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Analysis of hyperscaling in the Ising model by the high-temperature series method*f
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High-temperature series expansions are derived for (P g/3H } for arbitrary dimension. These series and

others already available are analyzed to determine if hyperscaling holds. Hyperscaling is found to hold for

d = 2 but fails in three and four dimensions as 2h —dv —y = —0.028 ~ 0.003 (d = 3), —0,302 + 0.038(d = 4).
The triviality of hyper-strong-coupling, Euclidean, boson, :P 34 field theory follows. The expected location of
the zero of the P function in the Callan-Symanzik equation is computed in two and three dimensions.

I. INTRODUCTION AND SUMMARY , 92lng
X =N =2+7eH'

The modern renormalization-group theory of
critical phenomena, "as currently practiced, im-
plicitly assumes that hyperscaling holds. At the
critical point there is singular behavior in various
thermodynamic and statistical-mechanical prop-
erties. Each such singularity is characterized,
near the critical point, by a critical index which
specifies how it diverges [(I —T,/T) j or van-
ishes, as the case may be. These indices are not
all independent but are related by various equa-
tions. ' As has been recognized for a long time,
these relations divide into families. The hyper-
scaling group of relations which we investigate
here are those that depend explicitly on the spatial
dimension. Some representative relations are

dv =2 —n, 2 —q =d(& —I)/(&+I),

& =2(d~+y). (1.2)

To give specific meaning to these possible rela-
tions we consider the usual spin-2 Ising model de-
fined by the partition function

z= E s.pz Z .;. .;,ap. ;), (~.s)
{0.= ~i]. nearest

1 neighbors

where the sum in the exponential is over all the
nearest-neighbor pairs (i, j) of a regular space
lattice in d dimensions of N sites. This model has
a critical point at finite temperature for d &1 and
a zero-temperature critical point in one dimension.
At the critical point the correlation length, sus-
ceptibility, etc. , diverge. By letting 7 =1 —T,/T
we have, just above the critical temperature, the
behavior

$2~X g y-2+
BH

(1.4)

p =m /2dy D'7. '"

82 1ng
ff gg2

and exactly at 7 =0,

~ff'" &o,u;)~ I/~' "". (1.5)
8 lng

In Egs. (1.4) and (1.5) above, attention is directed
to the critical point, and the over-all normalization
of the quantities given is not always quite the stan-
dard one. However, conversion to the usual nor-
malization is easily derived. We denote the mag-
netic susceptibility by X, the spin-spin correlation
function by (a';ob), and the second spherical mo-
ment of the correlation function by M2. We define
the correlation length in terms of this moment
instead of using the true correlation length, ' and
we denote the specific heat at constant magnetic
field by C„,and the magnetization by M.

Qf all the hyperscaling relations, the one best
determined by methods independent of the assump-
tions of the renormalization group is (1.2). The
best previous determinations of the critical expo-
nents involved for the three-dimensional case are
by high-temperature series methods, ' '

4 =1.563 +0.003,

y =1.250 +0.003,

v 0 638+0 Doi ~

These estimates lead to

2A —dv —y = -0.038 +0.012,
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which suggests a possible failure of hyperscaling
in three dimensions. Equation (1.7) is in accord
with the general result of Baker and Krinsky' and
Schrader, who have shown that

the zero of the P function in the Callan-Symanzik-
equation approach of Baker et al. ,"and agreement
within apparent error is found with their three-
dimensional results.

dv +y +~26 . (1.8)
II. HIGH-TEMPERATURE SERIES

In two dimensions, relation (1.2) has been proven
by Kadanoff, ' and is not in doubt.

The consequences of such a possible failure of
hyperscaling are significant. For example, the,
by now very large body of results derived by re-
normalization-group theory for critical phenomena
and related areas would have to be reexamined.
A clear consequence would be that those results
are at best approximations to Ising theory. The
possibility would, however, remain that they are
correct for some physical phenomena but not
others. Also, boson quantum-field theory" for
hyperstrong coupling &:Q':, theory would be nec-
essarily trivial, i.e., free of any real scattering.
By hyperstrong coupling, one means that the cou-
pling constant goes to infinity before the ultra-
violet cutoff does.

