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We measured the magnetic diffuse scattering of polarized neutrons from ferromagnetic Ni-Cu alloys with

19.8-, 29.6-, and 52.5-at. %%uoCua t 4.2K. Thedat asho w tha t th eCuatom sar eno t polarize dan d tha t the

negative polarization exists only around the Ni sites, Assuming that the Ni moments are a function of the

moments of the neighboring atoms, we obtain an analytical expression for the polarized neutron cross section

which describes the data well. This magnetic environment model is also shown to reproduce the moment

disturbances of other dilute Ni based alloys, A Stoner type of calculation shows that between 20% and 40%
interatomic exchange is needed to reproduce the Ni-Cu magnetization and cross sections; within the same

calculation each Cu atom induces a (1—2)% moment reduction on its Ni neighbors for any given exchange

field.

I. INTRODUCTION

The diffuse scattering of unpolarized neutrons
was used by Cable et al.' and by Aldred et a).' to de-
termine the moment disturbances in different
ferromagnetic Ni-Cu alloys. The analysis of the
data with the linear-superposition model proposed
by Marshall' yielded a copper-cell average moment
of -0.1 p. s constant over the range 0-40-at. /o Cu.
This is a very surprising result because any sim-
ple theory predicts approximate scaling with the
bulk-average moment, which changes from 0.616
to 0.166 p. ~ in the same range. Because of the neg-
ative uniform polarization observed in pure nickel,
and the experimental" and theoretical" evidence
showing that the Cu keep its 3d shell full, the
negative moment observed in the copper cells was
identified with a uniform conduction-band polariza-
tion. This is, however, inconsistent with the more
recent diffraction data' which show that the uniform
polarization is instead roughly proportional to the
bulk moment. This discrepancy was attributed in
Ref. 9 to the nonlinearities neglected in the Marsh-
all model, nonlinearities that Aldred et al. them-
selves considered very important and that Garland
and Gonis" have estimated to be important for con-
centrations larger than 20-at. % Cu.

In view of this, we measured the moment dis-
turbances of three Ni-Cu alloys (19.8-, 29.6-, and
52.5-at.% Cu) with the diffuse scattering of polar-,
izedneutrons; a method which gives directly the
average moment (uc„)—(ps, ) without any model
assumption. We also present a magnetic-environ-
ment model to interpret the results.

II. CROSS SECTIONS AND EXACT RELATIONS

+g — + (2.1)

By measuring the cross sections for both polariza-
tions and taking their difference, the interferenee
term can be extracted. We have

(2.2)

(2 2)

The diffuse nuclear scattering is proportional to
the Fourier transform of the Cowley short-range-
order (SRO) parameters. More precisely, if c is
the impurity concentration, p- is the number of
impurities at site m(p-=0, 1), and ( ) is the con-
figurational average, then the SRO parameters are
defined as

c(1 —c) o.'(m)=((P-;, —c)(p, —c)). (2.4)

The nuclear-scattering cross section is then given
by

= c(1 —c)(&b)'S(K),
dA N

(2 5)

where hb is the difference of impurity and host nu-
clear- scattering amplitudes

alloy, such as Ni-Cu, is composed of three kinds
of processes: the nuclear scattering, the magnetic
scattering, and the spin-dependent nuclear-magnet-
ic interference scattering. For neutrons polarized
parallel (e = 1) or antiparallel (e = —1) to the mag-
netization, the cross section per atom may be
written

The disorder diffuse scattering of polarized neu-
trons from a ferromagnetic substitutional binary ab=b,. —b„ (2.6)
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and S(K) is the SRO scattering function

S(K) = Q e'K' n(m). (2 7)

If the magnetization is perpendicular to the scat-
tering plane, the magnetic cross section (in barns)
is given by

(
= c(1,) V(K)(0.270)'.

dQ
(2.8)

Here, V'(K) is a moment-moment correlation ex-
pressed in terms of p, „and f-„(K), the magnetic
moment of the atom at site n and its form factor,
respec tively,

p, -„(K)= V-.f.(K) (2.9)

(1 —c)«(K) = 2 e"' "
&i „,, (-K)-[I -, (K) —&i (K))l&.

(2.10)

c(1 —c)3)t(K) = g e" "&(la-„,-, —c) i -, (K)),

(2.12)

where the quantity in angular brackets divided by
c represents the average increase in the moment
of the atom at site t when an impurity is located at
site n+F. .

