantial agreement with the
present non- self- consistent values. Self- consis-
tency leads to a slightly more diffuse charge den-
sity which lowers the d bands relative to the con-
duction band. The effect on the cohesive energy
is relatively small, less than 0.1 Ry for all ele-
ments but Fe, Co, and Ni for which the calculated
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courage more precise calculations of the cohesive
energy which will provide bounds on the net effect
of many-body corrections.

IV. DENSITY DEPENDENCE OF THE COHESIVE ENERGY
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value is almost 0.2 By too small compared to ex-
periment. The self- consistent results emphasize
the insensitivity of the cohesive energy to relative
shifts of the d and conduction bands caused by
modif ied electron-electron terms.

These calculations do not include the contribu-
tion of the Van der Waals interaction which Rehr
and co-workers" estimated to be 0.02 Ry/atom
for Cu and 0.03 Ry/atom for Ag. These correc-
tions are too small to explain all but a fraction of
the discrepancy. The present success may en-

-0.8
FIG. 5. Density dependence of the renormalization,

s-band formation, and combined d-band broadening and
s-d hybridization contributions to the cohesive energy
of K, Ti, and Cu. The calculated total cohesive energy
also contains the atomic preparation term which is in-
dependent of the density of the crystal. The open cir-
cles indicate the position of the calculated energy mini-
ma, while the crosses mark the experimental values
(Ref. 34).

The techniques described in Sec. III can be used
to calculate the cohesive energy as a function of
signer-Seitz radius. Figure 5 shows the density-
dependent contributions and the total calculated co-
hesive energy (which includes the density-inde-
pendent atomic preparation term) as a function of
signer-Seitz radius for K, Cu, and Ti. The cal-
culated points have been fitted to a polynomial in
the Wigner-Seitz radius and this poiynomial has
been used to calculate the equilibrium %'igner-
Seitz radius, the cohesive energy at the minimum,
and the bulk modulus. The results are compared
with experiment" in Table I and exhibited in the
figure. The radius of Cu agrees with experiment
to better than 2/0. The Ti radius is small by about
3%, due in part to problems with the renormaliza-
tion energy discussed below. The calculated radius
for K is nearly 5% too large, but, as is seen in
Fig. 5, the minimum is shallow. The cohesive
energy of Cu is too small as it was in the calcula-
tions reported in Sec. III. The calculated bulk
moduli agree with experiment to within about
20/p.

As shown in the following discussion, the sepa-
rationof the calculated cohesive energy into its
components leads to a qualitative understanding
of the competition between attractive and repulsive
forces which determines the equilibrium density.
The order-of-magnitude increases in the bulk
modulus between K and the transition metals Ti
and Cu will be shown to be the result of an attrac-
tive interactionbetween the d shells on neighboring
atoms which reduces the Wigner-Seitz radius,
compresses the conduction electrons, and in-
creases the kinetic energy associated with local-
ization.

The simplest example, K, can be calculated
entirely from single- site renormalized-atom es-
timates. Because K has a single valence electron
outside the core, the atomic preparation term
vanishes. In addition, the renormalization en-
ergy reduces to the difference between the one-
electron energy of the valence s orbital in the re-
normalized atom and the free atom [see Appendix
8, gg. (813), with n, =0]. Finally, the occupied
band structure is very nearly free-electron-like.
As a result of these simplifications, the cohesive
energy (in atomic units) can be expressed as

Here l, is the energy of the bottom of the conduc-
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TABLE I. Comparison of the calculated equilibrium %igner-Seitz radius, cohesive energy,
and bulk modulus for K, Cu, and Ti with experiment (Ref. 34).

Rpe j ll (a u o )
Expt. Calc.

Ecohesxvt;~+y ~

Expt. Calc.
E(40' dynes/cm2)
Expt. Calc.

