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We have examined the dynamical behavior of soliton solutions of the sine-Gordon equation in the presence of
weak external perturbations. Three examples, of particular importance in condensed matter, are described in

detail: (i) a model impurity is found to bind low-velocity solitons but merely phase shift those with high

velocities, (ii) an external static driving "force" together with damping causes the soliton to accelerate to a

terminal velocity, and (iii) spatial inhomogeneities in the coefficient of the nonlinear term cause the soliton to
adjust its velocity and shape in the regions of imperfection. In all cases we find that solitons maintain their

integrity to a high degree. These calculations are based on a linear perturbation theory which emphasizes the

use of a translation mode, and we are led to conclude that, in many respects, sine-Gordon solitons behave as

classical particles whose dynamics are governed by Newton's law.

I. INTRODUCTION

It is well recognized that the study of nonlinear
equations and their solutions is of great importance
in many areas of physics. Of particular impor-
tance are nonlinear wave equations which admit
large-amplitude solitary-wave or soliton solutions'
that retain their shape during propagation. Such
solutions have recently received considerable at-
tention' by elementary-particle physicists since
they may be regarded as extended particlelike
solutions of nonlinear field equations. The study
of solitary waves has proved fruitful in many
areas of condensed matter physics as well; for
example, in theories of Bloch walls' which sepa-
rate domains in magnetic materials, structural
phase transitions, ' liquid 'He, ' Josephson trans-
mission lines, ' and most recently in the theory of
the low-temperature conductivity of "one-'dimen-
sional" Frohlich charge-density-wave conden-
sates. '

The interaction of solitary waves with spatial
inhomogeneities is of considerable importance
for the above applications in condensed matter
physics. Impurities and/or defects are yresent
even in the purest of material samples and their
effect on the motion of solitary waves must be
considered when the dynamics of such solutions
are important in the problem at hand. In addition,
the effect of external electric or magnetic fields on
the motion of solitary waves is important in the-
ories of the dynamical properties of certain sys-
tems' ' characterized by nonlinear wave equations.

In this paper, we describe a method for investi-
gating the effect of perturbations on the motion of
solitary-wave solutions of nonlinear wave equa-
tions. ' We illustrate the method by examining the
motion of soliton solutions of the sine-Qordon
equation' in three different situations where per-

turbations are present. The particular choice of
the sine-Gordon equation is not crucial; the method
can be applied with slight modifications to all
cases where the system possesses translational
invariance in the absence of perturbations.

The organization of the paper is as follows. In

Sec. II we review necessary properties of the sine-
Qordon equation and its solutions. We then de-
scribe the simple mathematical concepts and
methods employed in our investigation. In Sec. III
we begin our discussion of perturbations by con-
sidering the effect of a weak model impurity po-
tential on the motion of soliton solutions of the
sine-Gordon equation. We find that high-velocity
solitons pass through the impurity region suffering
only a phase shift while. low-velocity solitons can
become trapped by an attractive impurity potential.
In Sec. IV we examine the motion of soliton solu-
tions in the presence of a constant external driving
term and a damping or viscous term in-the equa-
tion of motion. We find that when the damping con-
stant is large the transient perturbations of the
soliton decay rapidly and it achieves a terminal
velocity which depends on the ratio of the driving
constant to the damping constant, in agreement
with the numerical results of Ref. 6. In Sec. V
we treat the case where the coefficient of the non-
linear term [+02 in Eq. (2.1)] in the sine-Gordon
equation exhibits spatial dependence. It is found
that the soliton adjusts its velocity and shape to
accommodate local changes in this coefficient.
In Sec. VI we summarize our results and conclude
that in many respects the soliton behaves as a
classical particle which obeys Newton's second
law of motion.

II. BASIC CONCEPTS

In this section we first review the properties
of the sine-Gordon equation and some of its solu-
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tions and then describe the mathematical found-
ations of the perturbation theory which we employ
in the remainder of the paper.

The sine-Gordon equation is a nonlinear wave
equation of the form

21l-—

8 9 &.~ smy=ogt2 p gx2 p (2.1)

where $ is a function of x and t, cp is a charac-
teristic velocity, and ep is a characteristic fre-
quency. Note that Eq. (2.1) has Lorentz covariant

- form where c, plays the role of the speed of light
although in materials applications it is actually
some limiting velocity characteristic of the sys-
tem such as the speed of sound' or the Fermi
velocity. ' Small amplitude (i gi «1) solutions of
Eq. (2.1) may be found by replacing sing with g
in which case one obtains the ordinary Klein-
Gordon equation -20 -IO lO z 20

(2.2)

The solutions of Eq. (2.2) have the harmonic form
exp[i(xx —(d„t)], where the frequencies ~„obey
the dispersion relation

CO ~
= C p K + (d p ~ (2.3)

One class of large-amplitude traveling-wave solu-
tions of Eq. (2.1) have the form'

g", (x, t) =4tan ' exp + y(x —vt)
Cp

where

y-=(1-~'/c:) "
(2.4)

(2.5)

These solutions are referred to as solitons (+ sign)
and antisolitons (- sign), respectively. Note that
the velocity v must be less than cp in magnitude.
In Fig. 1, we have plotted the waveform of the
soliton solution in its rest frame. These solutions
have the remarkable property that they retain
their shape during propagation and hence may be
classified as solitary waves. ' The velocity v is
a free parameter subject only to the restriction
i vi ( co and thus the soliton (or antisoliton) may
be regarded as a "relativistic" free particle in
the absence of perturbations. It is the purpose of
this paper to determine the values of v allowed in
the presence of certain types of perturbations and
also to determine whether the soliton retains its
character (shape) in the presence of these pertur-
bations.