The measurements performed on a polycrystal-
line sample give spherically averaged cross sec-
tions. The spherical average of ':Ill(K), denoted (as
any other spherical average) by dropping the vec-
tor symbol on K, complies with the following equa-
tion readily obtained from the definition (2.12):

3(f(K) =&p(Ã)& —&u~(K)) + (2.13)

where the dots represent decaying oscillatory
terms. Here &g, (K)) and &ij, „(K)) are the average
impurity and host moments. We note that the large
K values of 3R(K) give directly the difference of
average moments.

There is also an exact relationship between the
ceneentration derivative of the average moment and
the scattering in the forward direction"

d& p, ) 3)f(0)
dc S(0)

' (2.14)

Finally, the nuclear-magnetic interference term is
proportional to a site-oeeupation-magnetic-moment
correlation. For a magnetization perpendicular to
the scattering plane, we have

(
= —,

' a —= c(1 —c)n. b(0 540)3g (K). (2.11)
dQ ~~ dQ

Two hypotheses are assumed in the proof of (2.14).
First, it is assumed that the moments are deter-
mined by their local environment, and second, that
the samples used to measure the eoneentration de-
rivative have suffered the same heat treatment.
Finally, Marshall' gives a formula, valid within
the linear superposition of perturbations, which
is equivalent to the following equation:

v (K) =3)f(K)'/S(K). (2.15)

III. EXPERIMENTAL PROCEDURES AND CORRECTIONS

Three ferromagnetic samples of "Ni-Cu alloys
with 19.8-, 29.6-, and 52.5-at.% Cu were used in
these experiments. Two different chemical analy-
ses of the last sample gave results of 53.5- and
52.5-at.% Cu. Our magnetization measurement on
this sample [(0.049+0.0025)pal is consistent with
the second result. " The isotope "Ni was chosen
because its negative scattering amplitude gives a
large Ab. The isotopic composition of the en-
riched nickel was, in atomic % Ni 99.06%&
'-'Ni 0.34%, Ni 0.48/0, "Ni 0.12%, and "Ni &0.05%.
The main magnetic impurities present were
Fe )0.001%, but & 0.01'%%uo, and Mn &0.01%. Other
impurities were Zn &0.2/0 and Th &0.2%. The nick-
el was combined with natural 99.995%%uc copper.

The incoherent-scattering cross section of the
nickel, and the copper-nickel scattering amplitude
difference, calculated by taking into account the
isotopic composition, are c,.„,/4m =0.0275 y0.0002
b and n, b=(1.621+.02)&&10 "cm.

The samples were polycrystalline plates about
1.5 mm thick. They were prepared by arc melting
in a berylia crucible under an argon atmosphere,
rolling the button to 70%%u~ of its thickness, annealing
at 1050'C for 16 h. and quenching. All neutron
measurements were performed at 4.2 K. By the
interpolation of published data, "we estimated the
following 4.2-K lattice parameters: for the 20%%uc

sample, a=3.532 A; 30%, a =3.54 A; and 52. 5'%%uo,

a=3.56 A.
The experiments were carried out on the polar-

ized-neutronspectrometer at the high-flux-isotope
reactor at Oak Ridge National Laboratory. The in-
cident beam had a wavelength of 1.067 A and a po-
larization of 99%. The spectrometer was calibra-
ted using a standard vanadium scatterer. The sam-
ples were mounted in symmetrical-transmission
geometry with a vertical magnetic field. For the
20/0 and 30%%uc samples, a field of 25 kOe was used,
while measurements at 10 and 57 kOe were taken
for the 52.5% alloy. A triple-axis arrangement with
a Be analyzer in the zero-energy transfer position
was used for the smaller angles (&2.5') in order to
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avoid the main beam. These small-angle measure-
ments were calibrated by comparison between the
two arrangements in an overlap region (2.5 -3.5g.

The scattering of both neutron polarizations, pa-
rallel and antiparallel to the magnetic field, was
measured inside the first Bragg peak. The sum and
the difference of the cross sections of the two spin
states were calculated, taking into account the in-
strumental background and the polarization of the
beam. No beam depolarization by the samples was
observed.