K
Cu
Tl

4.86
2.67
3.05

5.09
2.7i
2.95
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tion band determined from the Vfigner-Seitz bound-

ary condition as described in Sec. II, and k~ is the
free-electron Fermi momentum defined by

k~ =(9m/4)'~'R„~.

The third term in Eq. (9) is the one-electron bind-

ing energy of the valence s orbital of the free
RtOIQ.

As the signer-Seitz radius is decreased, I',
is at first increasing1y tightly bound because the
valence charge density is compressed into a re-
gion of Inol6 Rttx'Rctlve poteQtlRl. At R %igner-
Seitz radius of about 4.35 a.u. , I", passes through
a minimum and then rises with decreasing radius
as the kinetic energy cost of compressing the
charge becomes dominant. The miniIQum of I',
+ —,'k~~ falls at a larger radius than that of I', be-
cause the Fermi-energy term is increasing positive
as the radius is decreased. The bulk modulus,
defined by

e'z„„ l s2z(r) 2 sz(r)
BV 12Fg Bg g eg

remains above the top of the d band even when
the signer-Seitz radius is decreased to 2 a.u. ,
equivalent to R coIQpl essloD to Inore thRQ twice
the equilibrium density. Thus excitation of d elec-
trons into higher states, which would signal the
d-d exchange repulsion often ascribed to noble
metals, is not observed in these calculations.

Returning to the Cu portion of Fig. 5, one finds,
in fact, that the d electrons provide a bonding
conti lbutloD through the 8-d hybl ldlzatlon term.
(The d-band broadening energy vanished for a
filled d band. ) Hybridization is increasingly bond-
ing as the radius is decreased implying an attrac-
tive force between the atoms. The renormalization
contribution is uniform1y positive and increases
with decreasing radius. The conduction-band form-
ation energy goes through a shallow minimum out-

0.8—

is small for K because the curvatures of both con-
tributing terms in Eg. (9) are small.

It is not possible to calculate the cohesive energy
of a noble or transition metal using this same
simple renormalized-atom technique. The d-band
broadening and s-d hybridization contributions
both depend on the shape of the density of states,
not merely the band extrema. Thus it is necessary
to calcu1ate the band structure as a function of
density. The resu1ts for Ti and Cu are summarized
in Fig. 6. Plotted are I'„ the limits of the d band,
and the Fermi energy. For 'both elements the be-
havior of I", is similar to that described for K.
The radius of the minimum of I', is smaller for
Cu thRQ fol Tl leflectlDg the more compRct Cu
atomic s orbital. As the density is increased,
the d bands broaden approximately as R ' for
Cu as predicted by the resonance modep' but
less rapidly for Ti where the narrow d-band
approximation is less appropriate. For any x'a.—

dius the Ti d-band width is greater than that of
Cu because of the greater overlap of the more
diffuse Ti d orbitals. The Fermi energy in Cu

lK
OO&:4J

d BANDS
6F

s (a.u.)

BANDS

I"IG. 6. Gross features of the Ti and Cu band
structures as a function of signer-Seitz radius.
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side the equilibrium radius. The Wigner-Seitz
radius is thus determined by the competition be-
tween the attractive s-d hybridization contribution
and the repulsive contribution of the other two
terms. The dominant contribution to the bulk
modulus'" is the term I', +-', k~. If this were the
only contribution, the bulk modulus evaluated at
the calculated equilibrium radius would be 1V && 10"
dynes/cm', about 50% larger than the full calcu-
lated value give in Table I. The fact that the
bulk modulus of Cu is a factor of 40 larger than
that of K is due to the attractive s-d hybridiza-
tion term which compresses the conduction elec-
trons to a density region mhere both I', and k~
have large positive curvatures.