The simplest kind of perturbation on the soliton
solution is an internal one, namely, small oscil-
lations about the soliton solution which must satis-
fy Eq. (2.1). Such perturbations may be treated'

FIG. 1. Single-soliton solution P+(&)
=4 tan i [exp(z)] plotted in dimensionless units z
= (coox/co) .

, -c', , +(h),' 1 —2 sech' 'x p =0. (2.7)
p

The more general case with vg0 can be reduced to
this one by a Lorentz transformation to the rest
frame of soliton (or antisoliton). Assuming a, so-
lution of Eq. (2.7) with harmonic time dependence

y(x, t) =f (x) e-'", (2.6)

one finds the following equation for f (x):

-c*. , ~,* ( —Sse h' 'x) j(x)= 'f(x).
p

(2.9)

Equation (2.9) has the form of Schrodinger's equa-
tion with a "potential" of the form

V(x) =«', (( —S sech' 'x
Cp

The solutions have been studied elsewhere' and
the principal results are the following. There
exists exactly one "bound state" with

(d'= 0 (2.10a)

by assuming a solution of the form

q, ( tx) =q", ( tx)+y(x, f), (2.6)

where
i (())(x, t) i «1. By substituting Eq. (2.6) into

Eq. (2.1) and linearizing in the small quantity
g(x, f), one obtains the following equation when
v=0:
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f, (x) = sech ' x.
Co Co

(2.10b) J
+ OQ

dxf,*(x)f„(x') + f, (x)f~(x') =8(x -x') .
~ OQ

8 (do co

The remaining solutions form a continuum with
eigenvalues

(dK =C() K + (do

and corresponding eigenfunctions

(2.11a)

A(x) =«/I xl —2 tan '(c, x/(u, ) (2.12)

when passing through the soliton. This is a con-
sequence of the fact that the "potential" in Eq.
(2.'I) is ref lectionless. "

Because the solutions f, (x) (i =b, x) are eigen-
functions of the self-adjoint spatial operator

D=-c~ 2-+coo I —2sech' xod„2 o
Co

(2.13)

they form a complete set which spans the space
of functions of x. The orthogonality relations are'

J
+ OQ

cOof (x)f, (x) dx =8
oo Co

(2.13a)

f,*(x)f; (x) dx = 5 (K —x'), (2.13b)

, x ~x dx=O, (2.13c)

while the completeness relation has the form'

j„(x)=
(

„~, '8'"* ~ ~
' 'tanh 'x).

Co Co

(2.11b)

The solutions (2.10) and (2.11) have simple physi-
cal interpretations. The fact that a solution with

=0 [Eq. (2.10a)] exists is a consequence of
Goldstone's theorem, ' i.e. , the presence of the
soliton breaks the continuous translational sym-
metry. When f„(x) is added to go [see Eq. (2.6)]
one finds that g =go+nf, (x) corresponds to a soli-
ton (or antisoliton) which is translated by an
amount proportional to cy. Thus the (d' = 0 solution
yields the "translation mode" of the soliton. This
result is of paramount importance in the treatment
of the dynamics of solitons in the presence of ex-
ternal perturbations. The continuum solutions
(2.11) resemble the linearized solutions of Eq.
(2.2) except for a localized perturbation [pro-
portional to tanh(eo/co) x] in the vicinity of the
soliton. Note that the dispersion relation (2.3) is
unaffected by the presence of the soliton. By
examining the asymptotic form of the solutions
(2.11b) for x-+~ one finds that the linearized
solutions of Eq. (2.2) suffer only a phase shift

III. INTERACTION OF A SOI.ITON WITH

A MODEL IMPURITY POTENTIAL

In this section we examine the effect of a model
impurity potential on the motion of a soliton initi-
ally moving with velocity v. We consider the
Hamiltonian

dxA — +

+ a) o(1 —cosg) —A, g (x)2 8$ (3.1)

The first three terms in the integrand comprise
the usual sine-Gordon Hamiltonian density. ' The
last term represents the interaction of'g with the
impurity potential g(x), which we take to have the
simple form

g(x) =e(x -x, ) -e(x+x, ) . (3.2)

In Eq. (3.2), e(x) is the Heaviside step function
defined by

e(x) =-

. 1, x~O
(3.3)

The method described below is not limited to the
special form of g(x) in Eq. (3.2). All of the quali-
tative features of the results obtained with Eq.
(3.2), however, are expected to be present with
more realistic forms of the impurity potential. The
coupling constant A. appearing in Eq. (3.1) is as-
sumed small and may be either positive or nega-
tive. The particular form of the coupling term
(sg/sx)g(x) has been chosen for definiteness. In
the next section we consider perturbations which
couple to ( rather than sg/sx The cons. tant A

(2. 14)

In Secs. III-VI we make repeated use of the fact
that pertubations of the soliton solution may be
expanded in this complete set of functions. Special
significance is attached to the translation mode

f~(x) since it governs the motion of the soliton. The
continuum contributions correspond to small per-
turbations of the soliton shape. It should be noted
that the linear stability of the soliton and the vali-
dity of our perturbation theory follow from the
fact that the eigenvalues v,' (i =b, x) are all non-
negative. There is one subtlety in the use of the
functions f, (x) as a basis for a transform pro-
cedure: the inverse integral transform of a func-
tion of v is understood to be replaced by its Cauchy
principle value should the function of K have a
singularity on the real v axis.
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sets the energy scale and has units of (mass)
x (length) .

From Eq. (3.1) we derive the following equation
of motion for g:

where y is defined by Eq. (2.5), and z and r are
now measured in the coordinate frame moving
with velocity v.