The following processes contribute to the scatter-
ing: (i) disorder diffuse scattering, nuclear and
magnetic, as explained in Sec. II, (ii) incoherent
scattering, (iii) multiple scattering, (iv) thermal
diffuse scattering. This last contribution is negli-
gible at the temperatures and wave vectors of these
experiments. The incoherent scattering is spin in-
dependent and therefore contributes only to the
sum cross section. This contribution was calcula-
ted and then subtracted. The multiple scattering
for both spin states was also estimated and sub-
tracted. We used the standard method" which re-
quires measurement of the spin-dependent trans-
mission.

The expression given in Sec. II for the difference
cross section assumes that the magnetization is
perpendicular to the scattering vector, e.g., it is
valid only for perfect vertical resolution. In a
more general case, the measured cross section is

do' r +2 -(w/ q)~
~—(ff)

meas ~ K +W

xa—(K'+ W')' ' dW, (3.1)
do'

dQ

where K is the component of the scattering vector
perpendicular to the magnetization, 8' is the para-
llel component, and a Gaussian vertical resolution
of width 2(ln2)' 'jl is assumed. A direct measure-
ment of g and a geometrical calculation lead to es-
sentially the same value g=0.12 A '. The integral
equation (3.1), which can be analytically inverted,
was used to correct the difference cross section
with the method Of spline functions. " The correc-
tion was as large as 15%%uo for the innermost points.
The sum cross section, as previously explained,
is composed of a nuclear and a magnetic term.
The large value of Ab of the samples insures that
the magnetic contribution is only a small fraction
of the sum cross section. It is therefore a proper
approximation to use Eq. (2.15) to calculate the
magnetic term. We obtain from (2.3),

(3.2)

This equation was used to calculate the nuclear
cross section.

IV. DIRECT RESULTS: MOMENT AND FORM FACTOR

In this section, we discuss the direct information
that can be obtained from the measured cross sec-
tions. In particular, we consider the implications
of Eqs. (2.13) and (2.14).

The Ni-Cu alloys exhibit substantial clustering
that must be taken into account when considering
the magnetic-moment distributions. We therefore
must first obtain the SRO parameters from the data.
This is accomplished by fitting the nuclear cross
section with a function of the following form:

(t:(1 — )(Ab) j' ( ') =S()()

=Q (j.(R ~)Z~10(KR j,).

(4.1)

Here Zz is the coordination number, and R& is
the radius of the shell. Theoretically (j.(0) =1,
but in the fitting we consider it as a free param-
eter to compensate for any possibl. e error in the
determination of the incoherent and multiple scat-
tering that was subtracted to obtain the nucl. ear
cross section. The results of the fittings are
given in Table I and Fig. 1. For the 30/0 alloy,
it was necessary to use up to nine shells in order
to get a good fit with reasonably small SRO pa-
rameters; in this case the parameters were con-
strained to be smal. l. Comparison of our results
with those of Aldred et al. ,

' Cable et al. , ~ and
Mozer et al."shows that the SRO parameters
of these samples are slightly larger than those
previously reported. This is not surprising be-
cause the SRO may be sample dependent. There
is also a difference in the sign of (j.'(R, ) between
our results and some of the previous results. "
It should be noted that, because of the larger
nuclear cross sections of our samples and/or
the larger range in K values of our data, the pres-
ent SRO results should be more accurate than
those obtained in Refs. 1 and 2. Nevertheless,
all of the SRO measurements indicate that cluster-
ing is present in these alloys.

An important result that can be obtained from
the data is the solution of the apparent discrepancy
between the diffraction data and the unpolarized-
neutron diffuse-scattering data. The Bragg scat-
tering results for pure Ni by Mook, ~ and for Ni-
Cu by Ito and Akimitsu' show that the average
moment density is composed of a local atomic-
like moment density and a uniform negative mag-
netization between sites. The Ito and Akimitsu
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TABLE I. SRO parameters.

x'/x

0.498 $.006 (4) O. ii75 (35) —0.0614 0.0445 —0.0584 0.0263 1.3
0.296 0.950 (9) 0.|432 (82) —0.0328 0.0432 —0.0098 0.0108 0.0225 0.0037 —0.021k 0.0065 0.97
0.525 0.890 (3) 0.1335 (33) —0.0747 0.0436 -0.0479 0.0148 0.80

data indicate that the uniform magnetization de-
creases monotonically with increasing Cu content
and is roughly proportional to the local moment.
On the other hand, the unpolarized-neutron ex-
periments" were interpreted to imply the ex-
istence of a uniform moment and/or local Cu mo-
ment totaling —0.1 ps over the range 0-40-at. /p

Cu. The moment values that we obtain from our
polarized-neutron data, which are more easily
analyzed, are not in contradiction with the dif-
fraction data.