This viewpoint is confirmed by treating Cu as
an alkali metal. If one neglects the Cu d electrons
and uses Ecl. (9) to calculate the cohesive energy,
one finds that the equilibrium Wigner-Seitz radius
is increased to approximately 3.36 from 2.6 a.u. ,
the cohesive energy is reduced to -0.11 from
-0.20 Ry, and the bulk modulus falls by almost
an order of magnitude from 11&&10" to 1.8 ~10"
dynes/cm'. These results are in conflict with the
quantum defect method calculations by Kambe'
and the earlier cellular method studies by Fuchs. '
To reproduce the experimental Wigner-Seitz radius,
these authors found it necessary to invoke a re-
pulsive interaction between the cores of neighbor-
ing atoms. The dominant contribution was assumed
to come from the filled d shells. The extra re-
pulsive term was needed because it had been as-
sumed that the potential acting on a valence elec-
tron in the crystal was the same as that in the
free atom. The compression of the valence charge
density in the crystal, which Kambe and Fuchs
neglected, results in a potential which is weaker
as the atoms are brought closer together, thus
increasing the equilibrium radius.

In the Ti panel of Fig. 5 the broad d band is re-
flected in the large s-d hybridization and d-band
broadening contributions to the cohesive energy.
The minimum in the calculated cohesive .energy
falls in a region where the conduction-band forma-
tion contribution is bending rapidly upward. Again
this is the dominant term in the bulk modulus.
Neither the renormalization energy nor the d-band
terms shoms significant curvature near the equi-
librium density.

The larger uncertainties in the theoretical equi-
librium Wigner-Seitz radius and bulk modulus for
Ti as compared to K or Cu are the result of the
weak binding of the Sp core state. As noted in
Sec. III nearly 2/o of the Ti atomic Sp charge lies
outside the Wigner-Seitz radius, implying that
this level should be renormalized, which was
not done in the present calculations. Both the

sign and the magnitude of this additional effect
on the cohesive energy are therefore unclear.

These calculations of the cohesive energy versus
Wigner-Seitz radius lead to several conclusions:
(a) For all Sd and 4d transition and noble metals
the formation of the d bands provides not only a
bonding contribution (the magnitude of cohesive
energy is increased) but also an attractive force
(the bonding increases as the interatomic separa-
tion is decreased). (b) The "spring" which holds
the atoms apart is primarily due to the kinetic
energy of the conduction electrons. While they
provide a bonding contribution (except in the case
of Cr) the conduction electrons have been com-
pressed into a density region in which the bonding
decreases as the atoms are brought closer
together.

V. CHEMICAL TREND OF THE WIGNER-SEITZ RADIUS

The calculations of the cohesive energy as a func-
tion of Wigner-Seitz radius for Cu and Ti shed
light on the variation of the Wigner-Seitz radius
across the transition metal rows. If the d elec-
trons did not affect the binding, all metals in a
period could be treated as alkali metals, and the
equilibrium radius for each element would be
determined by the minimum of I', + -', k~. This
radius mould decrease monotonically across a
period reflecting the monotonic decrease of the
size of the atomic valence s orbital due to the
increasing nuclear charge. In fact, the d bond-
ing effects are large and their influence modifies
the expected variation of the metallic radius. As
discussed above, the strength of the one-electron
bonding due to the d electrons is proportional to
the bandwidth, vanishes for an empty or filled d
band, and is a maximum for a half-filled band.
There is no corresponding simple expression for
the s-d hybridization contribution. It mill have a
qualitatively similar behavior since the hybridiza-
tion matrix element increases as the bandwidth in
creases, and the hybridization contribution is lar-
gest near a half-filled d band. Its effect, homever,
does not vanish for a filled band, but instead tails
off with increasing valence. For example, it still
contributes significantly for Cu. Including these
d-band contributions will have the effect of de-
creasing the equilibrium Wigner-Seitz radius
since their magnitude increases as the atoms are
squeezed together. The decrease should be ap-
proximately parabolic as a function of the number
of electrons per atom with the maximum effect
near 6 electrons per atom. The final predicted
curve of the Wigner-Seitz radius versus valence
is then a skewed parabola, the parabola resulting
from d bonding and s-d hybridization and the
skeming from the increasing nuclear charge.
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FIG. 8. The Wigner-Seitz radius calculated from the
Cu density of states filled with N rather than 11 elec-
trons. The shading indicates the uncertainty resulting
from different approximations to the renormalization
energy.

