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Electron spin resonance of substitutional Mn?* ions in antiferromagnetic FeBr, host has been investigated in
the liquid-helium temperature range using a conventional homodyne spectrometer. Experimental results show
that the exchange constants between the impurity and the host are weaker than the host ones. Therefore, the
impurity spin behaves nearly as a “paramagnetic” spin in an effective molecular field. From the experimental
results, we have deduced an effective-spin Hamiltonian of the impurity. The leading term is the impurity-host
effective field, its value being 2900 G. Moreover, the deviations Ag’, = —0.06 and Ag’, = —0.49 of the
spectroscopic factor, and the anisotropy term D' = — 770 G are unusually large. A theoretical analysis
including the effect of the exchange interactions between the impurity and the host has allowed us to get the
physical origin of the various terms of the spin Hamiltonian. The values of diagonal exchange impurity-host
parameters have been found (approximately 1 cm™'). We have shown that Ag', and Ag', were,
respectively, proportional to the susceptibilities ¥, and x, of the host, and that the large negative value of the
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anisotropy term resulted from large nondiagonal exchange impurity-host coupling.

INTRODUCTION

We have studied the low-energy excitations of a
substitutional magnetic S impurity (Mn?*), in the
antiferromagnetic FeBr, host.

The magnetic excitations associated with the im-~
purities are closely connected with the magnitude
of the magnetic interactions between the impurity
and the host spins.

In the most usual case, when the magnetic
properties of the impurity and host are similar,
the presence of impurities slightly disturbs the
host excitation spectrum, so that it is difficult to
get experimental evidence of physical features as-
sociated with the impurities. On the other hand,
if the magnetic interactions between the impurity
spin and host are very different compared with
those between the host spins themselves, it is
possible to get well-defined impurity localized
modes.

Two cases may then be observed. First, the en-
ergy of the localized mode is large compared with
that of the host spin waves. This situation has
been widely investigated using optical techniques,
for instance Ni®** impurities in MnF,.? Secondly,
the energy of the impurity mode is weaker than
that of the host spin waves. There are only few
studies of that case.®”® We present here detailed
results on Mn®* impurities in the antiferromag-
netic phase of FeBr,.

A survey of the theoretical treatment of the

localized impurity spin states in the case of an
ordered magnetic host has been given by Cowley
and Buyers and Izumov and Medvedev.®

We have experimentally studied the impurity
excitations, first measuring the associated anom-
alies of the specific heat and the magnetic sus-
ceptibility between 0.3 and 7 K,” and then using
electron-paramagnetic-resonance-spectroscopy
techniques at liquid-helium temperatures in the
15-GHz microwave range.

Impurity spin-resonance experiments have been
carried out by Motokawa and Date® in FeCl, using
antiferromagnetic resonance techniques in pulsed
magnetic fields with very high frequencies in the
80-GHz range. Our more sensitive paramagnetic
resonance techniques and the weak concentration
of impurities in our samples give narrower lines.
So an extensive angular study has allowed us to
determine the fine-structure terms of the spin
Hamiltonian.

In Sec. I we give the crystallographic and mag-
netic properties of FeBr,. Section II describes
the experimental results of the impurity spin
resonance of Mn®*" in FeBr,. In Sec. III we show
that these experimental results are well described
by an effective-spin Hamiltonian of the impurity.
Finally, in Sec. IV, taking into account the mag-
netic properties of the impurity and the antiferro-
magnetic host, we point out the physical meaning
of the various terms of the effective-spin Hamil~
tonian.
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I. CRYSTALLOGRAPHIC AND MAGNETIC PROPERTIES
OF FeBr,

Ferrous bromide is an ionic crystal isomorphous
to Cdl,, with space group P3m1 (D3,). The struc-
ture is hexagonal with one molecule per unit cell.
The lattice constants are a=3.74 A and ¢ =6.17 A.
The ferrous ions occupy la positions (0, 0, 0) while
the bromine ions are situated at 2¢ positions
{+G,%, 1)}. The diamagnetic surroundings of a
ferrous ion form a slightly distorted octahedron,
the point group being 3m. The resulting layer
structure consists of sheets of ferrous ions sand-
wiched between two sheets of bromine ions per-
pendicular to the hexagonal ¢ axis of the crystal,
which is also the trigonal distortion axis. The
crystal structure is illustrated in Fig. 1.

