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Hyperfine field of positive muons in Ni
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We have calculated the contact hyperfine field of positive muons in Ni using a self-consistent spin-polarized

density-functional formalism. Because we find more than an order-of-magnitude enhancement of the ambient

hyperfine field at the muon position, it is impossible, within the confines of a free-electron model, to achieve

agreement between neutron scattering results for the interstitial-polarization and muon-precession experiments.
We propose a model in which the screening of the muon charge is done by free electrons of an essentially

unpolarized 4s band, while the hyperfine field is due mainly to the relatively unperturbed 3d spin density

arising from the different radial character of the majority and minority spin-3d wave functions. This model

can satisfactorily reconcile neutron scattering and muon-precession experiments and existing Ni band-structure

calculations.

I. INTRODUCTION

~ = 2gB„/5, (2)

where p, is the magnetic moment of the muon and

B„is the average magnetic field acting on the
muon.

In magnetic metals such as Ni B„ is determined
partly by contributions easily calculated —ex-
ternally applied fields, Lorentz fields, demag-
netizing fields —and partly by contributions from

In recent years a good deal of interest has been
generated by the use of positive muons as probes
of hyperfine fields in a wide variety of solids in-
cluding magnetic materials, ' ' nonmagnetic
metals, ' superconductors, ' and spin glasses. '
The basis of these experiments rests in the muon's
asymmetric (with respect to its spin direction)
decay into a positron and a pair of neutrinos. The
positron is emitted preferentially in the direction
of p' spin at the moment of decay. If the muon is
precessing due to either externally applied mag-
netic fields or due to the internal fields of the
host in which it is stopped, the preferred di-
rection of positron emission then oscillates in
time. The number of positrons per unit time,
emitted in a particular direction fixed in the lab-
oratory frame, can be written

N(t) = Roe '~'~[1 + ae '~' cos(~1+ y)] .
Here No is a normalization factor, v'„= 2.2 p, sec
is the p,

' lifetime, a is an anisotropy factor re-
lated to the weak decay and the initial polarization
of the stopped muons, and cp is a phase angle de-
pendent upon detector position. The two quantities
of primary interest which are extracted from the
experimental data are ~, the depolarization life-
time, and ~, the average muon precession fre-
quency. It is ~ with which we are concerned in
this work.

internal fields such as dipole fields and the con-
tact hyperfine field,

B„,= —'-v In, (0) —n (0)] p (2)

Here ps is the Bohr magneton and n, (0) are the up-
and down-spin densities at the muon site. In the
case of Ni the muon is believed to be localized
around a site with octahedral symmetry so that
the dipole fieMs average to zero and B„, is the
only internal field of importance. An experimental
measurement of & then leads to a determination of
Bhf'

The advantages of the muon as a probe of in-
ternal fields are accrued basically from (i) its
simple structure —a. point ion with no core—and
(ii) from the possibility of observing individual
muon decays. In contrast to many NMR studies,
for example, it is possible to reduce the perturba-
tion of the host to the limit of infinite dilution. In
some applications the dominant disadvantage of
the probing muon is its positive charge. Thus
while it is possible to reduce the number of muons
present in a sample to extreme dilution, the local
perturbation to the host of even a single p' can be
rather severe. One would naively expect this to
be especially true in the measurements of hyper-
fine fields in a magnetic metal like Ni.

%e usually want to extract from experiment a
property of the host in the absence of the probe.
However, B„,fails to meet this criterion in a
simple way because it depends upon presumably
strongly perturbed spin densities at the position
of a Coulomb singularity in the muon potential.
Thus it is important to have a way of untangling
a property of the pure system from a measured
property of the system plus probe.

The most recent value' of B„, in Ni is —0.64 kG,
the minus sign indicating that B„, results from a
spin density oppositely directed to the bulk mag-
netization. It is of interest, to note that B„,cor-
responds almost exactly to the hyperfine field
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one would predict if it were due only to the un-
perturbed spin density at the octahedral position
in the unit cell, as measured by Mook. '

p s( n, ,-n, ) = —0.0085+0.004 p~/A'. (4)

n, 0+n 0
p, (0) —= ' 5, charge enhancement

+0+++0-
(5)

n, o —n o
p, (0) =— ' - 1.4, spin enhancement.