To solve Eq. (3.9) we expand P(z, v) in the com-
plete set of basis functions (3.7) as follows:

2
—c» +(vosin()) =&). [5(x+xo) —6(x -xo)] .

(3.4)
((*, )=l(,( )f,()' J "&s(&,~)f, ( ),

(3.10)

T =— (&&of &
z =—((»(&/c(&) x (3.5a)

For convenience we introduce the dimensionless
quantities and then we introduce the Fourier time transform

of P(k, r) defined by

(t&(k, (v) = dv e' "y(&, v) . (3.11)

C p — COKk= K) QJp =
COQ (dp

vp=-
Cp

Q=—
Cp(dP

This procedure yields the following equations for
(t&, (g ) and y (k, (v):

(3.5b)

In terms of these quantities, Eq. (3.4) takes the
dimensionless form

g2g c)2$
, +sing =(x[6(z+zo) —6(z -zo)]. (3.6)

d @~ 2Q 8 p, = —sech Pz + ——sechd7' y y

((u'- (v,') 0(&, (v)= o.'sin2(2») &~'i . z, (v

yp(dp yp

(3.12a)

We note that in terms of the quantities (3.5), the
basis functions (2.10b) and (2.11b) become, re-
spectively,

&& k5 k+———,'csch —k+—

f, (z) =2 sechz (3.7a) (3.12b)

f, (z) =(2») '~'((», ) 'e"'(k+z tanhz) . (3.7b)

(C (z, ~) =)C)" (z P~) & (+&~-z), (3 8)

where (C)" (z —Pv) is a soliton moving with velocity
P = v/c, and P(z, r) is assumed small. By making
use of Eqs. (2.4) and (3.5), we find upon substitut-
ing (3.8) into (3.6) and Lorentz transforming to a
frame moving with velocity v that (t&(z, w) obeys
the following equation:

92 82~ + (1 —2 sech'z) y87 9+

Q 8 p 8 Q5 z +p7+ —5 z +p7. —
y y y -'

(3.9)

When (2 = 0 in Eq. (3.6), an exact solution for g
is the soliton (or antisoliton) described in Sec. II.
We wish to determine the effect of nonzero but
small values of z on the soliton solution initially
moving with velocity v. For large velocities, we
expect the perturbations on the soliton to be small,
while for low velocities there may be a significant
modification of the soliton solution. We treat
these two velocity regimes separately, focusing
first on the case of fast solitons. We assume a
perturbative solution of Eq. (3.6) having the form

—tan exp pg ——-1 &4&) p

y
(3.13a)

Q, (~) = —
~

dv' tan exp P7'+-&8 Q

py y
I

—tan exp pT ——-1 8 Q

y

(3.13b)

where we have used the initial conditions p„(-~)
= P, (-~) =0. We have also obtained the continuum
amplitude (t&(k, r) by inverting the Fourier-time
transform. However, the expression is very
complicated and for brevity is not presented here.
The essential features of the continuum contribu-
tion are discussed below.

We now interpret the contribution (3.13b) of the
translation mode to the perturbation P(z, g ) of the
soliton. In the coordinate frame moving with vel-
ocity v, we write Eq. (3.8) as

It now remains to solve these equations and invert
the various transforms in (3.12b). When inverting
the Fourier time transform we give & a small
positive imaginary part in order to satisfy casual
boundary conditions. From Eq. (3.12a), we find

d@b(~) 4o.
tan 'exp pT+—8 p

dg py y
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(3.14)

where (t), is the continuum contribution. The first
two terms in (3.14) may be combined to yield the
soliton function having z +-,'p, (v) as its argument
instead of z, i.e. ,

g (z) + 'Q (7'—)f (z) =g(z + —'p (r))+O(n') . (3.15)

The interpretation of f, (z) as the translation mode
is now clear. Note that Eq. (3.12a) may be inter-
preted as Newton's law for the position of the "cen-
ter-of-mass" of the soliton. As the impurity po-
tential approaches z =0 (soliton center) in the rest
frame, the soliton, because .of its finite spatial
extent, begins to "feel" the presence of the im-
purity. When the soliton approaches the leading edge
of the impurity it acquires a velocity in the nega-
tive direction (if n is positive) and hence moves
slower in the lab frame until it has passed through
the impurity region. If cy is negative the soliton
speeds up in the impurity region. Exactly the
opposite is true for the antisoliton. Asymptoti-
cally, the soliton acquires a net phase shift of
6 =

2 v(z 0 o /P2 y') in the lab frame.
The continuum contribution to P consists of two

pieces, both of which are proportional to +. The
first of these persists for all times and is local-
ized in the region of the impurity potential. This
contribution was expected and may be regarded
as intrinsic to the impurity. The second contribu-
tion is nonzero only when the soliton is in the
region of the impurity potential and corresponds to
a slight modification of the soliton waveform.

We have illustrated this behavior in Fig. 2 where
we plot the soliton plus the effects of the impurity
(in the initial rest frame) for a. large value of n
(n = 1.0) in order to accentuate the impurity effects.
In Fig. 3 we focus in detail on only the corrections
(p, (z, g)) to the soliton's shape at seven successive
times during the collision process. All plots are
in the initial rest frame of the soliton. The cross
denotes the position of the soliton center and the
vertical arrows denote the boundaries of the im-
purity region. Figure 3(a) depicts the initial, un

relaxed impurity "dressing" that we considered.
The following figures [3(b)-3(g)] show the evolu-
tion of the dressing as the soliton collides with
the impurity. We note that at the end of the pro-
cess, Fig. 3(g), the perturbation caused by im-
purity has evolved to the form that it would have
in a system without a soliton. In Fig. 4 we plot
the effect of the impurity when no soliton is pres-
ent (calculated by linearizing the equation of mo-
tion about /=0) for comparison.