Many experimental and theoretical studies of
FeCl, and FeBr, have been carried out in the past
several decades, and the main properties of the
ferrous halides are now well known.®~Y’

The magnetic structure of FeBr, was first in-
vestigated by Wilkinson ef al.'® In zero magnetic
field and for temperature lower than 7, =14.2 K,
one observes an antiferromagnetic ordering which
congsists of sheets of ferromagnetically aligned
Fe?* spins directed along the ¢ axis with antiferro-
magnetic ordering between adjacent sheets. So,
the ferrous ions belong to two equivalent magnetic
sublattices denoted « and 8. This magnetic order
essentially arises from intralayer ferromagnetic
coupling and interlayer antiferromagnetic coupling.

2+
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FIG. 1. Crystal structure of FeBr,.

In the molecular-field approximation with spins
along the ¢ axis, these couplings are character-
ized by two effective interaction parameters, J,
>0 and J,<0, between one ion and the two magnet-
ic sublattices (J,=4.4 cm™ and J, =-5.3 cm™)."°

Furthermore, FeBr, exhibits a single-ion uni-
axial anisotropy D =9.7 cm™,* the easy axis being
the ¢ axis. Many unusual magnetic properties of
these compounds result from the fact that the
single-ion anisotropy is of the same order of mag-
nitude as the magnetic couplings.

At low temperature, in a magnetic field parallel
to the ¢ axis, a characteristic metamagnetic be-
havior is observed, corresponding to a transition
from an antiferromagnetic phase to a paramagnetic
one. The value of the critical field H, =29 kG gives
the antiferromagnetic exchange coupling parame-
ter: J,=-g MgH,."®

The crystalline anisotropy and the antiferro-
magnetic exchange interactions involve the exist-
ence of a gap in the magnon spectrum in zero
magnetic field: 7Zw,=17.5 cm™".1:7

When a magnetic S ion (Mn?*) is substituted for
a ferrous ion in FeBr,, we will see that the im-
purity resonance spectrum can be clearly ex-
plained using the assumption that the exchange
constants between the impurity and the host are
consequently weaker than the host exchange con-
stants (1 cm™! compared with 10 cm™!). The
same situation was observed by Motokawa and Date
in FeCl,.® This indicates that the energy of the
impurity excitation modes of about 1 cm™! is
small compared with that of host excitation modes
of about 17.5 cm™'. Therefore, the impurity spin
behaves nearly as a “paramagnetic” spin in an ef-
fective molecular field.

II. EXPERIMENT

The measurements were made using a conven-
tional homodyne spectrometer. Various resonance
frequencies were used in the 12-25-GHz range.
The cavity was immersed in a helium cryostat
and measurements were generally made at 1.6 K.
The magnetic field given by a 12-in. Varian magnet
could be swept between 0 and 10000 G. The field
was measured with a proton magnetometer. Using
small gear wheels, the sample could be rotated
inside the cavity. Using this rotation and the rotat-
ing base of the magnet, precise alignment of the
crystal could be made, with the crystal being at
helium temperature. The angular dependence of
the spectrum was used to obtain this alignment.

The hyperfine structure of the Mn** ion was ob-
served for some orientations of the magnetic field
relative to the crystal ¢ axis [see Fig. 2(b)]. How-
ever, one does not evaluate directly the hyperfine
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FIG. 2. Resonance spectra of Mn?* in FeBr, at 4.2 K
and with 15.5-GHz microwave frequency for two angles
6 between the magnetic field and the ¢ axis: (a) 6=0°;
(b) 6=60°.

constant A,, since the structure is not well re-
solved. This allowed a safe identification of the
spectrum. This identification was confirmed using
crystals of various Mn** concentrations. The lat-
ter were measured by atomic absorption, neutron
activation, and mass spectrometry. Most of the
measurements were made on a crystal which was
not intentionally doped but naturally contained five
Mn2* ions for 10000 Fe®* ions. A crystal with a
Mn?* atomic concentration of 1.3% was also ex-
amined. At this concentration, the EPR lines were
broadened.

Figure 2(a) shows a typical spectrum. The mi-
crowave frequency was 15.5 GHz and the magnetic
field was aligned along the ¢ axis of the crystal.
For this orientation of the field, the linewidth is
approximately equal to the hyperfine splitting, and
this gives rise to a peculiar, trapezoidlike line
shape.