Ã0 —Ã0

The results of this calculation are rendered
suspect by the use of linear screening, which is
recognized to be a very poor approximation for
Coulomb potentials.

The difficulty is then to understand how a neces-
sarily large perturbation in charge density around
the muon can lead to essentially no perturbation
in spin density there.

A number of models have been proposed to ex-
plain this result. Jena' has developed an analyti-
cally soluble model, based upon earlier ideas of
Daniel and Friedel, ' in which the true Coulomb po-
tential is replaced by a spin-dependent square-
well potential. He adjusts the depth of the well to
satisfy the Friedel sum rule and sets its range
equal to the Thomas- Fexmi screening length,
while determining the spin splitting of the well
depth from the interstitial magnetization data of
Mook. 7 The negative- spin polarization of the
neutron experiment is assumed to be totally due
to the free 4s electrons. For Ni, Jena finds
B„,= —0.60 kG, an agreement with experiment
perhaps somewhat fortuitous in view of the crudity
of the model.

Patterson and Falicov" have proposed a model.
for B„,which is loosely based upon density-func-
tional arguments. The principal assumptions are:
(a) The muon hyperfine field is due only to the
relatively free 4s electrons in the interior of the
unit cell (as also assumed by Jena). (b) These
are spin polarized oppositely to the bulk mag-
netization by antiferromagnetic exchange coupling
to the more localized Bd electrons. (c) This ex-
change coupling may be replaced by a uniform ex-
change field H, acting on the 4s electrons, thus
eliminating the 3d electrons from the problem.
The magnitude of H, is chosen to yield agreement
with the measured spin polarization far from the
Ni ions, under the assumption that there are 0.6 4&

electrons per site uniformly distributed over the
unit cell.

Patterson and Falicov then applied crude den-
sity- functional arguments, and the additional as-
sumption of linear screening of the muon charge,
to calculate a relatively small enhancement of the
ambient spin density at the muon site.

Both of the above theories are based upon the
screening of the p,

' by a spin-polarized free-
electron gas. In Sec. II we present the results of
a more rigorous density-functional calculation of
the spin and charge densities around the muon.
We find disagreement with the conclusions of
both Jena and Patterson and Falicov. In Sec. III
we discuss the failure of the free-electron model
of the hyperfine field and propose a new model
involving both s and d electrons that is able to
satisfactorily reconcile the neutron scattering
data, the muon data, the results of Sec. II, and
existing Ni band- structure calculations.

= 3.2

f0= 0.17.
The radial Schrodinger equations to be solved

for the scattering states are thus

+, + V' S~,(r) =k,'S' (r~),
d' l(l+ 1)

(8)

while for the bound states which appear for l = 0
only

(10)

Here

2 2, , (5n.(r')+ &n (r'))

+ v'„,(r„f)—v'„,(r„,&0),

II. MODEL CALCULATION

We have carried out a full self-consistent den-
sity-functional calculation of the spin and charge
densities around a muon embedded in a spin-
polarized free- electron gas. Our procedure follows
that used in spin-unpolarized density- functional
calculations as originally introduced by Hohen-
berg, Kohn, and Sham"'" and extended by von
Barth and Hedin" and Rajagopal and Callaway. '
We have used the spin-dependent exchange and
correlation potentials v„', of Gunnarsson, Lundqvist,
and Wilkins. " All gradient terms are ignored so
that the potentials depend only upon the local
charge density and the local spin density.

(8)
where

n(r) =n, (r)+n (r) =3/4wr83,

1(r) = [n, (r) n (r) I /n(r) .