In previous analyses of diffuse-scattering data, "
it has been assumed that the negative magnetiza-
tion not seen in diffraction experiments is truly
uniform, and therefore, unobservabl. e even by
diffuse-scattering exper iments. Consequently,
a local atomic or ionic form factor was assigned
to all observed moments. If this assumption were
true, the quantity 5R(0)/S(0) should be equal to
the concentration derivative of the local moment,
now known to be approximately —1.35'.~. To the
contrary, our polarized-neutron scattering data
clearly show that 5)I(0)/S(0) is equal to the con-
centration derivative of the bulk moment (see
Table II). This confirms the theoretical argu-
ment made elsewhere" that the negative mag-
netization in al1oys consists only of short-range
contributions from each magnetic atom. Its form
factor, although negligibl. e at Bragg peaks, can
be seen by diffuse neutron scattering. This re-
sult was suggested only ambiguously by the an-
alysis of the earlier unpolarized-neutron scat-
tering data.

The negative magnetization was originally at-
tributed to s-P band polarization. On the other
hand, Moon" has suggested that it is part of the
d-electron moment. As explained in detail else-
where, "both suggestions lead to very similar
form factors. We have followed Moon's assump-
tion, and use a Ni form factor of the form

(f(K)) =[1+0.154(l —c)]f,(K)

constant 0.154 were chosen to be consistent with
the diffraction data. The factor (1 —c) appears
because we assume that there is no "overlap"
between 3d electrons of Ni and Cu atoms. For
the ana1ysis of the moment disturbances, we ne-
glect the difference between the Ni and Cu form
factors. This introduces no error because the
Cu moment is negl. igible.

The nuc lear- magnetic interf erenc e cross s ec-
tion has been fitted with an expression of the
following form obtained by taking the spherical.
average of (2.12):

%(K)
(f(K))~Zgmgf (KRQ) (4 2)

2.5

2.0

E
O
O

f.5

0.5

Here Zq and Aq keep the meaning they have in
Eq. (4.1), while the mq are the moment distur-
bances. The fitted values of m, =A(p) =(pc„)
—( p, ~, ) are shown in Table II. For comparison,
values of (y)/(I —c) are also given. The agree-
ment between these two quantities indicates that
the Cu moment is essentiall. y zero, as the cal-
culated values in the last column of Table II con-
firm. The low-field value of ( p) for the 52.5%
alloy was measured by us. All. the other values
of ( y) and those of d( p. )/dc were obtained from

—0.154(1 —c)f,„(K), (4.2)

where f,„(K) is the spherically averaged "overlap"
form factor to be associated with the negative
polarization (see Fig. 2), and f, (K) is the form
factor of the local moment. Both f, (K) and the

0
0 0.5 I.O 3.5

K(A )

2.0 2.5

FIG. 1. Nuclear diffuse-scattering cross sections of
Ni- Cu alloys.
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TABLE II. Magnetic moments and concentration derivatives for Ni-Cu alloys.

a(koe) & I „,& —& p,,„&
'

& p&/(1- c) %(0)/S(0) d & p&/dc

0.198
0.296
0.525
0.525

25
25
10
57

O.478 (5)
0.413 (6)
0.091 (2)
o.io6 (2)

0.486 (3)
O.397 (6)
o.io3 (5)
o.114 (6)

-1.125 (10) -1.140 (10)
-1.128 (10) -1.120 (10)
-0.65 (2) -0.66 (2)

0.72 ~2) O.79 {6)

0.006 (13)
o.011 (12)
o.oo6 (7)
o.oo4 (7)

Multiple-scattering uncertainty of 0.015 p& must be addeo the statistical error quoted.

published magnetization data.""" The tab-
ulated values of 3R(0)/S(0) were obtained by fitting
'JR(K)/[( f (K))S(K)] to an expression similar to
(4.3). Both fittings and the data are shown in Fig.
3 where the arrows indicate the values of d( y)/dc.
Our values of —6( p, ) are smaller than those
obtained from the unpolarized-neutron experi-
ments. For example, at 20% Cu we obtain
6( p) = —0.478 ge compared with the previous re-
sult" of —0.60 pa. We attribute this discrepancy
mainly to the previous authors having neglected
the difference between the spherical average of
a product and the product of the spherical. aver-
ages in Marshall. 's expression for the cross sec-
tion [equivalent to our Eq. (5.9) or (2.15)]. This
approximation is correct at small K, but wrong
for the large K values that are important in de-
termining 4( p, ). We calculate that, for the 20%
data of Ref. 1, half of the discrepancy comes
from this approximation. The remaining differ-
ence may arise from the different form factor
assumptions used and from the nonlinear contri-
butions to the unpolarized-neutron cross section.