FIG. 7. Experimental Wigner-Seitz radius (Ref. 28)
of the M, 4d, and 5d transition-metal series (open
circles, triangles, and squares). The radii of the differ-
ent allotropes are indicated for Sc and Mn. The error
bars indicate the calculated Wigner-Seitz radius based
on the density dependence of the Cu band structure.

The curves in Fig. 7 show the valence dependence
of the experimentaP' Wigner-Seitz radius in the
three transition-metal periods. If more than one
allotrope exists, the additional points represent
the radius of the less dense structures. The bars
indicate calculated values for the 3d row explained
below. The experimental curves do show the ex-
pected behavior except in the 3d period between
Mn and ¹iwhere the radius is larger than one
would estimate based on comparison with the 4d
and 5d periods. Mn and to a lesser extent Sc are
anomalous in having crystal structures with w'ide-

ly different densities. For the other elements the
change in signer-Seitz radius between different
structures is less than 1%.

Additional confirmation of this viewpoint can be
gained from a simple model of the cohesive energy
as a function of radius for all 3d transition metals
based on the Cu calculations reported above. Let
us suppose that it is legitimate to make the follow-
ing physically plausible assumptions:

(i) For every 3d element Z there exists a measure
of radial scale R „(Z)and a constant a(Z) =R „(Z)/
R„(Cu) such that (a) the renormalization energy
at any radius R is equal to the Cu renormalization
energy at the radius R' = n(Z)R, and (b) the band
structure at any radius R can be scaled onto the
Cu band structure at radius R' = n(Z)R

(ii) A suitable choice of R„(Z) for each element

is the radius of maximum radial charge density
of the Hartree-Fock atomic valence s orbital.

In order to utilize these assumptions, one first
calculates E(N, R), the cohesive energy of the
Cu band structure as a function of the number of
valence electrons N and the signer-Seitz radius
B. Denote the minimum energy as a function of
radius by E,„(N) and the radius of the minimum
as R „(N). Under the assumptions stated above,
the equilibrium radius of the 3d element with N
valence electrons is given by R,„(N)[(R„(Z.)/R„
(Cu)]. R „(N), the hypothetical radius of Cu with
N rather than 11 electrons, is plotted in Fig. 8.
The essentially parabolic dependence on N is a
reflection of the d-band formation contributions
described above. The result of correcting for the
Z dependence of the radial scale factor" is plotted
as the bars in Fig. 7. The general trend is re-
produced quite well based simply on calculations
of the Cu band structure and information about
the size of the atoms. The smooth trend of the
calculated results is more characteristic of the
4d and 5d series than the 3d series which exhibits
a bump between Mn and ¹i."

This simple model works remarkably well. It
is not surprising that the individual terms in the
cohesive energy obey scaling relationships. The
renormalization energy depends on the amount of
free-atom charge outside the signer-Seitz radius,
which will depend on the effective exponential de-
cay length of the atomic charge density. Thus the
signer-Seitz radius corresponding to a fixed
amount of charge outside R» will be proportional
to the decay length. Similarly one expects the
d-band width to bt.' proportional to the amount of
overlap of d functions on neighboring atoms.

The surprising fact is that a model with a singl'e
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scale length for each element works as well as
it does. One would expect that the density depen-
dence of the renormalization energy and the bot-
tom of the conduction band would be sensitive to
the size of the s orbital, but that the d-band width
would depend on the d orbital size. In fact, inves-
tigation of Fig. 6 indicates that scaling is not sat-
isfied in detail. The Cu and Ti d-band widths scale
as different powers of R; while the Cu d band is
sufficiently narrow in the region 2.5-4 a.u. to be
described by the Heine-Hubbard resonance model,
the Ti d band is much broader and in fact scales
with radius approximately as R "rather than R"'.