Two groups of five resonance lines each are
identified. They are due to Mn®* ions substituted
in one or the other of the two sublattices. This
assignment is confirmed by measurements made
at various microwave frequencies as shown in Fig.

25 Magnetic  ° field H(kG) 5 10

FIG. 3. Frequency-field diagram of the resonance
points of Mn?* impurity spin resonance at 4.2 K (H || ¢
axis). The effective g’ value is 1.94.

3. Data shown in Fig. 3 also show that the Zeeman
structures are linear functions of the magnetic
field, with g{=1.94. This leads us to introduce
only one term g4tgH,S, in the phenomenological
spin Hamiltonian and to neglect terms of higher
order in H,. Figure 4 shows how the resonance
fields change when the magnetic field is rotated
with respect to the ¢ axis. These spectra were
observed to depend only on the angle 6 which the
magnetic field makes with the ¢ axis of the crys-
tal. Hence they have a cylindrical symmetry and
not the lower trigonal symmetry allowed for the
site of the Mn?®* ion in the lattice.

For all these measurements, the resonance field
was taken as the center of the hyperfine pattern.
An additional line observed at a field correspond-
ing to a g value of 2 was assigned to some unknown
impurity.

III. EFFECTIVE-SPIN HAMILTONIAN

All these experimental results are well ex-
plained (see Fig. 4) by the simple effective-spin
Hamiltonian below:

Wosr €8 | g Hypy S +D'[S}% =5 87 (S’ +1)] +€a, SL®
+ a0 B0 +8 [ HpH, S, +8  hy(HsS; +H, S))
with
09=355,* -308'(S" +1)S.2 +258.2
~6S’(S” +1) +38’3(S" +1)?
where [y is the Bohr magneton, H,, H,, and H,

are the components of the applied magnetic field,
S}, Si, and S/ are the components of the Mn®* im-

c- axis and H

6 (9 between the

Angle

.
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FIG. 4. Angular dependence of Mn?* spin resonance in

antiferromagnetic state of FeBr,, at 4.2 K and with

15.5 GHz. The experimental points are circles. Solid

lines are the calculated curves.
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purity spin § (S’=%), z being the ¢ axis. e takes
the value +1 or -1 according into which magnetic
sublattice the Mn®" ion is substituted. As shown
by the results of Fig. 3, it is not necessary to
introduce terms in HZ or any higher power. We
will assume that the same is true for the x and y
components of the magnetic field. Other terms
(for instance S.° or S, S.H,) would be allowed by
the symmetry of the site. It is not necessary to
introduce such additional terms in the simple
Hamiltonian in order to fit all the experimental re-
sults within the experimental accuracy of 10 or
20 G.

The spectrum obtained for 8 =0 (field parallel to
the ¢ axis) allows us to calculate all the parame-~
ters except g/, which is given by the angular de-
pendence of the spectrum.

The different coefficients are evaluated as

£1=1.94£0.01,
£,=1.51£0.01,

H,, =2900+30 G,
D'/glkg=-T10£20 G,
as/ghhp==10+3 G,
BY/gig=15+4 G.

The signs of D’ and BY are obtained by using the
temperature dependence of the spectrum for 6 =0
in the 4.2-1.6 K range. The signs of H;,, and a,
cannot be determined, only their relative sign is
known.

IV. THEORY

In this section, we shall find the physical origin
of the various terms of the effective-spin Hamilto-
ian. For this, we shall start from the physical
Hamiltonian of the antiferromagnetic FeBr, host
and one Mn*' impurity, and we shall use a per-
turbation theory.

A. Hamiltonian of one impurity and the host

Assuming that one can neglect interactions be-
tween the Mn®" impurities, this Hamiltonian can
be written
H=H,+H,,

with
HO =Hhost +H‘i:mp +Hhole >
H,=H; +H;; .

H,. is the Hamiltonian of the FeBr, host. Hf,,
describes the Mn** free-ion while H, is that of
the hole when substituting the Mn?* ion for one

Fe?* ion.

H; = -H- _ﬁz Zua_ﬁ =y represents the Zeeman
term of the Mn?" impurity with spin S’ =5. H,;
represents the so-called “magnetic” interactions
(exchange and dipolar interactions) between the
host and the impurity.