It is clear from Eqs. (3.12b) and (3.13b) that the
perturbation p diverges as P 0, i.e. , for slow-
moving solitons, thus invalidating the use of the

—lO lo

(b)

-lO
I

lO

(c)

(c

2 7T

lo

FIG. 2. Representative soliton- impur ity collision is
shown in the initial rest frame of the soliton (a) before,
(b) during, and (c) after the interaction; the parameter
values are m=1.0, P =0.9, and &0=1.25. The "center-of-
mass" (c.m. ) position of the soliton suffers a phase
shift (see text). The vertical arrows indicate the boun-
aries of the "Lorentz-contracted" impurity region.

ii'(z) =4 tan '[exp(z —()]. (3.16)

By employing Eq. (3.1), we obtain the "potential"
energy of this configuration as a function of 8:

V($) =Amoco 8+4o. tan ' slnhg p

cosh)
(3.17)

The first term in Eq. (3.17) is just the rest energy

perturbation theory above in this velocity regime.
This divergence suggests that the soliton may be-
come trapped by, or repelled from, the impurity
if v is sufficiently small, causing a large pertur-
bation ($=2v) where the soliton would have been
had the impurity not been present.

In order to pursue this possibility of trapping at
low velocities, we proceed in the following manner.
Let us assume for the moment that a static soliton
exists with its center a distance (c, /&u, )$ ($ is
dimensionless) from the center of the impurity
potential (z = 0):
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FIG. 3. Perturbation of soliton shape at successive times during collison vrith impurity. Corrections (Q, ) to the

soliton shape are plotted in the initial rest frame for parameter values a =0.2, ~0=1.25, and p= 0.5. The "center-of-
mass" position is denoted by the X. Note the change of scale of the various plots especial. ly bebveen (a), (d), and (f).
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&(P) -~(P =0)&I &V(( =0)I, (3.20)
imp )i

or, more explicitly,

P'&1 —(1+-,' i ai tan 'sinhz, ) '. (3.21)

Note that if z or zo vanishes then the soliton is
free. If z becomes large, then only very fast
solitons can penetrate the impurity region.

We now investigate further the case when + &0
and P satisfies the inequality (3.21), i.e. , when
the soliton is trapped or bound to the impurity.
In this case one expects the soliton to execute
oscillatory motion about ( = 0. This oscillatory
motion can be easily studied in detail in two dif-
ferent regimes, namely, (i) when the spatial ex-
tent of the soliton is small compared to the width
of the impurity potential and (ii) when the soliton
is extended over a large region compared to the
width of the impurity potential. In case (i) the
soliton should behave as a point particle and for
small energies execute harmonic motion. In ease
(ii) the oscillation will be distinctly anharmonic
due to the spatial extent of the soliton.

We consider first case (i) where z,» 1 and we
expect the soliton to oscillate harmonically if its
maximum velocity is small. We expand the po-
tential (3.18) to quadratic order in the position
( of the soliton

FIG. 4. Intrinsic impurity effect with no soliton pre-
sent. It is instructive to compare it with the correspond-
ing plots in Figs. 3(a) and 3(g), when the soliton is far
from the impurity.

n. V($) = b. V($ = 0) + 2A ~,c, i +i

(3.22)

sxQhz p
b, V($)—=4A&uoc~o. tan '

cosh&
(3.18)

We note that a V($) has an extremum at $ = 0 (the
center of the impurity potential). This extremum
is a minimum if z is negative and a maximum if
n is positive. The reverse is true for an anti-
soliton. Thus we see from energy considerations
alone that for n negative the impurity attracts
solitons and repels antisolitons and vice versa
for n positive.

When the soliton is very far from the impurity
and moving with velocity P = v/co, its energy is
given by the relativistic form

Z(P) =8A(u, c,/(I -P')'i'. (3.19)

The classical condition on the soliton's velocity
such that it be trapped (o. &0) or reflected (n &0)
by the impurity potential can be obtained by com-
paring its kinetic energy to the depth of the poten-
tial V(0), i.e. ,

of the soliton and the second term is the change in
the static soliton energy due to the impurity. We
denote this change by

d $ 1 sb. V(()
c 8(

where the soliton "mass" M is defined by

(3.23)

M —=8Auo/co. (3.24)

Substitution of Eq. (3.22) into (3.23) yields the
harmonic oscillator equation with solution

t(r) =&,sin(Qv), (3.25)

where the oscillation frequency is given by

i n. i sinhz,
2 cosh zo

~

~ (3.26)

In order to test the validity of the solution $(7)
=P, osinQ&, we consider the exact equation of mo-
tion governing P:

e y a

BT 88
+sing =o [6(z +z ) —5(z -z )].0 0

(3.27)

By regarding the soliton as essentially a classical
particle, we make the ansatz that ((r) is governed
by Newton's law
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We assume that

(C)(z, v) =4tan ' fexp[y(z —t, sinQ7)]}+ y(z, p),
(3.28)

where t.he first term represents a soliton oscil-

lating aboutz =0 and p(z, r) is the difference be-
tween the exact solution of (3.27) and the oscil-
lating soliton. Substituting Eq. (3.28) into Eq.
(3.27) and assuming P to be small we find the
following equation for p(z', v) (z'—= z —),sinQw):

82
, —2),Q cosQv, + $', Q' cos'Q7 „—„+(1 —2 sech'z ') Q

=u [6(z'+zo+)osinQr) —6(z' -zo+ )osinQr)]+2$0Q'cos'Qw sinhz' sech'z'

