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Renormalization-group results for the Blume-Capel model in two and three dimensions
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A Kadanoff lower-bound renormalization transformation with three variational parameters has been applied to
the Blume-Capel model by Burkhardt. We report some additional results obtained in a particular one-

parameter subspace of the three variational parameters. In this subspace the transformation treats the three
possible Blume-Capel ground-state configurations with all the spins in the same state on an equal footing and

preserves the three-state permutational symmetry of the Potts model. There are fixed points associated with

first-order, critical, and tricritical transitions, The variational parameters maximizing the free energy at the
critical and tricritical fixed points differ by only a few percent. The critical exponents associated with the
different transitions and various points on the critical surfaces are calculatedfor d = 2,3 dimensions.

INTRODVCTION

The Blume-Emery-Griffiths-Potts model" has
the Hamiltonian

$C = J Q &T((T~ -K Q. (P)(Tq + 4 Q 0'g+ If Q 0'g
~ (1)

&4& &~i&

where the spin variables 0 take the values +1, 0
and the exchange interactions only involve nearest
neighbors. The Hamiltonian of the Blurne-Capel
model' is given by Eq. (1) with K=0. The Hamil-
tonian of the three-state Potts model' is obtained
from Eq. (1) by setting 8 = —,

'
J~, K = —,J'~, & = q J~

+ —,'(g, 2g yg, ), and If= 2(f, —f,), where q is the
coordination number of the lattice. The three-
state Potts Hamiltonian is conventionally written
in the equivalent form

(2)

where the 5 is a Kronecker delta and where ~
takes the values +1, 0. If the fields g are all
equal, the Potts model is invariant under permu-
tations of the three spin states. In this paper we
will be mainly concerned with the Blume-Capel
model. For a global phase diagram in J, K, and
4 based on a position-space renormalization-group
approach, we refer to an article by Berker and
Wortis. '

Burkhardt' has analyzed the critical behavior
of the Blume-Capel model using a Kadanoff lower-
bound renormalization transformation' with three
variational parameters p. The calculation has two
unsatisfactory aspects which are improved upon
in this paper: (i) For d= 2 quite different varia-
tional parameters maximize the free energy at the
critical and tricritical fixed points. For the op-

timum variational parameters of the critical fixed
point there is no tricritical fixed point. To com-
pute crossover behavior one must interpolate in

(ii) For d= 2 there appears to be no p maximiz-
ing the free energy at the tricritical fixed point.

In dealing with phase transitions which are not
purely ferromagnetic, it is advisable to choose a
renormalization transformation which treats the
different ground states on an equal footing. ' For
the tricritical behavior of the Blume-Capel model
the three possible ground-state configurations
where all the spins are in the same state are of im-
portance. For the case that all the site spins in
a cell are the same, we impose the requirement
that the weight function' ' relating the cell and site
spins only take two possible values, W, if the cell
spin equals the site spins and S' otherwise. 'This
condition restricts the three variationai param-
eters of Ref. 5 to the one-parameter subspace p
=p, (l, -2, 2). Imposing the stronger condition that
the renormalization transformation preserve the
three-state permutational symmetry of the Potts
model (with all the g equal) leads to the same
one -parameter subspace. '

In the restricted subspace of variational param-
eters we have found discontinuity, "critical, and
tricritical fixed points associated with first-order,
second-order, and tricritical transitions in the
Blume-Capel model and an anomalous tricritical
point of the type discussed by Straley and Fisher"
associated with the Potts transition (with all the

equal). The Potts tricritical results have been
described by Dasgupta" and by Burkhardt, Knops,
and den Nijs. " 'The optimum values of p, for the
various critical and tricritical fixed points differ
by only a few percent, and changing from one value
to another causes no drastic changes in the fixed-
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TABLE I. Critical and tricritical exponents. For 6t =2
pos =0.7765, p(' =0.8186, p =(0.7660, —~,~), p
=(2.983,—1.396,-0.07295). For d=3 pp =0.4086, pekoe

=0.4168, p(')'= (0.4034, —,).
Critical

exponents
Known value

or best estimate

d=2 2—Q

Tricritical
exponents

2.001
15.08

1.887
4.605

1.998
15.04

1.887
4.604

(t)+
p

2
15

1.92+ 0.04
5.0 + 0.2

Known value
ar best estimate

d =2 2-&t

d =3 2-nt

6t

1.057
0.4268
35.25

1.213
0.2573
8.291

1.113
0.4445
26.59

~(t)g

found

See Refs. 2, 5

point topology. There is also an optimum value
of po for the d = 3 ordinary tricritical point.

RESULTS

The values p,"'~ and p,'"*which maximize the
free energy at the critical and tricritical fixed
points and the corresponding critical exponents
are shown in Table I. For d= 2, 3 the ordinary
critical exponents agree impressively with the
known values and best estimates. The d= 2 tri-
critical exponents may be compared with tables
of Monte Carlo" and q-expansion" results in Refs.
2 and 5. Our value of 5t appears to be too large.
The calculated d = 3 tricritical exponents deviate
considerably from the mean-field values predicted
for d~3 by Riedel and Wegner" using renormali-
zation-group arguments. Surprisingly the d = 3
Potts anomalous tricritical exponents" are much
closer to those mean-field values.