Note that we have not written the electric crys-
talline-field-interaction terms between host and
impurity. Indeed, these interactions influence the
fundamental level energy only in high order of the
perturbation theory®?! and give rise to a small
correction of the g’ factor and to a fine structure
constant D’ much smaller than 100 G,?* this value
itself being weak compared with the experimental
D' one. We neglect these corrective terms and the
contribution of the crystalline field to the B con-
stant.

H,; contains the exchange and dipolar interac-
tions between the impurity spin $ and the host
spins S;. For the exchange coupling we take the
most general bilinear form

-25,-3-§ .

Indeed, the large negative experimental D’ value
can only be explained assuming large nondiagonal
exchange terms -2J'* S, S! and -2J'%8,8,. A
parallel situation has been found for Mn** impur-
ities in CoCl,- 2H,0by Fujii et al.* and Tachiki.?®

Therefore, the expression of H,; is

Hy==2,28 3-8+ ;-Ap- 1,
i i
where :&,f is the dipolar interaction tensor,

-~ -3, - - -2
1 — a0l 4 4 !
Af=v} (u=3%-Tir] "),

k4

and U is the unit tensor, T; is the vector joining
the impurity to the Fe?* spin site i.

B. Principle of the perturbation method

The substitution of a Mn?®" impurity to a Fe®**
ion does not modify very much the eigenstates of
the FeBr, host. So we shall neglect H, ,, compared
with Hpog-

The nondegenerate fundamental antiferromagnet-
ic state of the host and its energy are, respective-
ly, denoted | f) and E,;, the excited states and their
energies being |e) and E,.

The lowest level of Hf , (L’ =0) is (25’ +1)-fold
degenerate. The six eigenstates are denoted |M’).
The excited levels of the free-ion Mn?" (L’ +#0) are
much higher than those of the host and are not
taken into account in the perturbation theory.

Furthermore, the eigenvalues of H, (about
1 cm™?) are smaller than the gap of the spin-wave
spectrum of the FeBr, host, about 17.5 cm™.

Therefore we can consider H, as a perturbation
in the sixfold-degenerate manifold {|fM")}
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={|/)|M"} of the unperturbed Hamiltonian H,.
Then, we have to diagonalize H, in this manifold.
We improve this first-order perturbation calcula-
tion by considering the part of H, which connects
the eigenstates of the manifold {| fM’)} to the ex-
cited eigenstates of the manifolds {| eM’)}. So, we
shall use the effective-Hamiltonian formalism (see
Pryce,?* and Abragam and Pryce®®), modified in
order to take into account the host-impurity mag-
netic interactions. This problem has been treated
by Hutchings et al.*®'?" without the host-lattice in-
teraction term and their results have been applied
by many authors to paramagnets.?®~3! We have ex-
tended this approach to antiferromagnets.

Within the fundamental impurity manifold {|M")},

the effective Hamiltonian can be written as follows:

(f|H le)elH | 1)
E,-E,

Ko = (fIH,| 1) +Z_

This calculation of the effective Hamiltonian is
correct to higher-order perturbation terms |H,|?/
AE. Another source of error is the choice of the
antiferromagnetic host states | f) and |e) . These
states are given in the Appendix.

C. Physical origin of the effective-spin Hamiltonian

First, we can describe the physical origin of the
principal parameters H,, , Agj, Ag’, and D’ en-
tering into ¥C . using a simplified model. We shall
assume a Heisenberg exchange between the im-
purity and the host and we shall neglect the dipolar
interactions.

So H, is written

H,=2p H-§ -2J,8* § 27458 § .
In order to reduce the notations, we have assumed
that the impurity spin S’ is only coupled with one
nearest-neighbor host spin of each sublattice a

and B.
We first consider the first-order term of 5C;.
In a magnetic field parallel to the x axis, JC. is

written
Hor =21 g H, St = 24 FISTLSY +J76C SISEI F))SL .

The two matrix elements in the bracket are pro-
portional to H, so that the bracket gives rise to a
correction Ag’ to the g’ value.