2$ p 0 sinQ& sech z ' —2 sinh z ' sech'z ' (3.29)

where we have taken y =1 for low-velocity solitons.
We now expand p(z', v) in the complete set of basis
functions (3.7) as

((~ )=-'( (~'),f (*')+J &)'((&v)A(* ), '

n, V($)-=6 V($ = 0) + 2A. sro c, I a I

p

sinhzp 6

(3.35)
(s.so)

Once again we use the ansatz (3.23) to assume that
Equation (3.29) then leads to the following equation
for the amplitude of the translation mode

+ 3 $(&Q COS QT Q(, (T)

= 2n [sech(z 0+ $, sinQv) —sech(z 0
—$, sinQr)]

d'E
I el sinhz,

d"= 2 coshz, &

(:."""-.)(...'.,
—

)
(s.s6)

—8(pQ sxnQy. (3.31)

Recalling the condition that zo»1, Eq. (3.31) may
be approximated by

In order to find the solutions to the nonlinear
equation (3.36) we first make a change of vari-
ables

&'A(&)
+ g)()Q cos QT(t)(, (T)

= —8o.e '() )osinQg —8)OQ'sinQg . (3.32)

Using Eq. (3.26) for Q we then have

)l -=(1——, cosh'z, )')',
coshz p

s inhz,
2 cosh zp

(3.37a)

(3.37b)

8'y~ ~) I ~l (o+ e 'ocos'Qwp, (r) =0. (3.33) 'g

2 +0-yt =0. (3.38)

so that Eq. (3.36) then takes the convenient form

Since $p is small at low soliton velocities, we see
that

y, (q-)(xe '0«1. (s.s4) q (s)

I,O-

This result verifies our initial ansatz (3.25) since
the corrections to the harmonic motion of the soli-
ton arising from the translational mode amplitude
(3.34) are exponentially small. The continuum
contributions are also small and correspond to
slight modifications of the soliton waveform.

We now turn our attention to the case when zp
«1, i.e. , when the soliton's extent is much larger
than the width of the impurity potential. In this
case we do not necessarily expect the amplitude
of oscillation to be small. Thus we add the next
nonvanishing term to the expansion of n, V($) given
by Eq. (3.22) so that

0.5

0
0 20

-0.5-

-l.o-

FIG. 5. Plot of the function g(s) =a snf(bv 2)sj for
(dq/ds) „,=1/W2-5& 10 '.
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g (s) =a sn [(b/W2) s],
where

(3.39)

This equation has oscillatory solutions known as
Jacobi elliptic functions. ~'2 The relevant solution
for our purposes is given by

In Fig. 5 we have plotted an example of q(s) vs s
for (dq/ds)„p=1/~2 —»&10 '.

In order to verify this solution for the motion
of the soliton we proceed in a manner similar to
that following Eq. (3.26). We assume that

a2=-1 — 1 - 2 (3.40a)
4(z, ~) =«an '(exp(r [z-h(~))]).+ y(z, ~),

where

(3.42)

6=1+ 1 —2 (3.40b) h(r)=a coshzp(1- —,
' coshzz ) '~'

Each member of this family of solutions is dis-
tinguished by specifying a value of (dq/d~) „p in
the range

(3.41)

I o.
/

sinhz,
4 cosh gp

~

~ (3.43)

Substitution of Eq. (3.42) into Eq. (3.27) and the
use of the expansion (3.30) with z'=z -h(~) leads
to the following equation for p, (y):

s'4p(~)
+ —, [ h'(v)]'g, ( 7)

= 2o/se hc[ z +ph(y)] —sech[zp-h(v)] j+8h "(T), (3.44)

where

sh(~) ab (n(sinhzp '~' (o.( smhz, '~' (o, ) sinhz,h'z —= en 5 7 dn
Sg 8 1 —

p cosh zp 4 cosh zp 4 cosh zp
(3.45)

tanhzp ) o( sinhzp '~' a' 2a', [ o. [ sinhzp
(1 ——,

' cosh'z, )'i' 4 cosh'z, b' b 4 cosh'z
p

(3.46)

In Eqs. (3.45) and (3.46), sn, cn, and dn are Jacobi elliptic functions. ' Since these functions are bounded
in magnitude by 1/a, we see that for z p«1,

y, (v) cc nzp«1. (3.47)

Qnce again the corrections to the assumed motion of the soliton arising from the translation mode ampli-
tude are very small, thus verifying our use of Newton's law to determine the motion of the soliton to a
good approximation.

For completeness we present the formal solution to Eq. (3.23) for the full form of the potential (3.18):

f slnhz p (cosh)'p cosh) )d(' tan =[ Q]slnh 8 p + cosh)p cosh)' J
(3.48)

where ]p is the amplitude of oscillation and ](7 = 0) =0. Equation (3.48) provides an implicit relation de-
termining ((z) and can be solved numerically for arbitrary amplitude $p.

IV. MOTION OF A SOLITON IN THE PRESENCE OF

A FORCING FUNCTION AND DAMPING

In this section we consider the motion of the
soliton in the presence of a constant "force" and
damping. This situation is somewhat different than
the one treated in Sec. III in that the perturbations
are independent of the position of the soliton and
only affect its velocity and shape.