The ambient value of the charge density is cal-
culated to correspond to 0.6 4s electrons per
nickel ion, and the ambient spin density is chosen
to agree with Mook's' data.
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6n, (r) = n, (r) —n„,
with

(12)

k, is a wave vector below the Fermi surface and
—g,' =E, is the energy of the bound state. The
change in density from ambient is

of r was 25.39 a.u. (iv) Bound-state wave functions
and energies were calculated using a modified
Herman-Skillman" program. The phase shift,
6, (k,), of each scattering solution S~, was calcu-
lated, and the solutions at the Fermi surface were
used to find the degree to which the Friedel sum
rule was satisfied:

r'6n, (r)=, k' dk
7T 0

x P(2l+1)[(S»(r))'-r'j', (kr)]+ [Ss(r)],.
Z = — Q (2l + 1)[6,(k' ) + 6, (k )] = 1 .

7T

(15)

The first term above is the contribution of the
scattering states to the density, and the second
is the bound-state contribution. S»(r) is normal-
ized asymptotically to a phase- shifted spherical
Bessel function and S~(r) is normalized to unity.
The above equations are deemed self-consistent
when the potentials t/' calculated from the wave
functions via Eqs. (11) (13) are the same potentials
which generated the wave functions in the first
place through Eqs. (9) and (10).

In practice numerical approximations have to be
applied to these equations. In agreement with
others we found that they are extremely unstable,
and we could not find an absolutely convergent
solution. The difficulty derives from the long-
range nature of the Coulomb interaction. One
must program the solutions of the Schrodinger
equation on the assumption that the potential fa,lls
asymptotically to zero faster than 1/r but any
deviation from exact charge neutrality, i.e. , Z
11 where

Z=4g 5n, r +On r x dy
0

(14)

invalidates this assumption. Instead of correcting
itself in a stable manner, a deviation from charge
neutrality in one iteration tends to make the solu-
tions on subsequent iterations oscillate wildly.
We have overcome this difficulty only by forcing
our solutions at each stage of interaction to obey
Eq. (14). Below we outline the manner in which a
qualified convergence was a.chieved.

The parameters of our program were as follows
(i) Six values of l were employed to calculate the
changes in density 5n, (r). Since about 90% of the
screening is due to l =0 states, the error in
truncating the l summation in Eq. 13 is very small.
(ii) The integral in Eq. (13) was calculated using
30-point Gaussian quadrature. As described
below solutions at 0= k~ were also generated, and
these were used to check the Friedel sum rule.
(iii) Equations (9) and (10) were solved on a 160
point mesh in the radial variable using the Numerov
method. "Mesh size varied from 0.01 a.u. near the
origin to 0.16 a.u. at large x, and the largest value

Since this sum rule must be satisfied by any
self-consistent solution, we chose never to carry
out a, complete iteration unless we knew it would
be satisfied. The technique used to enforce this
was programmed as follows. On the first iteration
a guess for 6n(r) = 6n, (r) + 6n (r) generated the
initial potentials.

6n(r) = (o.'/Bv)e (16)

at each of the 160 points in the r mesh. In practice
we found that the smallest value of 5 ™Q. Q3 was
obtained after only three or four iterations.
Further iteration resulted in poorer convergence.

Since n is an adjustable parameter in the sense
that any va. lue satisfies Eq. (14)with Z = 1, we
chose o. by requiring that V'(r) yield solutions
S', ,(r) which satisfied the sum rule. Thus the first
two iterations of the Schrodinger equation were
carried out with potentials which fell to zero
asymptotically faster than 1/r

On subsequent iterations we enforce the sum rule
as follows. Initial potentials V'„(r) for iteration n

were calculated from the final spin and cha, rge
densities of the previous iteration. The Schrod-
inger equation was then so!7ed only at the Fermi
surface and the phase shifts were used to find Z.
In general we found Z+ 1 and would not carry out
a, full iteration until the starting potentials were
modified. If Z~ 1, indicating too much (little)
cha.rge accumulation, our potentials were cor-
respondingly too attractive (repulsive). We then
computed new potentials V„'z(r) from densities
slightly adjusted from the output of the previous
inte ration.