To sum up this section, the magnetic moments
in N i- Cu, inc luding the "uniform" negative mag-
netization, are associated with nickel atoms and
there is no contradiction between the diffuse scat-
tering and the diffraction data.

u-(K)=P(K)+g 0,(K'r}(p . -e)

+ —
~ g $2(K; r, t )(p;, - —c)(pT. +~ c)2

r, t

+ —, g y3(K;r t, n)(P;, --c)

x(p, + —c}(p,-„—c)+

(5.1}

The moment disturbances Q„(K;r„r„.. . , r„)
are symmetric functions of the arguments rz,
and they vanish if any two of the arguments are
equal. If we define

e' ' y„(K; r„+m, . . . , r„,+m, m), (5.2)

(5.3)

and

3R(K) = C, (K), (5 4)

it is straightforward to prove that for the random
alloy

(p(K)) =W(K),

V. MANY-SITE PERTURBATIONS EXPANSION

In order to develop the magnetic-environment
model of the next section, we need a many-site
perturbation expansion, in which the moment on
an atom is expanded as the average moment, plus
the linear superposition of perturbations produced
by the kind of occupation of single sites, plus the
extra perturbation produced by pairs of sites,
plus the n-site perturbations. This procedure
is particularly useful if the perturbations are
small, so that the many-site perturbations are
increasingly negligible. One of the advantages
of this description is that it allows for a simple
treatment of the effects of short range order.
The formulas we quote here are extensions of those
given by Marshall' and by Balcar and Marshall. '~

We may write for the xandomal/oy

0.5

—0.5
0

FIG. 2. Spherically averaged overlap form factor of
Ni.
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(5.6)

Note that for the random alloy the interference
term in the cross section 5g(K) contains only the
single-site perturbations. Note also that, if the
many-site perturbations are negligible, 1'(K) is
just the square of N:(E). This relationship breaks
down when the many-site perturbations are im-
portant; for example, we should expect this to
happen near the critical composition of Ni-Cu.

When short-range order is present, we can
still use the moment expansion (5.1) if we treat
the introduction of SRO as a perturbation on the
random al. loy; this treatment may become inac-
curate near the critical composition of Ni-Cu. The
expansion is therefore done in terms of the pa-
rameters the alloy would have if it were random
and the SRO introduced only into the processes
of averaging. Following this path, we obtain to
first order in the e's,

( p(K)) =P(K)+ —,— Q Q, (K; r, t)o.'(r —t)+
2 0

1.5

1.0

0.5

2.0

52.5 at. % Cu

H=10 kOe

O~--a a4 S S 5e~ ce-e-w-a ss- —~l

I I

SR(K) =S(K )[4,(K)+ (1 —2c) V(K )] + ~ ~ ~,

where

V(K) = Q 4', (K, r, m)o. (r —m)e'
r, m

The moment-moment correlation is given by

K(K) =S(K)[4,(K) + (1 —2c) V(K)]'

+ terms in (Q, )'.

(5.7)

(5.8)

(5.9)

1.0

0.5

0
0

I

0.5

.5 at. % Cu

H=57' kOe

~ 4 . Skle~JSQ~~r I- ~e- - —m ——— r

1.0 1.5 2.0 2.5,3.0
K(A )

(5.10)

(5.11)

In the case of polycrystalline samples, the
measurements give spherical averages. The
analysis of this case is simpl. ified when the dif-
ference among the form factors is neglected. In
the Ni-Cu case, where pc„=0, this approximation
neglects only the environmental dependence of the
form factor. We may write

~(ff ) =(f(K )) P-

P„(K;r„.. . , r ) =(f (K)) P (r„.. . , r„).

FIG. 3. Ni-Cu moment disturbances from diffuse scat-
tering of polarized neutrons.