We consider the following form for the Hamil-
tonian:

+ up(1 —cosg) + XZg (4.1)

(4.2)

where E is a constant which plays the role of a
force or driving term. From Eq. (4.1) we derive
an equation of motion for g(x, f):
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To this equation we now add a damping term,
qadi/st, so that

'd'»( ) e'.» )
87

+ yI ' =8pyr+2vl(
87

(4.8a)

' f —' ~+smq+I- '~ =g,
88 BT

(4.3)

where we have employed the dimensionless quanti-
ties defined by Eq. (3.5a) together with the defini-
tions

I' =- q/ur„ li
—= XE/!do. (4.4)

9$ 8$
+ yI' —PyI' =lt+2pyi'sech@ . (4.6)

87 88

We now expand 4t4(z, v) in the complete set of func-
tions (3.7) according to Eq. (3.30) and obtain the
following equations for the amplitudes P, (v) and

y(k, g):

&'eg(~), F &eo(~)
87 87

k@(k, ~)
8Pyr+2~X+i

2 Pyr dk
QPp s111hg 7|'k

(4.7a)

6'@(k,~), „sy(k, ~)
87

+&u42 k, 7 + yI'
BT

k5(k(nn)'&*n, ' ninn-,'nk)

1 w '/" co
+iPyZ —— ', y, ( )+7k'(k, ~)

+" dk'(k"-k') @(k' q.)
4&@, „„&u,i sinh —,

' v(k' —k)

(4.7b)

In general, the coupled equations (4.7a) and (4.7b)
are difficult to solve. However, we note that the
coupling terms are proportional to PP, (v) or
pp(k, r) and for a small initial velocity of the soli-
ton (P «1) these terms are of second order in the
small quantities P and P. Thus, as a first approxi-
mation we neglect the coupling terms altogether
and solve the uncoupled equations

Considering y«1, we assume a solution to Eq.
(4.3) of the form

q(e, ~) =y"(e P~-)+ y(e, ~), (4.5)

where g" is a soliton solution to the unperturbed
equation. We transform to a coordinate frame
moving with velocity v and assume that 4t4 is small.
This leads to the following equation for 4!4&:

8$ 8$, +(1 —2sech'z)414
87 88

82@!»(k,&), !,)„) s y!»(k, ~)
87

+&a~~ 0 k, T +yI'
BT

k5(k) —, (4.8b)
sinh~ mk

We have denoted these first approximations to
4j44, (v) and p(k, z) by the superscript (0). If we
assume that [8 pi~'(g )/sg ], ,=0, i.e. , that the soli-
ton is initially at rest in the frame traveling with
velocity P = v/c, and that the perturbations are
turned on at z =0, then Eq. (4.8a) is easily solved
and we find

(4.9)

Since i&4t4!0)(g ) is the amplitude of the translational
mode, we see that the soliton acquires a terminal
velocity (in the -e direction) equal to

(4. 10)

If X =0, then P~ =P implying that the soliton comes
to rest in the lab frame. For large g, this per-
turbation theory breaks down since p, (v) grows
with w. However, the conclusion that the soliton
achieves a terminal velocity may still be valid.
In order to verify this hypothesis we first need to
obtain the continuum contribution to P. From Eq.
(4.8b) we note that for large I, the transient part
of p(k, v) decays rapidly leaving

Iim yi»(k, &) -=pi»(k) =lt k5(k)—
7'~ oQ sinh —,

' nk

&& [(2v)~4' &3] ~ (4 11)

The total continuum contribution is then

4&."(4) -p f &inf, (n) 4&"(4)

+" „(k+i tanhz)e' '
2 ~ Q)~ S111hg 1Tk

The principle part is necessary as discussed at
the end of Sec. II. The integral is easily evaluated
using the method of contours and one finds

4&&'i(*) =n &nnnl nl (&
——4 '&

w -'I
l

(-1)"e4!'' ' ' & (nn &&*(nn-&) )

(4.13)
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y
—gO(z ) + y(0)(z ) (4.14)

where go(z) is a soliton at rest in this frame and
Q~~~(z) is given by Eq. (4.13). Then p~~~(z) must
approximately satisfy the consistency equation

vugg 2 8 p',"(z )
4 cosh' Bz

For large values of
~ zj, we see from Eq. (4.13)

that

lim yi"(z) =X.
I8)~~

(4.16)

Thus Eq. (4.15) is satisfied very well for large
~
z~. Indeed, after some tedious algebra we find

that it is satisfied exactly (with y -=1) to linear
order in y [i.e. , neglecting the apt"(z)/sz term]
for all z. This implies that the approximation
(4.14) is very good" after the transient part of
the continuum contribution has decayed to zero.

In Fig. 6, we have plotted the full solution in

the terminal rest frame for g =0.2. Note the
overall shift of the wings of the soliton by an
amount y [see Eq. (4. 16)]. In addition there is
a change in shape which is more evident in Fig.

We now consider Eq. (4.3) in a coordinate frame
moving with velocity P = —vy/4I' (the terminal vel-
ocity in the lab frame, assuming y = 1) and assume
a solution of the form

7 where we plot Sg/Sz in the terminal rest frame
for three values of y (0.0, 0.2, 0.4). Note that
the shape becomes asymmetric about the soliton's
center for nonzero X. A measure of this asym-
metry is given by the integral

(4. 17)

The coefficient of y in Eq. (4.17) may be inter-
preted as a polarizability in the context of Ref. 7.

Before we conclude this section we note that
the approximation (4.14) was obtained by neglecting
the coupling terms in Eqs. (4.7a) and (4.7b). It
is worth pointing out that Eq. (4.8a,) remains un-
changed even when P~'~(k) [see Eq. (4.11)] is sub-
stituted into Eq. (4.7a) to obtain the first correc-
tion to y„(~) due to coupling. This is a consequence
of the fact that &j&~"(0) is an odd function of 0 causing
the integral in Eq. (4.7a) to vanish identically.