6n, -f6n„, f«1 if Z&1, f&l if Z& 1, (17)

In practice f was unity to within a. few parts in
10, but even this small change was sufficient to
alter Z by several percent. A search for the
proper f was made until Z = 1 within a small toler-
ance. When fwas found the full iteration was
carried out.

Our test for self-consistency was made on the
initial and final potentials of each iteration. We
required

(18)
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FIG. l. Total. excess majority-and minority-spin den-
sity as a function of distance from the muon.

FIG. 2. Majority and minority bound-state density as
a function of distance from the muon.

%e feel that our final solution, while not ab-
solutely convergent, is a good approximation to
the exact solution. Near convergence, changes
in density from one iteration to the next were
typically 1% or less.

Our results are presented in Figs. 1—4. In Fig.
1 we have plotted the change in density as a func-
tion of distance from the muon for each spin
orientation. For large x each orientation has its
own characteristic Friedel oscillation period.
Essentially all of the shielding charge is contained
within about 3 a.u. of the origin —a distance less
than but comparable to the nearest-neighbor Ni
atoms in an actual crystal. From a Friedel'phase-
shift analysis we find that the total shielding
charge contains a slight excess of minority-spin
carriers. This fact is a direct consequence of the
presence of bound states and will be commented on
below.

The densities in Fig. 1 are the sum of both con-
tinuum and bound- state contributions. In Fig. 2

we have plotted separately the bound-state den-
sities. The bound-state wave functions are
relatively extended in space and it is not clear
that they would be expected to survive the per-
tubation by nearby Ni ions. Even if they do not,
we would expect that the overall change in density
should be small. If, should be noted that the
minority-spin state is more tightly bound than the
majority-spin state. The bound states thus make
a negative contribution to the total spin density
near the origin. Since the total spin density is
found to be positive there, this is counterbalanced
by a larger contribution of opposite sign due to
the scattering states.

The presence of two bound states indicates that
the muon looks more like an H ion from the point
of view of the scattering states. There is thus
apparently no tendency towa, rd the formation of

Z, = —Q (2l+ 1)6,(k~),
1
7l

g

with Z, +Z =1. If the two potentials V' were in

(19)

V'(r)
v-(r}

-1,5

-2.0
I

3
r (a.u. )

FIG. 3. Majority- and minority-spin self-consistent
potentials as a function of distance from the muon.

muonium, analogous to a neutral H atom, as is
known to occur in semiconductors and insulators.

In Fig. 3 we have plotted the two final potentials
V'(x). These drop essentially to zero within about
2.5 a.u. and then undergo small Friedel oscilla-
tions at larger distances. There is very little
difference between V' and U near the origin,
with V being slightly more attractive there. This
near equivalence of the potentials together with
the existence of bound states is sufficient to ex-
plain the slight predominance of minority-spin
shielding mentioned earlier.

The total shielding charge is determined solely
by the phase shifts 5,(k~) of the continuum states
at the Fermi surface. Defining Z, as the total
number of excess majority (minority) carriers
we have
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fact exactly equal, 5,(k) would be a single unique
function of 0 for both spin orientations. The major
difference between Z, and Z would then be due
to the fact that k~&It~. Our self-consistent solu-
tion shows that especially near the Fermi surface
5,(k) is in fact nearly the same function for either
minority or majority spins. The phase shift
begins at m because of the presence of the bound
states. This makes 5,(k) a relatively rapidly-
varying function of 0 since the Friedel sum rule
requires that it drop from 7t to below 2 m at the
Fermi surface. In contrast the higher l c0 phase
shifts are all small and vary much less rapidly
with k since 5», (0) = 0. To a first approximation
then the difference in the number of majority-spin
and minority- spin shielding electrons is

(20)

This is less than zero because 5,(k) is a mono-
tonically decreasing function of k. Note that if
the bound states were absent, a similar argument
would predict Z, &Z since 5,(k) would then be
a monotonically increasing function of k.