Perhaps a model using the atomic s orbital as
the scale length is relatively successful because
the equilibrium radius is determined by the radius
at which the conduction-band formation energy
bends up sharply, and this radius is relatively in-
sensitive to the d band.
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APPENDIX A: RENORMALIZED-ATOM AND OVER-

LAPPING-ATOM POTENTIALS

The renormalized-atom potential for an electron
in orbital i is given by

y(y)s;(y)= EI ls;(")l'
ws t r —r'i

Q 5(m„, m„.) ' gf(r')g, .(r') d'r' g, (r), (A1)

lycyyst(~r) ly csyst (r) + ycryst g~r)

where

(A2)

-and

0

l'""*' .(r) =- «[(2/g) p"""(r)]'", (A4)

where P, (r) is the renormalized wave'function for
the ith orbital whose radial part is defined in Eq.
(1), Z is the nuclear charge, the 6-function re-
stricts the third term to electrons with the same
spin, and the integrals extend over the Wigner-
Seitz sphere. The first two terms in Eq. (A1),
the sum of the nuclear and direct electronic
Coulomb potentials, are the Hartree potential.
The third term is the exchange potential written
in the Hartree localized exchange approximation. "
The self-Coulomb interaction included here in the
Hartree potential is cancelled by the self-exchange
interaction. This is equivalent to including a Wig-
ner- Seitz exchange- correlation hole: an electron
on a neutral site with nuclear charge Z sees the
potential due to Z —1 other electrons on the same
site.

The most common prescription for constructing
non- self- consistent potentials is to overlap atomic
Hartree potentials and add an exchange potential
proportional to the cube root of the overlapped
charge density'"":

with

a (y) a """(y)+=&"I"a"-.ty —a.)I.
0

The notation PP "]indicates that only the spher-
ically symmetric part of the sum is retained. The
parameter n is usually given a value between
n= 1 suggested by Slater" and o. = —,'as derived by
Gaspar" and Kohn and Sham 2 Schwarz~ has
tabulated the value of n for which the total energy
of a free atom using an exchange potential of the
form of E(l. (A4) is e(equal to the Hartree-Pock en-
ergy for the elements H through Nb.

Figure 9 compares the energy bands for Cu along
the [100]direction using the renormalized-atom
potential and overlapping- atom potentials with
a =1 and ot =-', . The three potentials were con-
structed from the same frozen-core Cu d "s
Hartree-Fock atomic wave functions. There are
striking differences both in the energy of the d
bands relative to the conduction band, and in the
energy of the complex of bands relative to the
atomic zero of potential.

Three factors contribute to these differences:
(1) the treatment of exchange, (2) the radial de-
pendence of 5p(r) = p")'t(r) —pa(am(r)s and (2) the
choice of the zero of the Hartree potential in the
crystal. If one compares the exchange potential
defined by Eq. (A4) with o( =1 and the renormalized-
atom exchange potential defined by
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Also indicated are the free-
atom Hartree-Fock one-
electron energies for the
3d and 4s orbitals.
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where N,. is the normalization constant for the ith
orbital defined by EII. (2), n; is the number of
electrons occupying the orbital, and lItI;.™(r)l' is
the atomic charge density of the orbital. The
dominant contribution to this sum for a transition
metal comes from the valence s orbital. Thus
5p(r) will exhibit the same radial dependence as
the s orbital. This implies that the largest value
of 5p(r) occurs in the region of the core oscilla-
tions, and that 5p(r) is essentially constant over
the outer portions of the Wigner-Seitz cell.