In this section we have shown that in the pres-
ence of a constant "force" and damping, the soli-
ton achieves a terminal velocity determined by the
ratio of the "force field" to the damping coefficient.
This result was derived from Eq. (4.8a) which has
the form of Newton's second law for the position
of the soliton [position ~ P~(r)] as a function of
time.

After this work was essentially completed, we
became aware of numerical studies by Nakajima
et al. ,

' in which they find that the soliton achieves
a terminal velocity in the presence of a driving
term and damping. Our results agree with theirs
for small values of y (s0.3) where our perturbation
theory is valid.

2~ +0.2
27r—

V. SPATIAL VARIATIONS OF THE CHARACTERISTIC

FREQUENCY

-20
I

-10

.0.2
IO 20

FIG. 6. Waveform of the soliton in its terminal rest
frame when y=0.2. Except for the vertical shift the
shape is very simi1ar to that of the unperturbed so1iton
(see Fig. I).

In this section we investigate the effect of spatial
variations in the characteristic frequency (~, ) on
the motion of solitons. For simplicity we consider
the case where &u2o changes abruptly to &u', (I+a)
(o « I) at some point (x =0). The results are ap-
propriate to physical situations of soliton trans-
mission from one medium characterized by &~
to another medium characterized by ~O2=~,'(I+n).
We find that for n &0 the soliton can indeed pass
into the second medium if it is moving fast enough
in the first medium. The soliton slows down to a
new velocity and its width changes to accomodate
the new value of cL)p.

We formulate the problem in the following way.
Consider the sine-Gordon equation with a variable
characteristic frequency

8 g 9
2

—Co 2 + CUD(x) sill/ = 0,
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5Z

(c)

FIG. 7. Derivative of

0 IO

F . ' lve of the soliton b'avlve of ' veform in its rest fra

Z

es rame for (a) g=(}.0, (b)
as g 18 increased.

. , (b) g=0.2, and (c) X=O 4.4. Note the

where +~0(x) has the form

(o,'(x) = &u,'+n. u)', (x),

with L~'(x) « ' f . For

(5.2)

o ~~&0 for RI

e perturbRtioo. 6+' x
e

+0&x~ w&11 be 1eft Rrb
e deflIlitioQS ~3. 5R.5R ~

%'e recRSt EQ.

(5.1) in d'dimensionless form

8 g 8 , +[1+g(z)]sing =0
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g(z) =—d(h)()(z)/(d, «1. (5.4)

We wish to determine the effect of a nonzerog(x)
on the motion of a soliton with initial velocity v.
Thus, we assume a solution to (5.3) of the form

least in principle) and the solutions can be sub-
stituted into Eq. (5.8) to yield (j)(z, 3.) for an arbi-
trary (but small) perturbation g.

As a simple example we treat the case described
at the beginning of this section, namely,

(5.5)
g(3 (z +P7)) =(2e (r(z +P3)), (5.10)

where (j)(z, 3) is assumed to be small. By sub-
stituting (5.5) into (5.3) and linearizing in (t)(z, 3.),
we find the following equation for (j)(z, 3.):
g 2@ (s) 2$ 2

97 88 . +[I+g(r(z+P~))] 1—
cosh2z

=2g (y(z +Ps)) h, (5.6)
tanhz

where as usual we have transformed to a refer-
ence frame moving with velocity v [P—= 1)/c„y=—(1
—p') 'i2]. We note that the terms involving g (t)

on the left-hand side of Eq. (5.6) are of second
order in small quantities. Thus, we neglect them
in a first approximation and replace (5.6) by

sq' sz' cosh'z ~ coshz
'

(5.7)

We now expand (j)(z, v) in the complete set of
states (3.7):

h(s, l)= —', s (c)f ( ) Js+shh( , )f h(*)c. (5 8)

Substitution of (5.8) into (5.7) and subsequent pro-
jection leads to the following equations for the
amplitudes (j), (3) and (j)(k, y):

where the step function is defined by Eq. (3.3).
Substitution of (5.10) into (5.9a) yields

(t), (~) = 2n/cosh'P3. . (5.11)

y, (3.) = (2(2/P) (1+tanhPv), (5.12)

where we have used the initial condition that the
soliton be at rest for 3-- —~ (far from the jump in
(h)2) in the frame moving with n. We see that in
this frame the soliton achieves a negative velocity

P' = —o(/2P,

or in the lab frame

(5.13)

(5.14)

Since 1/P&P, we see that the soliton slows down

as it enters the medium with larger &0. Physi-
cally, the soliton converts some of its kinetic en-
ergy into extra "potential energy" (rest energy)
associated with a contracted width in the new
medium. We note that Eq. (5.14) is consistent
with what one expects on the basis of energy con-
servation

As in Secs. III and IV, the equation governing (t)h(T)

has theform of Newton's law. Equation (5, 11) is
readily integrated to yield

+ oo sinhg«"""cosh"

fi3(k, v) + (k '+ 1) (j)(k, r )

(5.9a) c2 /(I P2)1 2 =M(c2/(I Pf2 )1 2

where

M'/M = (1+12)'

(5.15)

(5.16)

P+ 00 sinhg
dz g (r(z +P~))f2*(z) 2, (5.9b)

This leads to

P(.'b = P' (1 —C2/P'+ Cf), (5.17)

where the dot denotes a derivative with respect
to 3.. Equations (5.9) are linear inhomogeneous
second-order differential equations for the amp-
litudes (j),(3) and (j)(k, r) These can b.e solved (at

which agrees with (5.14) when (2 is small.
We now examine the continuum contributions to