Within each manifold of a Fe*" host ion, we in-
troduce an effective spin §, so that

S=a-5 and H=-pzg-3

Within the lowest-effective-spin s =1 triplet, we

have the following relations:

FISEL =<FISEI = =(a /g mp)FILSLS)
(FIuSI) =fIull ) =x H,

where yx, is the perpendicular susceptibility per
ion of the host, and with

~ 3 ~ T
a, >3 and g, ~3

(see Appendix). Then, the effective Hamiltonian

1s
Jccff =2/J‘BHx S; + (zal/gJ_IJ‘B)(J(IX +J’B)XJ.HZ S:: .

So we have the variation of the perpendicular
spectroscopic factor:

Ag = (Ra,/g, bR Wa+I X, -
In a magnetic field parallel to the z axis, the

Zeeman term and the effect of the exchange are
given by

:}Ce:‘f:'zuBHzS; —Z(J&<f|5;x|f> + Jé <flS§If>)Sz, .
To the first order of a perturbation calculation

(fISSIN ==FIS2US) = =ay > =5 .

To the second order of perturbation one has to
consider the mixing by the magnetic field of the
lower s =1 states and the excited states s =2. It is
this mixing which gives rise to a nonzero Van
Vleck parallel susceptibility per ion x,. So one
understands that the second-order correction to
the matrix elements {f|S%*®| f) is proportional to
both the H, component of the magnetic field and
the susceptibility per ion y,:

(fISS B f) =7~ (Xu/Bukp)H, ,

where the signs — and + apply, respectively, to
the sublattices @ and 8. It is easy to show that we
have (see Appendix)

By=3.

Then 3C ¢ becomes
et =21gH, S; +8ihpH Sz +A8 1 H,S;

with the effective molecular field and the variation
of the parallel spectroscopic factor being given by

Hi =Q2a,/gikp) e =J%) ,
AgL=Q2/By BT +TB)Xy -

In the second-order term of the effective Ham-
iltonian, we consider only the excited host states
of the triplet s =1, because the excited states s =2
are much higher (2’ =180 cm™%).

Therefore, the second-order term of 3C. in zero
magnetic field (see Sec. IVD4) is

1

E;Tée— W& Sf1858"" eXelS xS |1

Hots =
+J5(f[S5S " |exe|SES 7| 1)) -

Using the following relations,
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(1-1[S55"*[10)(10|S% S"~[1 - 1)
=(1-1]sz(10)*s' "8~ ,

and

(1-1|83[10) =a(1-1|s3|10) = /2a ,

A

X is given by

_2a%

C‘Ceff E E

2+ T [Si2 =S - S1(S" +1)] .

The anisotropy term D’ is then

D'= Ez——b:— TR +J 53 .
Therefore, in the Heisenberg exchange assump-
tion, the D’ value is positive. Besides, we ob-
serve a small correction to the effective molecular
field H, ,.

The above simple considerations illustrate the
physical origin of the parameters H,,,, Ag|, Ag',
and D’ of the effective-spin Hamiltonian.

A more-detailed analysis will allow us to esti-
mate the order of magnitude of the different ex-
change integrals J’, and to show the importance
of dipolar interactions and exchange anisotropy.
This analysis involves the determination of the dif-
ferent parameters ay, &, X, and so on, of the
FeBr, host, which implies the choice of a model
to describe the host states | f) and |e).

D. Detailed calculation of the effective-spin Hamiltonian

The eigenstates and the eigenenergies of the
host Hamiltonian are obtained in the molecular-
field approximation (see Appendix). The funda-
mental state of the host ions is written as

|f) = II|-1>'H |+Df ,

LB =1fo) +alf5) +a, H\ f.) vacHel 1)
with

|f0>=n |1-1>,-Q|11>,- ,
179 = 2 tz=00 I -, IL 1,
- Z 21, I1 11-1>;II 1),

=2 12-0p Tin-0, IL i,
+f\:s 20, JT 11-1, I];'|11>, ,

1= 25 110y, IT j1-v), I 11,

iea

+ 22 110), T -0, I i, ,

a=-(5/9ag, ,
ay = (‘[5/9“3))(\1 )
Ay = _(ﬁ/7MB)XL .