The difference between the crystalline and atomic
Hartree potentials can be calculated from 5p:

VRAh(r) = V"(r) —VRA (r)
Hartree

one finds that in the region where the d functions
are large they differ by less than 0.2 Ry. Similar
behavior is observed in the 4s raidal region. ~ The
difference between panels (a) and (b) of Fig. 9
therefore is not due to the differing treatment of
exchange.

Next consider |Ip(r), the difference between the
crystalline and atomic charge density. Since a
Wigner-Seitz cell in the crystal is neutral, the in-
tegral of 5p(r) over the cell, Q,„„must be the
same for the renormalized atom and for overlap-
ping atoms. The radial dependence is quite dif-
ferent. For p"I'LI (r) defined by EII. (A5), 5p(r) is
small for small x and strongly peaked in the outer
portions of the cell. For the renormalized atom

r
Vg,",,'„,(r) —V„";„„,(r) = — 5p(x)x' dx

y'

p( )
x

(A8)

5V(r) = '"' [3—(r/R„, )'j +C,
WS

(A9)
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FIG. 10. Difference between the crystalline Hartree
potential and the atomic Hartree potential as a function
of radius. The shape of the curves reflects the radial
dependence of the difference between the crystalline and
atomic charge densities.

Figure 10 displays this difference for the renor-
malized atom and for overlapping atoms. To
zeroth order the overlapping-atoms curve is con-
stant, consistent with 6p strongly peaked near 8„,.
If 5p itself is constant, the solution of EII. (A8) is
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which is a good representation of the renorma1. -
ized-atom curve, at least in the region x &1. Be-
cause most of the d charge lies in the region ~ =1
while most of the conduction charge lies outside
x =1.5, Fig. 10 implies that the d bands will lie
higher relative to the conduction band for the re-
normalized-atom potential than for the overlapping
atoms potential as is seen in Fig. 9.

Figure 11 compares the Hartree potentials for
the free atom with the two models of the crystal-
line Hartree potential defined above. The poten-
tials are plotted as 2xV(a.) to emphasize the large-
radius region. The renormalized-atom curve is
always above that for the free atom, the overlap-
ping atoms curve is always below. This is a re-
sult of a different choice of the constant of inte-
gration in Eg. (A8). For the renormalized atom, C
is chosen to give VH',",',t,„,(R„,) =0. For overlapping
Hartree potentials, all of which are negative, the
sum will be more negative than any of the indi-
vidual potentials. Thus, even though a Wigner-
Seitz cell is neutral, the Hartree potential at the
surface of the cell is not zero. This is equivalent,
in a bounded crystal, to a nonzero surface dipole
layer as defined by Seitz.~ The difference between

face dipole layer one would obtain by modelling the
crystal charge density with overlapping atoms.

The difference between the two models of the
Hartree potential can be partly offset by varying
the strength of the exchange potential in Eg. (A4)
as is demonstrated in panel (c) of Fig. 9. Reduc-

ing the strength of exchange decreases the binding
of all states, but because p(r) and thus V,„,h(a) is
larger in the region of the d electrons, reducing
n has the effect of raising the d bands relative to
the conduction bands.

APPENDIX B: COHESIVE-ENERGY CALCULATIONS

The calculations of the cohesive energy of the
transition metals rely on the use of the renor-
malized atom to calculate: (a) the change of the
two-electron (Coulomb and exchange) integrals be-
tween the solid and the free atom, and (b) the ef-
fective one-electron potential to be used in an en-
ergy-band calculation. The resulting cohesive en-
ergy is given by

b,E =dE (atomic preparation)

+ &E (renormalization}

+ r E,„„„,.„(band formation) . (Bl)

The first term is the energy necessary to excite
an atom from its ground state to the average of the
d" 's valence electron configuration where n is the
total number of valence electrons. This quantity
is determined by averaging the energy of the ob-
served multiplets" of the d""'s configuration. For
example, the average energy of the d'8 configura-
tion of Ni relative to the aF(d'sa) ground state, hE
(atomic prepartion), is 0.013 Ry.
This procedure could not be used for Tc because

too many of the multiplets of the d's configuration
are not cataloged for a reliable average to be cal-
culated. Instead the trends of the four quantities