(j)(z, v). Substitution of (5.10) into (5.9b) leads to
the following result for P(k, 7):

ni w i 1 -2 1 k

2 h o, cosh-,' h ()' cosh ,'s()(()h ~,) osh-', -()((lh —,))
2 " (-1)"e 2"+"2'((h)h2 —[k -i(2n+ I)]'j+e -18)h) ~ " (3-&0)

vi z [(2n+1)i —k](P2[k —i(2n+1)]'-(h)22j (5.18a,)

( 1)n e(2)) u8
P(h) —[k + i (2n —1)]2]

(2)f)'f'2 & + [k+(2n —l)2](P'[k+i(2n —1)]'-(u2j (5.18b)
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It can be shown upon substitution of (5.18) into
(5.8) that the time-dependent continuum contribu-
tions occur only near z = 0, i.e. , when the soliton
is near the jump in &p There is a time-indepen-
dent contribution as well for z &0:

$0(z) =nz/coshz (T&0) . (5.19)

This contribution is localized about the soliton
center (z = 0) after the soliton has passed into the
new medium (v&0). To see what this contribution
corresponds to physically we note that in the new
medium [+02=(1+n) cu,'] a soliton at rest would
have the waveform

p (z) =4tan '(exp[(I+n)'t'z]] . (5.20)

The difference between this and a soliton with z =0
is

y„(z) —y„,(z) =nz/coshz +0(n') . (5.21)

P. = n/(1+ n) (5.23)

If P &P„ the soliton will eventually stop and turn
around to travel in the negative direction.

VI. SUMMARY, REMARKS, AND CONCLUSIONS

In this paper we have described a simple method
for determining the effect of weak externa1. per-
turbations on the motion of solitary-wave solutions

Thus, the time-independent continuum contribu-
tion (5.19) yields, to first order in n, precisely
the correction needed to give the correct shape
to the soliton in the new medium. It is worth
emphasizing that unlike the impurity situation
(Sec. III), there are no residual perturbations in
the transition region when the soliton is far away.
This can be easily understood if one notes that if
the soliton is far from the transition region the
system has nothing to gain energetically by allow-
ing g to vary where &u', is changing since the local
potential energy density [~(1-cosp)] is already a
minimum for g = 0 (mod 2e).

It is a straightforward matter to determine the
effect of a localized defect of width 2a in ~o of the
fol m

g(y(z +P~)) =n [e(y(z+Pv) +a) -e(y(z +tie) —a)]

(5.22)

by a simple superposition of results for the case
(5.10) with shifted arguments of g. The principle
result is that the soliton acquires a net phase shift
5 =na/2P2y2 If the solito. n is moving too slowly,
however, it can become trapped or repelled de-
pending on the sign of n. In this context it should
be noted that for the single-step perturbation (5.10),
Eq. (5.17) determines a critical velocity for the
soliton to overcome the barrier, i.e. ,

of nonlinear wave equations. The method is based
on a linear perturbation theory which makes use
of the fact that small changes in the waveform
may be expanded in terms of a complete set of
eigenfunctions of a self-adjoint differential opera-
tor [e.g. , Eq. (2.13)]. Of particular importance is
the existence of a "translation mode" solution in
the eigenspectrum of this operator, since it is
intimately connected with the motion of the soli-
tary wave in the presence of perturbations via
Newton's law [e.g. , Eqs. (3.12a), (3.23), (4.8a),
and (5.9a)].

Our results for the specific example of sine-
Gordon solitons can be summarized as follows.
In Sec. III we found that low-velocity solitons can
be trapped (repelled) by an attractive (repulsive)
model impurity potential while high-velocity soli-
tons pass through the impurity region suffering
only a phase shift. In the trapped configuration,
the soliton executes oscillatory motion determined
by Newton's law. In Sec. IV, we found that in the
presence of damping and a constant "force" the
soliton achieves a terminal velocity, in agreement
with the numerical results of Ref. 6. Finally, in
Sec. V we found that spatial variations in the char-
acteristic frequency (&u, ) cause the soliton to ad-
just its velocity and shape accordingly. In all
these cases, the soliton maintains its integrity
and behaves as a classical "extended particle"
whose "center-of-mass" motion obeys Newton's
law.

We are currently conducting numerical simula-
tion studies of the situations described in Secs.
III and V in order to test the ideas and results put
forth in this paper. The results of these numeri-
cal studies verify the basic conclusions obtained
here and will be presented in detail in a future
publication. "

We now comment on the range of applicability
of our method, apart from the general applicability
to single solitary-wave solutions. In most sys-
tems of interest, more than one solitary wave will
be present. In these cases our method will work
only when the solitary waves do not overlap sig-
nificantly (i.e. , for dilute densities of solitary
waves). Fortunately, at low temperatures com-
pared to the rest energy of the solitary wave, the
density will be low. We remark here that our
method will not be useful for examining pertur-
bations of the so-called "doublet" or "breather"
solution to the sine-Gordon equation, ' since the
potential entering Eq. (2.9) would be time-depen-
dent. However, for soliton-bearing equations, it
is possible to examine the effect of perturbations
using the techniques of inverse scattering theory, "
which are not limited to single-soliton solutions.

The procedure to be used in applying our method
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to equations other than sine-Gordon equations is to
find the equation similar to Eq. (2.9) and solve for
its eigenvalues and associated eigenfunctions. The
w'=0 solution will be the translation mode for the
solitary wave. There may be additional "bound
states" (e.g. , in the P' problem') which corre-
spond to internal degrees of freedom of the soli-
tary wave. All of the bound states, together with

the continuum solutions, form a complete set of
functions which may be used to expand perturba-
tions about the solitary wave in a manner similar
to that discussed in this paper.
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