We can check on the possible failure of hyper-
scaling, and incidently compute a number of in-
terest to field theory and renormalization-group
theory by considering the dimensionless renor-
malized coupling constant

~ X
se =gm~ 4~ —v

BH

With one exception the series necessary to ana-
lyze the hyperscaling relation are available in the
literature. In Table I we list the number of terms
available, and their source. We list the number
of terms available in the series for the suscep-
tibility X, its second partial with respect to mag-
netic field at zero-magnetic field e'y/sH', the
second spherical moment M„and the true correla-
tion length (squared) Pr. We treat the lattices:
square (sq), triangular (t), diamond (d), simple
cubic (sc), body-centered cubic (bcc), face-cen-
tered cubic (fcc), and the hyper-simple-cubic,
d =4 (hsc). It will be observed from the table that
there is one essential gap in the available data,
namely, S'y/SH' on the four-dimensional hyper-
cubic lattice.

We have computed this series on hypercubic lat-
tices for general dimension by the method of Rush-
brooke and Scoins." The usual Ising-model parti-
tion function is given by Eq. (1.3). It is convenient
for our calculations to shift the zero of energy to
the state where all the spins are aligned, &&&4

Then if Z is the partition function for that zero of
energy,

=[vB,/A'(aD )'jv""'& ' (1.9) (1/N) Ing, , =-,'qK+H+ (1/N)1nZ, (2.1)

which is finite at 7 =0 if hyperscaling holds, and
vanishes if it does not. The quantity g is the usual
field-theory renormalized coupling constant, and
m is the field-theory mass. We use v to denote
the specific hypervolume per site, and a is the
lattice constant.

In Sec. II we derive the high-temperature series
for 8'y/BH' through order K' in arbitrary dimen-
sion. We use the method of Rushbrooke and
Scoins." This series was the only one not pre-
viously available in the literature.

In Sec. III we analyze by Pade-approximant
methods the necessary series to evaluate (1.9). We
find agreement with the exact results in two di-
mensions. In three dimensions we find 24 -dv —y
=-0.028+0.003 for our best (fcc) lattice, and a
similar result but with greater uncertainty on the
other three-dimensional lattices. We conclude
that hyperscaling fails in three dimensions. In
four dimensions, hyperscaling fails as well for
24-dv —y=-0.302+0.038. We remark that if we
force hyperscaling in three dimensions, in the
sense that we assume that v is determined by (1.2),
then the coefficient in (1.9) of 7' can be related to

&as ~ e2E / ~2 (2.2)

we are in a position to apply the Ursell-Mayer

TABLE I. High-temperature series terms available.

Lattice sq d sc bcc fcc hsc

X

a2X

BH2

M2

$2

21 16 22 17 15 12 11~

]5d 1Q d ]6d 12d 12d 8d

11 8 ' ' 12 12 f 12 11
B ooB o ~ 9B o ~ ~ oo ~ 7c

~aeference 14.
"Reference 15.
'Reference 16.
d Reference 5.

' Reference 4.
' Reference 7.
IReference 17.

where q is the lattice coordination number. Since
we only want finally to derive the expansions for
a'/sH' and s'/sH' (that is, y and s'y/&H'), the
presence of the K and H terms are unimportant.
Thus we may use the spin-aligned version.

With the notation
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TABLZ II. Rushbrooke and Scoins N.

~ n 4 \ Map Value

14

3
6
7
9

13
14
15
16
17
30

-38 088
-4896

-21 276
6093
-144
-252
-360
-360
-108

—4320

SL»L 4 n JL

formalism to expand

u
)nn(n, 8) =(1/ ))nZ)7=9(1 —g l), n'

(2.3)

in powers of the density of overturned spins, x.
This expansion is given in terms of the number

of embeddings of multiply connected figures such

4L»L 48

15 16 17 30
FIG. 1. Fundamental maps of Rushbrooke and Scoins

which enter into construction of the series on the hyper-
s imple-cubic 1attices through ninth order.

that nearest neighbors occur if and only if there
is a line in the embedded figure (strong system).
Qn the hypercubic lattice one can construct an
argument to show that the smallest new star graph
which is strongly embedded on the d-dimensions
lattice but not on the (d —1)-dimensional lattice
has»d(d+1)+1 points, or ll points for d =4. Since
Rushbrooke and Scoins give a complete list for
d =3-8 points, their list is also complete for all
dimensions through 8 points. We show in Fig. 1
the star graphs, or maps as they call them, which
have nonzero occurrence on the general hypercubic
lattices, together with the Rushbrooke and Scoins
map numbers. We give the number of lattice em-
beddings (strong system) of the maps shown in