Finally in Fig. 4 we have plotted our results
for the spin- and charge-density enhancements

p, (r) and p, (r) The ch.arge density at the origin

IOO

ENT

is approximately 54 times ambient, which is
slightly greater than the density of a neutral
hydrogen atom. The large value of p, (0) is not
unexpected since in the limit r„-~ we should find
a solution for the H ion. In any event it is clear
that the linear-response theory of Patterson and
Falicov" is totally inadequate to treat such a
large enhancement. If these authors had used

p, (0) =54 instead of 5, their theory would predict
p, (0) = 10-15 instead of 1.4.

Although p, (0) «p, (0) there is still a factor of
12.5 enhancement above the ambient spin density.
This large spin density is in clear disagreement
with the results of both Jena and Patterson and
Falicov. It implies a hyperfine field more than
an order of magnitude too large to explain the
muon precession data. This large hyperfine
field is the fundamental result of our calculation.
We are led to conclude that a purely-free-electron
model is incapable of reconciling the neutron-
scattering data and the muon data. The manner
in which we can reconcile these two experiments
is discussed below.

III. DISCUSSION AND CONCLUSION

We consider first what happens if the input
parameter fo is varied. In this connection we note
that the neutron data gives us some latitude in the
choice of E, since the quoted error in the spin
polarization is about + 50 fp.

We investigated this effect by setting f, = 0.06 and
solving self- consistently the new set of Schrodinger
equations. We found the spin and charge enhance-
ments at the origin to be essentially unchanged
from the &, = 0.17 calculation. This is intuitively
understandable. The charge- density enhancement
is primarily a function of the Coulomb potential
and changes little due to magnetic effects. Also
it is reasonable to expect that for small values of
go, n, (0) —n (0) should be proportional to the
ambient polarization n„—n, . Thus p, (0) should
be constant, in agreement with our findings. We
may summarize by setting

n, (0) —n (0) =12 5(n„—n., ), (21)

r (a.u, )

FIG. 4. Charge- and spin-density enhancements as a
function of distance from the muon.

where this result is understood to apply to free
electrons only. We conclude that even with the
ambient polarization reduced by 2 (the lower limit
allowed by the neutron data), the free-electron
hyperfine field is still much too large to agree
with the muon experiments.

We thus postulate the following model for BM
and investigate its consequences.

(a) The Ni s band is relatively unpola. rized and
does essentially all. of the screening of the muon
charge while contributing only a small amount
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to the hyperfine field.
(b) The ambient polarization measured by neu-

tron scattering is due mostly to the localized 3d
functions and is essentially undisturbed by the
screened potential of the muon.

The result of this model is a prediction for the
muon hyperfine field which is close to that due to
the ambient interstitial polarization in agreement
with experiment. As justification for the model
we note the following points.

There is considerable evidence from band-struc-
ture calculations that the s band in Ni is a,lmost
unpolarized. For example, Connolly" derives an
average s band splitting of only -0.005 By, op-
posite to the much larger 0.07 By splitting of d
bands. Callaway and Wang" find the s band split-
ting to be only +0.001 Ry while agreeing with
Connolly in other details. The important point
here is not the sign of the splitting but its extreme-
ly small value. In contrast, if the interstitial po-
larization is due totally to s electrons, as assumed
by both Jena and Patterson and Falicov, the s-band
splitting would be -0.08 Ry, a value in clear con-
tradiction with the above band-structure estimates.

There is also agreement that a significant amount
of negative spin polarization in Ni results from the
different radial character of the majority- and
minority-spin 3d wave functions. This possibility
was already considered by Mook' as an alternative
explanation of the negative interstitial spin density
which he measured. The minority-spin d bands
lie approximately one volt higher in energy than
the majority-spin bands, causing the minority-
spin wave functions to spread out more than the
majority-spin wave functions. The net result is a
negative spin density in the interior of the unit cell
despite the smaller occupancy of the minority-spin
states. In this connection we might note that

allaway and Wang i8 while finding a small Positive
splitting of the s band, also find a negative spin
density in interstitial regions of the unit cell.
Duff and Das" have emphasized a similar point in
their calculation of the band structure of Fe. With
a relatively large and positive splitting (-0.1 Ry)
of the s-p band they nonetheless find a negative
spin density at certain interstitial positions in the
unit cell. They conclude that these regions of
negative polarization appear to be caused by a
spin dependence of the radial part of the d-elec-
tron wave functions.