With this state | f), we can now calculate the
first term of the effective-spin Hamiltonian, the
applied magnetic field being in the zx plane:

(FIH|f) =20pH, S, +2ug H, S} + 3¢ + 32 + 38,
with:

g}% “<foth:|fo> - /Q)Ag!k«f(')‘Hhilfo)

+{fol Hul F5)) -
(ezf)f =—(/5/915)x, ([ [ Hpi| o)+ Fol Husl SH,
5 = = (V2/ T L (Lol Hugl o)+ fol Hps | ) He

1. Determination of H,,

3¢ gives the following contribution to the spin
Hamiltonian:

(elf)f:<2[ —2J1% (=% ~5A8) —2u3 A4 (L +ag)]

icd

+ ZB [‘2J$‘z(% +3 Agu)
ie

—2M%A$"(-%—Agu)]> s,

By symmetry, the Hamiltonian does not contain
Sy and Sj terms.

So, we find a predominant term 2uzH, S, cor-
responding to a magnetic interaction effective field
between the impurity and the host. The effective
molecular field H;,, changes its sign according to
which sublattice the impurity belongs.

For an ion in the sublattice @, we have

IZZ JIBZ

- /zz__ 122
T —4.08u5(ALE - A ,

H  =3.39
with

S, Xt s,
je

ica

D API=ALE DAY= ALG .

ieo icB
We can calculate exactly the contribution to the
effective field from dipolar interactions by a
rapidly convergent summation method.'**? The
dipolar sums correspond to our sample, which is
approximately a flat disk perpendicular to the ¢
axis:
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FE = L2A ==2A2=2.130X10% cm™* ,
AE=-2A05=-2A%=0.021X10"%* cm™® .
This contribution for an « ion is evaluated as
H P =-8000 G .
From the experimental value (evaluated with g
=2):
H,, =+2800+30 G,
the contribution from the exchange interactions is
H{ ™ =10800 G or Hi,,* =5200 G .

Thus, we can get the two possible accurate values
of the difference between the effective zz exchange
couplings between an impurity and the two sub-
lattices:

UL - T _
- _—aoP =3200+30 Gor 1500+30 G.
2Up

2. Determination of Ag

3¢ is expressed as
2
5o (2 Gupar - ) s

Thus, we obtain a deviation of the parallel spec-
troscopic factor directly connected to the host
parallel susceptibility per ion:

Agi==(2/3up)x, [BLE(ALE + ALE)
- (J&s +J&8)]

Ag = (RT/100)(J5E + Jif
- (B1/10N )5 (AGE +AGR) -

The value of Ag| resulting from dipolar inter-
actions is

s =~

Agl % =-0.01.

The experimental result Ag{=-0.06+0.01 allows
us to evaluate the order of magnitude of the sum of
the effective intralayer and interlayer zz exchange
constants:

Joa +Jah
2up

The experimental values of H;,, and Ag | give an
estimation of the effective zz exchange couplings
between an impurity and each sublattice. In spite
of a somehow large error (+3500 G) proceeding
from the Ag| measurement, we observe that in
any case the exchange couplings are antiferro-
magnetic.

First possibility:

Ji% = I3 =-6900 G,

=~17000+ 3500 G .

JEE=J%5=-10000 G .
Second possibility:

Jha=="1800 G,

JEE=-9300 G .

3. Determination of Ag/
3& is given by

2 XX
5 =~ T, X (2 (THRA =3J} )>H, St .

The variation of the perpendicular spectroscopic
factor is thus proportional to the host perpendicu-
lar susceptibility per ion:

,xx)

ALY ==R2/TuRx [ThE(ALa + ALE
-3(Jha +Iud)],

21
’ = %% /xx
Agy 2D __2<]2) (Craa Ja
49 2 %% %%
_Z(D—ZJZ) HB(AOHX +AO(B) .

The dipolar contribution
Ag 't %P =+0.06

is much weaker than the experimental value Ag’
=-0.49+ 0.01. Therefore we have

Ag ™ =-0.55+£0.01,
Joa+Jdos
2up

There is apparently an anisotropy of the host-
impurity diagonal exchange.

=-11200+200 G .

4. Determination of D'

Finally, we study the second term of the effec-
tive-spin Hamiltonian:

Z (e 1|e><elH1U> 2 <fIHmie>(e|Hm|f)

Expanding the eigenstates and the energies of the
host as functions of the applied field, we get a pre-
dominant field-independent contribution. We can
neglect the other field-dependent contributions
which are smaller than the previous ones.