Fig. 1 for the d-dimensional hypercubic lattice:

(1]=1, )2) =6, (sl=(2), (6)=4(3, (7)=2(2)+12(3), (8)=s(3),

)13]=( ) 24( ) ~ 168(, (14] = 48( ) +192( ),

(15]=2 )+36 )+96 ), (161=4( ) 72( ) 192( ),

(17]=12( ) ~ 32( ), (86)=(',),

(2.4)

where (, ) is the usual binomial coefficient. These embeddings were counted, where necessary, in the weak

system, or taken, if available, from Fisher and Gaunt. " They were then converted to the strong system
by standard methods" using the known T-matrix elements, "where available.

The structure of the coefficients p» in the expansion (2.3) is

(2.5)

where t ranges over the elementary maps, (t ] is the strong lattice-constant as in (2.4), and Es»(t) is an
intrinsic function associated with map t and k overturned spins. Rushbrooke and Scoins list all the infor-
mation necessary to compute the required I'8»(f ), except for the coefficient of f' with 8 overturned for the
maps 13-30 where only a sum is given. We list in Table II the individual values for the maps which occur
in this work. This coefficient is called parameter N by Rushbrooke and Scoins. We next give the value of
all the Rushbrooke and Scoins parameters for the general hypercubic lattice:
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40 C —0 D —276 + 96

E =12 +72, I" =-1764 —2184, G =0,

Z=-238 -1176, K =11748 +27696 +5184
(2.6)

I =56, M =2832 +13120 +6400, N = -82 944 —286 200 —179 712

From these parameters, it is a simple matter to write out the logarithm of thepartitionfunctionper spinas

lnA(n q) =-ln(1-x) —2dg f"x""Q
n! (n —1)! „rn+r+1

tl= 9
—g d„„f"y" ' 'x[n —s —1 —(2n —2s —1)x], (2. I)

where we have used

y =x(l-x),
or in terms of the magnetization M

x =-,'(1 —M), y =-,"(1—M').

In terms of parameters of (2.6) we can express the nonzero d„,as

d4 o 50 60 46 +16
y d71 +

(2.8)

() 240 240
y d8 ] 34 168

~ d8 o 12302 + 2286 + 648
~ d9 2 8

y
2 10

d9, = 354 +1696 +800, d, , = -6384 —18 400 —13568

Thus we have the expression (2.7) for the logarithm of thepartition function per spin valid through order f'
for all values of the magnetization -1 &M~1.

At M =0 we have the formulas

821nA 4 & lnA -48 &'1/&H
ax' X

' ex4 (2.11)

We find by direct differentiation of (2. 'I) that

8 lnA d~ d] 2dgg +2d@2 2dgg3+ 2d +8 ' g4 2d +16 @5 + 2d+40 +]92 )1'
3)i

2d +80 ~480 @7 ~ 2d +184 +3168 +10 368 ~8

2d + 368 + 8608 +27 136 (2.12)

where for ease of comparison we have made the change of variables

u =tanhK, f =4u/(1 —u)'. (2.13)

The results (2.12) have been checked directly for d =2, 3 against those of Rushbrooke and Scoins, "and by
computing g 'g =1 against the results of Fisher and Gaunt" for d =4. By further differentiation we obtain
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S~ lnA
4

——96 1 —6d u +16d u — 30d + 72 uBx 2."
+ 48d + 384 u' — 70d +1272 +2880 u'+ 96d + 3840 +17280 u

126d + 11016 + 97 632 + 217 728 u

+ 160d+29952 +451 968 +1 302528 u'+ (2.14)

For d =2 and d =3, this result was checked against those of Essam and Hunter. ' The series for d =4 is
4

= 96 (1 —24u' + 64u' —552u4 + 2496u' —1 9 432u'
Bx

+92 544u' —674 856u' + 3 290 752u' + ~ ~ ~ ) (d =4) . (2.15)

It is worth noting that the derivatives 8" lnA/(sx)" are all linear in the lattice constants which eased the
derivation of the general expressions (2.12) and (2.14).