If we accept the proposition that the interstitial
polarization is due primarily to 3d electrons, let
us then consider the effects of the screened muon
potential on them. If the s electrons are polarized
to only a small amount, this potential will be ap-
proximately spin independent and any change in the
d spin density must result from the different ener-

gy and range of the majority- and minority-spin d
wave functions. We suppose this change is small
and estimate it in perturbation theory. In the ab-
sence of the muon let H, be the Hamiltonian of the
nickel lattice. H, possesses a complete set of
eigenstates labeled by a band index n, wave vector
k, and spin 0 satisfying

Ho~nk Enk~nk ' (22)

In the presence of the muon we may write the
change in 4'„k to first order in perturbation theory
as

(23)

where

V„„„,, =— d'r V(r) 4„;.(r) 4"„„(r) (24)

and V(r) is the spin-independent screened muon
potential. V„k „, will be small since it is only the
tails of the wave functions which overlap a region
of large V(r).

The change in spin density is then

5n, (r) = 2Re P 4'„*;(r)54'„,(r)
n k&k~

n, k n', k'

„ ft&:,) -/I: ))
Enk n'k'

(26)

Note that we may exclude the s band from the sum-
mations above since these bands have already re-
sulted in the screened muon potential.

Consider the perturbation to the up (majority)
spin density. Band-structure calcul. ations indi-
cate that these d bands are already full, so that
the typical energy denominator above must be
very large —the states 4'„,k, must correspond for
example, to a 4P band. The smallness of the
screened-potential matrix elements will then
guarantee Ss, = 0.

Although a similar argument for the minority-
spin bands will yield only a. small value for 5n (r)
due to high lying bands, there is also a new con-
tribution which comes from the unoccupied states
of the corresponding 3d bands. Consider this con-

= 2Re g g, "'", 4„*;(r)4 '„. ,, (r)f (E„'„),
nk n'k'

n, k n', k'

(25)

where f(E) is the Fermi function. Interchanging
the (n, k) and (n', k') summations and taking ~ the
sum of the result with Eq. (25) yields
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tribution in a model in which a single 3d band
crosses the Fermi energy. We may drop the n

subscript in Eq. (26) and, since the d bands a,re
relatively flat, write

f(E,) f(E,-) &f (&,)
E~ —E~, dEq

Then

(27)

6n (r) = Re Q Q V~q, 4f(P') 4~, (r) d
. (26)df(E~)

A'

The neutron-scattering results reveal that the
3d band wave functions are quite localized so that
we approximate them by a tight-binding form

1
e,(r) =~+ e'"' p, (r (29)