0.0
0.0

"10-
Cl
4a

Cl

II -2.0—
V
4a

N
I

-3.0—

R (a.u.)
1,0 2.0 Rws3.0

(d" 's)„- (d"-'s') -„,
(d" 's)„- (d" 's'),„,
(d -as')„—(d 's'),„,
(d' 's)„-(d" 's),„,

in the 3d sequence Cr-Mn-Fe and the 5d sequence
%-Re-Os were interpolated to the sequence Mo-
Tc-Hu. In these expressions ( ~ ~ )„denoted the
energy of the average of the configuration, and

(~ ~ ~ ) „denotes the energy of the lowest multiplet.
The atomic preparation energy for Tc, the dif-
ference between (d's)„and the 'S(d'sa) ground
state, can be estimated from the following expres-
sions (the number in parentheses is the resulting
value of the atomic preparation energy):

FIG. 11. "Effective nuclear charge" as a function of
radius for {b}atomic Cu and for {a}the renormalized
and {c}the overlapping atoms prescription for calculating
the Hartree potential of the crystal.

(d's),„—(d's') „, (0.206 By)

[(d's),„-(d's')„] + [(d's')„- (d's') „],
(0.209 Hy) (B3)

[(d's)„-(d's) „]+ [(d's) „-(d's'} „],
(0.183 Ry) .
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An average value of 0.2 Ry was used for Fig. 4.
The second term in Eq. (81) is the difference in

total Hartree-Fock energy between the free atom
and the renormalized atom. 4' This can be written
in the form

on (rnnortnnttnntton) =g (nti n+t(Itt 1)nUo

n QP

where the sums run over the occupied orbitals,
n,. is the occupation number of the ith orbital, and
4 denotes the difference between the renormalized-
atom and the free-atom value. I, is the one-elec-
tron kinetic and nuclear potential energy integral

d' l(l+ 1) 2Z
P„*,(r) — -2+, ——P„,(r) dr, (85)

0

and G'(nl, n'l') the exchange integral

G~(nl I n'l') =
R R

P„*r(r,)P~,.(r, ) ~„'
0

x P„,(r, )P~,& (r, ) dh, dr, .

(810)

For the case nl =n'l', these definitions imply G~

yk

If we define core levels (C) to be those for which
the integrated charge density outside the Wigner-
Seitz sphere is negligible, and assume that the
kinetic energy of these orbitals is the same in the
solid as in the atom, then for i(= C, ~I&=~U, , =O.
After separating the sums in Eq. (84) into contri-
butions from core and noncore orbitals, Eq. (84)
can be rewritten as

&E (renormalization)

1 1
n,. nt, ——,(n; —1)oU, —— n;nU;t)

2 Qi
where n and l are the quantum numbers of the ith
orbital. The upper limit of the integration is the
renormalization radius (infinite for the free atom),
P„,(r) is the radial function normalized by

Here

(811}

[P„,(h)]'dr=1, (86)
nn, . =ItIt+ (n,. —1)oU, , rQ ntnUt, . (812)

=P'(nd, n'd) ~1 G'(nd, n—'d)

-~1 [G'(nd, n'd) + G'(nd, n'd)] . (Ba)

Similar expressions are given by Slater44 for the
other two-electron integrals. In these expressions
E~(nl, n'l') is the Coulomb integral defined by

P"(nl, n'l') =
R R 2~0

P.*l(h )P~l (&2) ~'1
0

&P„g(h,)P~ g, (h, ) Ch, Ch, ,

and Z is the nuclear charge. The unit of energy is
the rydberg. The kinetic energy integration for the
renormalized atoms does not include a contribu-
tion from the truncation of the wave functions at
A„s. U, &

is the average-of-configuration weighted
sum of Coulomb and exchange integrals. " For
example, for two d electrons with the same princi-
pal quantum number