Since the Blume-Capel model does not have the
three-state permutational symmetry of the Potts
model, one might expect improvement in the cri-
tical exponents upon leaving the subspace p =p, (1,
-2, 3) in which the transformation preserves the
permutational symmetry and optimizing with re-
spect to all three variational parameters. This
leads to p"'* and p'"~ and the corresponding ex-
ponents in Table I. For the critical fixed points
p,"'~- -~ and p,"'*-~ in such a way that the spin-
1 renormalization transformation becomes equiva. -
lent to Kadanoff's spin- —,

' transformation' and yields
identical critical exponents. The critical fixed
points of Ref. 5 are different from the ones re-
ported here (for p"'*). Apparently the lower-bound

transformation may yield more than one plausible
candidate for a fixed point of a given type. The d = 2
tricritical fixed point reported in Ref. 5 and here
(for p'"*) are the same. The d=2 p'"* tricritical
exponents deviate from the Monte Carlo and &-
expansion results but are quite close to the values
obtained in Ref. 2 with a different renormalization-
group transformation. As in Ref. 5 no p'"~ maxi-
mizing the free energy at the tricritical fixed point
with respect to all three variational parameters
could be found. From 'Table I one sees that maxi-
mizing with respect to all three variables does not
substantially alter the critical exponents except
in the case of 5„which depends very sensitively
on its corresponding eigenvalue. The change in
5, only represents a 1% change in the eigenvalue
y = ink/In2.

One expects the discontinuity fixed point" as-
sociated with the line of first-order transitions
(triple line) in the H= 0 phase diagram to have
two relevant operators with eigenvalue y = d. , cor-
responding to the discontinuities in (0) and (a ).
%'ith p, =po"'* both eigenvalues equal 1.984 for
d= 2 and 2.993 for d=3. As p, increases toward
~, maximizing the fixed-point free energy, the
fixed point moves toward ~ in the space of cou-
pling constants, and the relevant eigenvalues rapid-
ly approach y =d.

Since P,"'~ and p,'"*differ by only a few percent,
the phase diagrams calculated with the two values
are practically the same. Using an initial deci-
mation transformation" followed by the lower
bound transformation with p,"'*, we find the II=0
phase diagram for the d= 2 square lattice shown
in Fig. 1. The intersection of the line of critical
points with the 4 = 0 axis, which gives the critical
temperature of the spin-1 Ising model, is at 7/
ksT =0.685 (0.592) for the 2 =2 square latti. ce and
at 0.241 (0.225) for the d = 3 bcc lattice. The num-
bers in parentheses are series estimates. " For
the Blume-Capel tricritical parameters we find
b/qZ, ks T/q J to be 0.495, 0.133 for the d = 2
square lattice and 0.472, 0.212 for the d = 3 bcc
lattice. Again the d=2 results are in better agree-
ment with the quite different renormalization-
group calculation of Ref. 2 than the Monte Carlo
estimate" of 0.474 +0.003, 0.1925+0.025 for a
100 && 100 lattice. 'The line of critical points and
the first-order line intersect at the tricritical
point with no interpolation in the variational pa-
rameters required. The first-order line inter-
sects the T= 0 axis at &/q J=-„ in agreement with
the exact result.

CLOSlNG REMARKS

That each fixed point has its own optimum varia-
tional parameters is a disadvantage of the lower
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FIG. 1. Phase diagram
for the d= 2 square-lattice
Blume-Capel model. The
dashed and solid lines are
lines of first- and second-
order transitions, respec-
tively. The circles indicate
tricritical points. The
phase diagram of Ref. 5

(only a portion of the sec-
ond-order line is shown)
was calculated with quite
different variational para-
meters for the critical and
tricritical fixed points.
The lines of first- and sec-
ond-order transitions do
not intersect at the tri-
critical point. The phase
diagram calculated with
po'

* has a less accurate
second-order line but has
the advantage that the en-
tire phase diagram, with
first- and second-order
lines intersecting at the
tricritical point, is ob-
tained for a single choice
of the variational para-
meters.

bound transformation as compared with the trans-
formation of Ref. 2, especially when there are
large numbers of fixed points. However the dif-
ficulty is not as serious as depicted in Ref. 5. In
the restricted subspace of variational parameters
the optimum p, for the critical, trieritical, and
Potts-tricritical fixed points are roughly the
same, and changing between the various values
causes no drastic changes in the fixed-point topo-
logy.

As the three variational parameters in the
lower-bound transformation are varied, compli-
cated changes in the fixed-point topology involving
large numbers of fixed points take place. It is
useful to restrict the space of variational param-
eters to be investigated with physical considera-
tions, as the results presented here demonstrate.
Both the critical fixed points of Ref. 5 and this
paper yield good values for the ordinary critical

exponents. However the latter give a much more
satisfactory description of tricritical crossover
behavior since no interpolation in the variational
parameters is required.

With the optimum p"'* for the critical fixed
points of Ref. 5, the renormalization transforma-
tion has no tricritical and no discontinuity fixed
points. But the critical fixed points of Ref. 5 give
good values for the critical exponents and con-
siderably better values (3% or 4% error) for the
spin-1 Ising critical temperature than the critical
fixed points of this paper. This is consistent with
the observation that the p"'* of Ref. 5 weight con-
figurations with cell spin +1 more strongly than
configurations with cell spin 0. Thus the trans-
formation adequately describes Ising-like transi-
tions, where there is little competition between the
spin ~1 and spin-0 configurations, but fails in the
tricritical and first-order regions.
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