Computing directly from (2.11), (2.12), and (2.15) we have

~X
&II

= -2 (1 + 32u + 584u' + 8288u' + 101 240u' + 1 121 120u'

+11 570 360u'+113 293 088u'+1 064 631 032u'+ 9681 082 144u'+ ) (d =4) . (2.16)

which formula completes the derivation of the high-
temperature series data necessary for our investi-
gation.

f(x) = g f,. x'=A(I -yx)-'+a, (3.1)

then

d ln f (x) f '(x)
dx f(x) x-y ' (3.2)

near the branch point. The pole is at the branch
point of f (x) and the residue gives the exponent.
The procedure is to form Pade approximants to
the logarithmic derivative.

If, in addition to f (x), we have another function

g(x) =g g,.x'= C(1 yx) ~+D, —-
j

(3.3)

III. SERIES ANALYSIS

We will employ a number of sta.ndard methods' '"
of series analysis to study the series discussed in
Sec. II. The general methods employed are those
of Pade approximation. " We mention briefly a
couple of the procedures. Since the Pade approxi-
mant is a rational fraction, it is advantageous to
manipulate the function to be analyzed so that it is
approximately of that form in the region of inter-
est. One useful procedure for functions with a
divergent-branch-point singularity is to form the
logarithmic derivative. Thus if

which is singular at the same point, p, and this
singularity is the closest one to the origin, then
we may use "critical-point renormalization" ""
to estimate the difference of the exponents for

x'
(3.4)

for x near 1, and

d
(1 —x) ink(x) = P —g —1 .

dx
(3.5)

The advantage here is that an estimate of the loca-
tion of the singular point is not required. The
procedure is to form Pade approximants to the
function in (3.5).

In the analysis of series by these methods there
are certain difficulties which can arise. For phys-
ical functions, these concern mainly interference
by other singularities. The most severe type of
interference comes from confluent singularities.
By a confluent singularity one means

k(x)= (1 —yx) ~[1+2(I -yx)" +o((l —yx)')],

(3.6)

where T is not an integer. Practically, one means
7 & 1, as analytic eor rec tions corre sponding to & = 1
almost always occur. The occurrence of other
singularities of roughly the same strength and
distance from the origin as the one of interest
interfere with its accurate analysis.
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Camp et al."have found, both for the suscep-
tibility p and the second moment series M, that
such confluent singularities are absent in the spin-
—,
' Ising model. They also found that such singu-
larities do occur for s&-,'. This result is one rea-
son for selecting the s =2 series to study. In addi-
tion we need to examine the structure of 8'li/aH'.
A Pads analysis of din(a'Z/BH')/dK shows clearly
a pole at K, of residue close to the accepted values
of 2~ +y for all lattices. For the loose-packed
lattices (sq, sc, bcc, and hsc) there is also a pole
on the negative K axis considerably closer to the
origin than critical-point singularity. This pole
corresponds to a regular zero of 9'y/aH' at that
point and is absent on the close-packed lattices.
The only additional structure clearly visible is
generally in the first and fourth quadrants in the
imaginary direction and is at a greater distance
from the origin than the critical point. Since the
critical-point pole is isolated, w'e interpret this
result as giving no evidence of a confluent singu-
larity. The confluent-singularity analysis of Hunter
and Baker, "when applied here, is strongly inter-
fered with by the presence of the other noncon-
fluent singularities. Only the close-packed lat-
tices, t and fcc, permit a conclusion by this meth-
od. The appearance is that confluent singularities
do not appear. Hence the structural analysis of
O'X/BH' agrees with previous results for y and M,
in that the critical point is an isolated uncompli-
cated branch point.