Uq; = U(nd, nd)

=F'(nd, nd) —(2a f f[E'(nd, nd) + 4G'(nd, nd)]

+-', [F'(ndtnd)+8G'(ndtnd)j j .
(BV)

For two d electrons in different shells

UU = U(nd, n'd)

is the change in the Hartree-Fock one-electron
energy. Note that Eq. (811)does not explicitly
contain core integrals. If one assumes that only
the outermost s and d orbitals are affected by re-
normalization, then the result (812) for the d" 's
configuration can be rewritten as

TABLE II. Components of Eq. (Bf3) for Cu renormal-
ized to its equilibrium density.

s

6U~

m(ren. )

O. f00 Ry
0.568 Ry
0.0524 Ry
0.335 Ry

0.075 Ry

&E (renormalization)

=&e,+n„[&e,——,'(n, —1)aU~- aU„] . (812}

This form exhibits the large cancellation between
the one-electron energy shifts and the two-electron
terms. Table II lists the various components of
this equation for Cu. The degree of cancellation
between &E~ and the change in valence Coulomb
integrals is similar for other transition metals.

The final contribution to Eq. (81) is the change
in total one-electron energy due to the broadening
of the sharp renormalized-atom levels into bands
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=I' + — ' —&"
band formation (B15)

where I', is the lowest state in the conduction band
determined from either Wigner-Seitz boundary
conditions as in Eq. (8) above or a band-structure
calculation, and k~2 is calculated from the free-
electron model

u,' = (see/V)'~' . (B18)

The partitioning of the remainder of &Eon~, i.„„„
into d-band broadening and s-d hybridization terms
is accomplished either by using the combined in-
terpolation scheme or by assuming that the hy-

AE„„„„„(bandformation)

e~
Ep(E)dE —

gnat,
", (BN)

where p(E) is the one-electron density of states re-
sulting from an energy band calculation and e", is
the renormalized-atom one-electron energy for the
ith valence orbital defined in Eq. (B12).

In practice the one-electron energy sum for the
band is calculated either by fitting the parameters
of the combined interpolation scheme" to sym-
metry-points eigenvalues, or by the special points
averaging method" using ten low-symmetry points
in the irreducible wedge of the Brillouin zone. The
two methods yield the same one-electron sum to
within about 0.02 Ry even though the rms error of
the interpolation fit is relatively large ()0.02 Ry)
for the broad d bands in the center of the periods.

The separation of &E.„„„„„„into its various
components is defined as follows:

&E»„„,——E(full) —E(no hybrid),

hE„„,«„=E(no hybrid)

(Bl'f)

—E(no hybrid, no d width), (B18)

where E is the band sum of one-electron energies.
Due to difficulties fitting the parameters of the

Hodges model to the broad d bands in the middle of
the 4d series, this method could not be used for
the partitioning indicated in Fig. 4 although it was
used for Figs. 3 and 5. For Fig. 4 the hybridiza-
tion contribution was assumed to be essentially
constant for the elements with 3 to 9 valence elec-
trons per atom, as indicated by interpolation
HamQtonian calculations, with the constant chosen
to give a d-band broadening contribution propor-
tional to the product of the d-band width and a
quadratic function of N„- 5, where N~ is the num-
ber of d electrons per atom. For the M elements
this gave N~=N —1.3, for the 4d elements N„
=N —1.5. The resulting partitioning should be
viewed as semiquantitative at best. However, as
emphasized in the main body of the paper, the
total cohesive energy is independent of the parti-
tioning chosen.

bridization contribution is constant near the mid-
dle of a row and fitting its magnitude and an ad hoe
d-band broadening term to the calculated sum.
When using the interpolation Hamiltonian, the two
terms are calculated by successively turning off
the parameters which produce s-d hybridization
and d-band width:
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