Equation (5.7) then becomes

5g(K) =(f (K )) S(K ) Q y(m)e 'K '
(5.12)

where

y(m) = Q, (m) + (1 —2c)g $2(r, m)o. (r —m).

(5.5)

(5.13)

If we neglect the asphericity of f(K), the spherical
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average is given by

and

(5.15)

sg(X)=(f(lf)& g y(m)g o'(r) j,(Kl r+ml).
m r

(5.14)

We use this equation to obtain the random-mo-
ment perturbation 4,(K) for comparison with
the magnetic-environment model.

A simplified version of (5.13) is obtained when
the two-site perturbations are small and the im-
purity moment is zero. In that case

[g, (r)6 -,+ g, (m)6;, ] [1 —5p-]

v(m) =QP -, (-;.

The explicit concentration dependence of Etakes
into account the chemical environment beyond
the first shell.

An approximate solution can be obtained if the
equations are linearized in a way similar to that
used by Lovesey and Marshall" in treating the
temperature dependence of the cross section. If
we assume that the fluctuations are small and
that the chemical. environment effect is small,
we may write

(6.3)

F(h(n), v(n), c) = F(h,«, ( v), c)

and v is the number of Cu next neighbors ( a greek
site index will stand for first neighbors)

y(O)=4, (0)-
1

'
Q 4, (r)n(r),
r &o (5.16)

+ [h(n) —h,«] + [ v(n) -( v) ],

(6.4)
where h,« is an effective field defined as

tu, =)a/(1 —c) = F(h,„„(v), c). (6.5)

VI. MAGNETIC ENVIRONMENTAL MODEL

Chemical environment effects are expected to
be small and short ranged for Ni-Cu. Neverthe-
less, the moment disturbances are long ranged
for the concentrated alloys. This suggests that
the moment of a nickel. atom is a function not
only of its nearest chemical environment, but
also of the magnetic moments of the surrounding
atoms. Different models incorporating this idea
have been proposed. """ In particular, Hicks"
proposed a magnetic-environment model for Ni-
Cu near the critical concentration which is very
similar to the one developed here. Our model
differs from Hicks in four aspects: (i) it does
not assume a particular form for the response
function, (ii) it is developed for the ferromag-
netic instead of the critical region, (iii) it allows
for a chemical environment effect, and (iv) we
obtain a different anal. ytical solution.

The proposed model is: The moment on a nickel.
atom is assumed to be a function of the number
of Cu neighbors and of an effective exchange field
produced by its neighbors. A random alloy is
assumed. We then have

By multiplying E(l. (6.4) by (1-p„) and taking the
average, one obtains the fol. lowing equation for
the effective field:

((1—P-„)[h(n) —h,«]) =0. (6.6)

It is convenient now to introduce the many-site
perturbations of the moment

V-„=-P+Q y, (r —n)(P; —c)

1
+ — (I(),(r —n, t —n) ( j)-, —c)(p-, —c) +

(6.7)

+ g Q j(n —m)(((), (r —m)(p, —c)
r m

Insertion of this into the definition of the exchange
field gives

V,
- =(1 —p )F(h(m), v(m), c),

in which h is the exchange field given by

(6.1)

h(n) = Q j(n —m)g -,
(6.2)

x(P, —c)(P, —c)+

which, with (6.6), yields

(6.8)
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(6.9)h„, =pg j(r) —cg j(m)p, (m).
r Q1

We now obtain an equation for the one-site per-
turbations Q, (r). From Eq. (6.7), it follows that

c(1 —c)y, (r) = ((P-, —c)u, ), (6.10)

from which we obtain Q, (r) by using the expression
for the moment given by Eqs. (6.1) and (6.4), i.e.,

(,(r) -~„, ();, , ' (((-c)(( ();,) I )(- )(,(F- )- ((-c)Q)(- )(,( —,— ) + ((-c)Qs;;
rn n P

(6.11)

Note that Q, appears in this equation. In the same
way, we can obtain an equation for QB in which p,
appears. In general, an infinite set of equations
can be obtained, each one relating the n-site
perturbations with (n+I)-site perturbations. One

way of solving the problem is to neglect the (n+1)-
site perturbations, and to solve the truncated sys-
tem of equations. We limit ourselves here to the
first equation of the infinite set, which means that
we neglect the two-site perturbations. This is jus-
tified because the average moment decreases lin-
early with concentration in the region 0-45-at. /z