In order to reduce the number of separately esti-
mated quantities in (1.9) we have chosen to analyze
the dimensionless quantity

82y 94 lnA 8' lnA
oH' " ox4 sx' (3. |)

The analysis of this quantity leads to relatively
stable Pads estimates. By choosing a'1/aH' as
f (x) of (3.1) and )p as g of (3.3), we have con-
structed the following estimates of 2A —y by form-
ing Pads approximants to the function of (3.5):

sq, 1.998 +0.002; t, 2.00 +0.01;

sc, 1.885 +0.006; bcc, 1.886 +0.003;

fcc, 1.8868 +0.001; hsc, 1.918 +0.006 .
(3.8)

By way of illustration we give in Table IQ the re-
sults for the fcc, which has the most compact Pade
table. The values marked with an asterisk have a
close pole and zero nearer the origin than the cri-
tical point (x =1) and are excluded from the ana-
lysis. In addition to an examination of the variance
evident in the more central part of the table as
displayed, the method of Hunter and Baker" has
been employed to estimate from small values of
x the leading-order error term. The larger of

TABLE III. Padb estimates of 2A -y for the fcc lat-
tice.

1 2.1383 2.0128 1.9760 2.0192* 1.8183 1.8724
2 2.0508 1.8817 1.8838 1.8866 1.8868
3 1.6280 1.8838 1.8773* 1.8868
4 1.8673 1.8868 1.8868
5 1.8810 1.88 68
6 1.8839

these two results has been used to assign the quoted
errors in (3.8).

The exact result expected in (3.8) for two dimen-
sions is two. The computed values are consistent
with this answer within the quoted errors. The
values quoted for three dimensions lie just within
the previously established ranges" for z+2P (P is
the magnetization index belogv T, ). For the four-
dimensional case, this result by itself lies 14
times the apparent error away from the renor-
malization-group prediction of two. We will dis-
cuss this last result further below.

We have reanalyzed carefully the series for the
spherical moment definition of (', namely,

t2 =M, /2dy. (3.9)

We have used M, for f of (3.1) and 2dy for g of
(3.3}, and k(x)/x for h(x) in (3.4), and have con-
structed the following estimates of v by forming
Pads approximants to the function of (3.5):

sq, 0.98 +0.1; t, 1.0 +0.05; sc, 0.642 +0.002;

bcc, 0.6384 +0.000 I; fcc, 0.6384 +0.0006; (3.10}

hsc, 0.555 +0.008.

Since M, ccu for small u we have also analyzed
(1+M,)/2d1. Since 1+M2 vanishes at a distance
increasing with dimension from the origin, but
closer than the critical point (x =1) at about +60 '
from the real axis, it is only for the hsc lattice
that this method gives a smaller error. This re-
sult is reported in (3.10). As an illustration of the
convergence we give in Table IV the results for the
fcc lattice. The asterisks mean the same as in
Table III, and we have assigned apparent errors
in the same manner in (3.10) as in (3.8).

We remark that v =1 is the exact answer for
d =2. The results of (3.8) and (3.10) agree with
hyperscaling within the apparent error. For d =3,
the sharpest results are for the fcc lattice. These
results are 24 —y —dv =-0.028 +0.003, which is a
sufficiently strong result to reject the renormal-
ization-group hypothesis of zero, in my opinion,
and implies that w of (1.9) is zero. It is to be
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TABLE IV. Pade estimates of 2p for the fcc lattice.

1.3593
1.2823
1.2781
1.2792*
1.2763
1.2758+
1.2770
1.2769+

1.2819
1.2757
1.2750
1.2766
1.2767
1.2769
1.2768

1.2777
1.2750
1.2756+
1.2767
1.2765+
1.2768

1.2774*
1.2765
1.2767
1.2769
1.2768

1.2764 1.2760*
1.2767 1.2769
1.2779 1.2768
1.2768

1.2770
1.2768

1.2769*

noted that Ferer" finds y and v to be universal for
various continuous-spin Landau-Wilson models
and equal to the spin-& Ising values. The apparent
errors are +0.012 and +0.008, respectively. One
concludes that the renormalization group as pres-
ently implemented is unfaithful and does not describe
the spin-& Ising-model behavior, although it
does contain a fixed point which is deceptively close
in its properties to the true behavior. It could be that
the assumption of hyperscaling is the aspect that
automatically excludes the true Ising behavior
from renormalization-group theory.