where q~(r —R) is an atomiclike 3d orbital cen-
tered on site R. Consider the matrix element

~~~ ~

V~~=,d 'r V(r) —Q e '"' "~ yf(r —R,.)

xge'"'"& y~(r —RJ). (30)

The largest integrals have i =j withi a nearest-
neighbor site to the muon. Thus

]
y ~ ~i(& ke) ~ 6g

kk'

8

where 6 is a nearest-neighbor distance and

(31)

d'r V(qr I p,(r- ~) (32)

which we take to be independent of K Then

6n (r) = Re P g —Q e""""'ne,* (r)
k k' 6

=-l~ (E.)~)~. (.). (34)

Here N (Ee) is the density of 3d minority-spin
states in energy per atom at the Fermi surface
and no (r) is the ambient spin density of the band
under consideration at the muon site. With the
neglect of interband mixing this result is easily
generalized to an arbitrary number of bands

Upon doing the k' summation and noting that the
amplitude of 4', (r) at the muon site is again only

due to the nearest-neighbor 3d orbitals we find the
simple result,

6-()=R —„Q ' Z l~.( -6)l'df(E, )

l~l& 0.5 eV. (36)

Equation (34) is suggestive of a more general
result which can be justified by more rigorous
nonperturbative calculation. There are two ways
in which the 3d polarization can be changed by the
muon. The first arises from a distortion of the
3d wave functions. Such a distortion is generated
by mixing in excited states corresponding to
higher-lying bands. We have argued that this ef-
fect will be small for both minority and majority
spins because of the relatively large energy de-
nominator in Eq. (26).

A change in polarization can also result from a,

local increase in the occupancy of otherwise un-

occupied states near the muon. It is this effect
which is contained in Eq. (34). To see this we
note from Eq. (32) that n is essentially the change
in energy of a 3d orbital which is a nearest neigh-
bor to the muon. Thus for small &, N (Ee) l &l is
just the excess number of minority-spin electrons
attracted to the muon potential. We can view this
as resulting from a local lowering in energy by
an amount

l
n

l
of the 3d density of states on sites

nea, r the muon, such that normally unoccupied
states become filled.

With this interpretation it is clear that only a
small increase in minority- spin polarization near
the muon is possible through this mechanism.
Even if 4 is large enough to completely populate
the minority-spin Bd states near the muon (an in-
crease from 4.4 to 5 electrons per Ni atom), we

would expect an increase of only 0.6/4. 4 or 14%
in the minority- spin polarization. In this connec-
tion we note that band- structure calculations""
show the highest minority-spin 3d states to lie less
than 0.5 eV above the Fermi level. Thus for ~ of
this size the fractional increase in polarization due
to occupancy effects should be quite small. In the
absence of detailed knowledge about suitable tight-
binding orbitals, it is difficult to make a reliable

which cross the Fermi surface. Note that & & 0 so
that we calculate an enhancement of the minority-
spin density at the muon position.

For the validity of our perturbation theory we
require

iv (E,) lnl&1. (35)

The Fermi level in Ni falls close to a large peak
in the minority-spin density of states. Specific-
heat measurements" yield a tota. l density of states,
including s and d electrons of both spin orienta-
tions, of about 3 states/atom eV. Subtraction of
the s-state contribution and the effects of electron-
phonon and electron-electron enhancement may
leave N (E~) 2 states/atom eV. Using this esti-
mate we then require
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estimate of 4. However, it seems clear that for
reasonable values we can anticipate only a moder-
ate rise in 3d polarization in contrast to the large
increase in 4s polarization noted in Sec. II.

If we ignore the small changes in d spin density,
the total spin density at the p,

' site can then be
written

n, (0) —n (0) =no~, —no~ + 12.5(no„—no, ),
(37)

where we have incorporated the results of Sec. II
in the last term. Given the neutron scattering
data and the muon data we can now use Eq. (37) to
make an estimate from experiment of the Ni s-
band splitting ~,. For a splitting small compared
to the Fermi energy we have

(38)

n, (0) —n (0) in Eq. (37) is determined by the
muon data and n«, -n«+n„, -n„by the neutron

data. Given the quoted error of +0.004/A' in the
neutron scattering result we find

4, =0+0.003 Ry.

This small value is in agreement with the results
of the Ni band- structure calculations and provides
added confirmation of our model.

In conclusion we find that a model for the muon
hyperfine field in Ni which ignores the spin polar-
ization of the 3d orbitals is not tenable. Con-
versely if the shielding of '.he muon is done by an
unpolarized 4s band, the muon hyperfine field
accurately reflects the interstitial host magnetiza-
tion density due to the spin-polarized 3d orbitals.
Our results suggest that the p,

' experiments are
in basic agreement with other theoretical and ex-
perimental results for Ni, and that the muons
provide a useful way to differentiate between s-
and d-band contributions to the interstitial mag-
netization, which is not possible by neutron scat-
tering alone.
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