Cu, and because the relation (2.15) between polar-
ized- and unpolarized-neutron cross sections is
roughly satisfied for Ni-|"u. Furthermore, when
the two-site perturbations are included, the po-
larized-neutron cross section 4', (K) has approxi-
mately the same mathematical form of the cross
section obtained taking only the one-site perturba-
tions. Only the values of the parameters are dif-
ferent. We then drop the two-site perturbations
and Fourier transform Eq. (6.11) to obtain

4 (K)
—

F g j(n)p, (n)
1 Ni J'(0 )n

I'J(K)—FZgP&| (K) 1 — . (6.12)

appearing in Eq. (6.12) is determined by Eq. (6.12)
since

Q j(ii)(, (n) = —I d'Kz(K)e, (K),
FBZ FBZ

(6.16)

B(I') = d'K1, 1

~FBZ FBZ 1 —FJ(K)/&(0)
(6.18)

B(r)= ' d'K
~FBZ FBZ 1 —&&(K)/&(0)

The function B(1') has the same form as a one-
electron Green's function. Using (6.17) in (6.12)
and (6.9), we find

lz„, +Z,-PI'[B(r)r, (K) —B(r)j
B(r)[1—re(K) P(0)]

(6.19)

(6.20)

and

where the integral is over the first Brillouin zone.
Using (6.16), we find

B(r) —1 W-,B(r)
g(0) ~&(n)4'|(n) = V B(I)I + B(I )Ii

(6.17)

where B(l ) and B(l ) are defined by

I' = (1 —c)J(0), (6.13)

Here J and C are the Fourier transforms of j and
((()„respectively. We have also introduced

h, ff =)(zN; J(0) (1 —c)+c B(l ) —1

«(0)~,pB(1')
B(r) (6.21)

sE (1 —c)p=
ev r (6.14)

1
F (K) e(K

1 g (6.15)

The parameter r is related to the range of the one-
site perturbations, while p measures the strength
of the chemical environment effect. The quantity

When (t), terms are included, 4', (K) is still ap-
proximately given by Eq. (6.20) but with I" re-
placed by a different value. We can then treat the
effect of the neglected many-site perturbations by
considering r as a parameter to be determined.
I" then assumes the value given by Eq. (6.13) only
at zero-impurity concentration. The parameter r
can be obtained self-consistently by imposing the
equality of @,(0) and the concentration derivative of
the average moment

Q j(n)p, (n) d, =,(0) (6.22)
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This equation, together with (6.5), (6.14), (6.20),
and (6.21), determined I' and P as functions of
concentration for any given F(k, v, c).

In the particular case of nearest-neighbor ex-
change, the equations assume a simpler form,
In this case

1.5

1.0

e
0.5

=2 kOe

&(K) =&(0)F,(K),

B(r) =[B(r) I]/r,
and Eq. (6.20) reduces to

(6.2s)

(6.24)
1.5

29.6 ot. fo Cu H=25 koe

4', (K) =-pz, — " - '
~ (6 25)

[1 —rF, (K)]B(I')

Furthermore, the function B(I")has been calculated
analytically" for nearest-neighbor exchange; the
result is a combination of complete elliptic inte-
gr als.

VII. COMPARISON WITH DATA

A. Cross section

1.0

e
0.5

0.8

0.6

I r~ r-jr zjyX

koe

TABLE III. Average Ni moments.

~ PNi~CAL

0.198
0.296
0.525
0.525 (HF)'

0.478
0.413
0.09 i
O. $ 06

0.48 k

0.414
0.090
0.106

0.466
0.382
0.0765
0.0776

~HF, high field.

To compare the magnetic -environment model
of Sec. VI with the diffuse-scattering data, we
should extract from them the moment distur-
bances corresponding to the random alloy. This is
done by fitting the data with Eq. (5.14) to obtain
the parameters yz. The one-site perturbations

$, (R) are then calculated using these y~ in Eq.
(5.16). As a check of this procedure, we have
calculated the average ¹imoment for the alloy
with SRO, using Eq. (5.6). The comparison of
these values with those obtained directly in Sec.
III is given in Table III. The values for the random
alloy p. N;