In the case of four dimensions we compute 24
—y —d& = -0.302 + 0.038. We conclude that M of
(1.9) is zero in four dimensions. Renormalization-
group theory" has predicted that m vanishes like
1/inc instead of ~", but we have not been success-
ful in attempting to verify this hypothesis. If the
renormalization-group predictions were correct,
then one would have expected (s'y/&H')/y to be
free of logarithmic terms. However, it has a
more erratic Pads analysis than does (8'y/sH')/y'.
The methods of error analysis lead to 2~ =3.0
+0.2, compared to 2b —y=1.918 +0.006 given in
(3.8). Renormalization-group theory would also
predict that y p is proportional to w '(in'). To in-
vestigate this possibility we have computed p$' by
using (1+M,)2 as f in (3.1), y as g in (3.3), and
instead of using h given by (3.4) we use

(3.11)

1-u', tanh 'u u BH'

i/4 f

(3.12)

We have followed the method of Fisher and Bur-
ford4 to compute D+, namely, we have formed
Pade approximants to

Then we formed the Pade approximants to the
function of (3.5). The factor of ln(2+ j) in (3.11)
was chosen to cancel the hypothesized lnJ depen-
dence of f&/g . We used ln(2+ j) so it would not
vanish for 3 =0, or 1. We used 1+M, instead of
M, since it led to a, better result in (3.10). We
concluded by the same methods as before that
y+4v =3.2 +1, which is much worse than the cor-
responding 4& =2.220 +0.032 given by (3.10). While
arguments of the above sort for (O'X/sH2)/y and
p(4 do not demonstrate conclusively anything about
the presence or absence of logarithmic correction
terms, they are strongly suggestive that the singu-
larity structure of the high-temperature series is
more easily accounted for without their inclusion.
Also, since we have found that hyperscaling is
violated in three dimensions, we have no particular
reason to believe the prediction of logarithmic
corrections in four dimensions.

We give finally a table of amplitude factors. We
estimate B,/A2+ by the method used by Essam and
Hunter, ' namely, we form Pade approximants to

TABLE V. Amplitude factors.

Lattice

sq
t
sc
bcc
fcc
hsc

4.72 + 0.01
4.683 + 0.002
3.17 + 0.01
3.231+ 0.004
3.266 + 0.004
1.221 + 0.002

0.5672 + 0.0003
0.526 + 0.001
0.4858 +0.0005
0.450 34+ 0.0001
0.439 46 + 0.000 01
0.400 + 0.006

14.67 + 0.05
14.66 + 0.06
27.65 + 0.20
27.23 + 0.05
27.21+ 0.04
48 +3
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TABLE VI. Amplitude factors with hyperscaling as-
sumed,

Lattice

sc
bcc
fcc

0.505 + 0.003
0.469 + 0.003
0.457 + 0.002

24.6+0.5
24.1+ 0.5
24.2 + 0.4

lnu, +ln
K—2@in 1 — =2lnD+.
&c — u=.C

(3.13)

+ ~&&+Z-» G ~& +y-2&vB
A2(aD )

(3.16)

where again v is the specific volume per site and
a is the lattice spacing. The two-dimensional

These estimates depend on the values of the criti-
cal temperature defined by u, and the values of v.
We have used Domb's" values of u, (except for the
simple cubic lattice where 1/u, is misprinted on
p. 426 as 4.6844 instead of 4.5844) which are

sq, 0.414 213 56; t, 0.267 949 19; sc, 0.218 14;

bcc, 0.156 12; fcc, 0.101 74; hsc, 0.1487.
(3.14)

The value for the hsc lattice is taken from Moore. "
In Table V we list the coefficients in

results agree with those of Essam and Hunter'
(8,/2', ) and Fisher and Burford' (D+), inside the
quoted errors. In three dimensions, owing to
slightly different values of the exponents, the am-
plitudes are shifted somewhat outside the quoted
errors.

It is interesting to see the results we get for the
amplitude factors in three dimensions if we impose
hyperscaling. To make this hypothesis we com-
pute v =(2b, —y)/d. The resulting amplitude factors
are much less well determined than they were in
Table V. We present them in Table VI.

The coefficient G+ given in Table VI is to be
directly compared with the Callan-Symanzik-
equation approach of Baker et at." The zero of the

P(v) function should be directly related by v* =9G+/
48m =1.46 +0.02. They obtained 1.423 +0.01, which
results are quite comparable. The corresponding
result in two dimensions is, from Table V, given
by v* =9G, /24w =1.751 +0.005. In two dimensions
hyperscaling is known to hold, and one would ex-
pect this result to be a valid prediction of the loca-
tion of the corresponding zero of the Callan-Sy-
manzik P function.
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