Furthermore, for simplicity, we neglect D/’
corrective terms so that for the ground state we
shall take

If)u]fo> )

while for the excited states, we shall consider
one-ion excitations to the states |10) and |11) for
an ¢ ion and to the states |10) and |1 -1) for a B
ion. We shall not take into account the one-ion
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higher excited states s =2 (at 2X’ =180 cm™") and s =3 (at 52’ =450 cm™?).

Then, we obtain

1 .
R = T 7 o (THATT =31 - (Tug AP 307?522
1 XX 1% X 9%
G- T =7 o [(THBART =301+ (TugAP™ = 307)°] 827,
1
5% = 20 [(THBAPY =317 + (T3 AP ~307)°] S}7 .

T2D+d, -Jd)5

By symmetry, the coefficients of 5% and 58} are equal, and we obtain a term proportional to

S12+S1%= =82 +8'(S" +1) .

Finally, 3¢, SC(ff)f, and 3¢8 give a D’S!? contribution to the spin Hamiltonian which may account for the
large negative experimental value D’/g )iy =-T770 G. Neglecting dipolar interactions we have

i

It appears that the nondiagonal components of the
exchange interactions have to be of the same
order of magnitude as the diagonal ones.

Just as in the case theoretically studied by
Tachiki,? it is shown that the 3% negative contri-
bution due to J** and J’** is predominant.

Furthermore, a significant contribution to the
anisotropy term D’ may arise from a biquadratic
exchange between the host and the impurity (see
Harris and Owen®®):

—Zji(—S: '_§')2 .
t

5. Other terms

The second term of the effective-spin Hamilto-
nian leads to other quadratic terms in spin com-
ponents which are nondiagonal. By symmetry all
these terms cancel except —i(S;S; - S, S;) =S,,
which gives

1 ! /) 7
eff = T 2(D+J1—J2)<2Bi— ZBI Sz ’

50 =
ica i€p

with
B{=((TWRAT™ = 307%) (Th5 AP -377)
~ (THRAP" —3J7)(TUR ALY -3J77)] .

507 gives a weak contribution to the effective field
Hint .

This second-order perturbation technique may be
extended to the third order. The third-order terms
will give the missing spin Hamiltonian term

€a,S,® which appears in H,; H,;H,;/(AE)?. Its order
of magnitude is (10%)3/(20X10%%~25 G in good
agreement with the experimental value. The term
&B%0S may issue from the crystalline field or
from higher-order perturbation terms.

<Z (J§IZZ+J;MZ—J’{IIZ—J?WZ—Jéxyz—J?x2>1/2=5900 G.

CONCLUSION

Electron spin resonance of substitutional Mn?*
ions in antiferromagnetic FeBr, host has allowed
us to evaluate the effective magnetic field de-
scribing the exchange and dipolar magnetic inter-
actions between an impurity and the host.

Moreover, in the effective-spin Hamiltonian, we
have pointed out some original features: the de-
viations Ag{ and Ag’ of the spectroscopic factor
are very large, and the single-ion uniaxial an-
isotropy term D’S/? is much larger than the crys-
talline-field contribution.

A theoretical analysis using the “Abragam-
Pryce” formalism has allowed us to get the phys-
ical origin of the anomalies. We have shown the
predominant part played by the host properties.
So Agf and Ag' were, respectively, proportional
to the host susceptibilities x, and x,.

The experimental values of H;,,and Ag| have
given two possible sets of values for the exchange
parameters between an impurity and the two sub-
lattices which are weaker than exchange couplings
within the host:

%2 =-0.64 cm™!, J¥5=-0.94 cm™!,
or

JI#=-0.13 cm™}, J¥5=-0.8T cm™".

These results are significantly different from
those obtained by Motokawa and Date® in FeCl,
(J%Z2=+0.64 cm™", J/#=~0.41 cm™') where one
coupling is ferromagnetic.

Furthermore, the accuracy of our measurements
has allowed us to point out the existence of an
anisotropy of the diagonal exchange coupling and
the presence of large nondiagonal exchange terms.
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Note on new experimental data

Recent measurements at 7=4.2 K and v=14.5
GHz have been carried out by Chamel using high
magnetic fields (Service National des Champs In-
tenses de Grenoble). The value of the internal
molecular field on an impurity in the paramagnetic
phase of FeBr, is found to be

H,, =-55900+30 G.
A rapid analysis of this result gives:
Jis + I
2 g

in good agreement with the above determination
resulting from the measurement of Ag:

=-14500 G,

/zz+J/zz
Sea” e =_17000+3500 G .
2up
An extensive analysis of these EPR measure-
ments of Mn?* ions substituted in the saturated
paramagnetic phase of FeBr, will be presented
later.
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APPENDIX: EIGENSTATES AND ENERGIES
OF THE FeBr, HOST

The single-ion energy-level diagram has been
widely developed by Ono ef al.,® Carrara,*' and
Alben.?

We consider an assembly of magnetic Fe®* free
ions. Each magnetic ion is placed in the crystal-
line field of the diamagnetic ions and the molecular
field describing in a mean-field theory the ex-
change and dipolar couplings with the other mag-
netic ions. Then we have a one-ion problem, the
Hamiltonian being

V:H0+VC+VLS+Vm+VZ ’

where the various terms are, respectively, the
free-ion Coulombian Hamiltonian, the crystalline-
field, the spin-orbit coupling, the molecular-field
Hamiltonian, and the Zeeman term.

First, the predominant cubic part K of the crys-
talline field V, splits the free-ion spectral 3d°(°D)
term, giving a lowest orbital °T,, triplet with a
fivefold spin degeneracy. In this orbital triplet,
we introduce an effective angular momentum T

(I =1), and then we have
L=-I,
Vys=N1-8,
T=-10D(;-%) ,

where T is the residual trigonal component of the
crystalline field.

In the case of FeBr,, we can consider the tri-
gonal field as a perturbation compared with the
spin-orbit coupling. So, the °T,, level is split by
the spin-orbit interaction giving a triplet ground
state characterized by an effective spin s =1
(&=1+9), a quintuplet s =2 at 21’ ~ 180 cm™" (Ref.
13) and a septet s =3 at 52’ ~450 cm™.

Neglecting the dipolar interactions, the residual
terms of the Hamiltonian of an ion of the sublattice

«a are then
V,==10D(12 - %) -(2J *Sg) +2J * (S §))s,
"(2Jaa<sta)c(> +2Jaﬂ <s §>)sx—HzlJ‘z - Hxnu'x )

where exchange Heisenberg interactions are
treated in the molecular-field approximation and
(8Z)..., are the mean values of SJ..., at T
=0 K.

Within the lowest triplet, the spin S and the
magnetic momentum ﬁ of a Fe?* ion are related
to the effective spin § by

S=a3, L=-pyg-5.
At this order of the perturbation calculation, we
have
» B=8L7F -

The fundamental triplet s =1 of the Hamiltonian
Vo=H, +K+V_g is split by the perturbation term
V,. At T=0K and H =0, an antiferromagnetic
order is observed with

e

ay=a, =

(s%y==(sPy=-1and(s%)=(s8)=0.

The triplet is split into a fundamental singlet
characterized by s§ =-1 (state |sm,) =|1 1)), a
first excited singlet at D +J, - J, (state|10)), and
a second excited singlet at 2(J, ~ J,) (state[11)).
J, is the effective intralayer ferromagnetic ex-
change parameter, J, is the effective interlayer
antiferromagnetic exchange parameter, and D is
the single-ion uniaxial anisotropy constant. The

values of these characteristic parameters
arelS. 19,34,35

J,=2afJ%**=4.4 cm™" ,
J,=202d*P=5.3 cm™!,

D=97cm™.
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A higher-order perturbation calculation which
includes the Zeeman Hamiltonian leads for an «
ion to the following fundamental state in the basis

{lsmg)}:

|-1)"=|1-1) +a|2-1) +a,H,|2 - 1) +a, H,|10) ,
with

a==(5D+J, - J)/2VB\

a,==9ug/4V 5N

o= =Tip/2V3(D -2J) .
Note that

7
(ui) =l<"1|“xi—1>, = - TZ‘“ MpayHy =X Hy ,

W) =l -0 =i (5 - 7= 7z i)

=Hp (% +Agl\) +Xi Hz ’

where x, and x, are the perpendicular and the
parallel one-ion susceptibilities at 7=0 K. There-
fore

a=-(/5/9ag, ,
a;==(/5/91p)xy
ax=-(2/Tug)x, -

The fundamental state for a 8 ion is

|1)" =|11) - a|21) +a,H,|21) +a, H,|10) .
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