= —$, (0) are also listed. The magnetic-
environment model gives a simple formula for
@,(K), but not for the coefficients P, (R). It is,
therefore, more convenient to compare the model
with a pseudoexperimental @,(K) obtained from the
%(K) data by requiring that the percentage differ-
ence of the pseudodata and the calculated 4', (K) be
equal to the percentage difference between the
%(K) data and their fitted values. The 4', (K) so
obtained are shown in Fig. 4. The continuous lines
in Fig. 4 represent the result of the fitting of the
magnetic environment model with nearest-neighbor
exchange [formula (6.25)]and give a good descrip-

04

e
I

0.2

0,8

0.6

I -
I y

koe

0.4

e
I

0.2

FIG. 4. Moment disturbances of random Ni-Cu alloys
fitted with the magnetic-environment model.

tion of the data. The values of the free param-
eters p, ~, , I', and p are given in Table IV. The
values of p, N; obtained by the two different fittings
are in reasonable agreement (see Tables III and
IV). The change of the moment disturbances pro-
duced by the high field for the 52, 5% alloy scales
approximately with the change of moment. A small
decrease of I' is also observed. In Table IV are
also given the values of the first-shell perturba-
tions P, (R, ) given by the magnetic environment
model [Eq. (6.17)], and the "chemical environ-
ment" part of it pI . Most of the effect is due to
the magnetic environment.
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TABLE IV. Fitting of the magnetic-environment model.

x'/x y, (z, )

0.198
0.296
0.525
0.525 (HF) '

0.461 (6)
0.379 (8)
0.0713 (29)
0.0776 (26)

0.515 (34)
0.583 (36)
0.871 (10}
0,856 (9)

-0.027 (8)
—0.023 (7)

0.0034 (7)
0.0046 (6)

1.23
1.15
1.41
0.98

-0.0427
—0.0424
—0.0146
-0.0167

-0.0139
-0.0135
-0.0029
-0.0039

~HF, high field.

B. Response function

We now present a semiphenomenological deter-
mination of the response function F(h, v, c) that
appears in the magnetic environment model. Our
purpose is not to give an exact calculation of
F(h, v, c), but rather to illustrate the behavior of
the model. We start by considering the pure-Ni
case. Cooke and Davis" have calculated the bands
of ferromagnetic Ni using the paramagnetic band
structure of Stocks et al. ' Their band calculation
shows a K-dependent exchange splitting. How-

ever, the integrated density of states they obtain
can be approximately described with a different
rigid splitting for each one of the t,~, e~, and sP
densities of states. We use the Stocks et al. den-
sities of states of paramagnetic Ni for estimating
the spin moment as a function of the t,~ band half-
splitting I. A variety of splitting schemes were
tried and they yield different values between
0.0135 and 0.0160 Ry for the splitting, I„which
reproduces the observed spin moment (0.66 p. a).
However, all of them give almost identical results
when the spin moment is plotted against I/Io. This
plot is given in Fig. 5. We assume that this func-
tion applies locally to each Ni atom, and that the
splitting I is linearly dependent on the moment
of the atom itself and on those of the nearest
neighbors. We then write the splitting of the atom
at site r as

surrounded by v Cu atoms:

p.; = (1 —Pv)(—'g)f(I;) . (7.2)

12j,(,'g)(df/dI)-
1 —(,' g)(df/dI)j, -' (7.4)

So far we have two unknown parameters, P and a,
the fraction of the splitting that is due to inter-
atomic exchange, i.e.,

n =12j,/(j, +12j,) . (7.6)

The self-consistent method explained in Sec. VI
gives I' and p, as a function of Cu content for any

0.6

Here, I, is given by Eq. (7.1), p is a parameter
that measures the strength of the "chemical en-
vironment effect, " and f(I) is the spin moment for
a splitting I in pure Ni. Equations (7.2) and (7.1)
give an implicit definition of the response function
F(h, v). The explicit c dependence is neglected.
Equations (7.2) and (6.14) give the following ex-
pressions for p:

p 1
1 —12cP 1 —(1 —12cP)(,' g)(df/dI )j-, 1

(7.3)
and for I" at zero-impurity concentration

I-„=joW, +j,Q p, +s =I'op, +k(r), (7.1)

where ), is the intra-atomic and g, is the inter-
atomic exchange parameter.

We consider now' the Ni-Cu case. We use the
same procedure to determine the spin moment as
a function of splitting for different Cu concentra-
tions, using the Ni densities of states given by the
CPA calculations of Ref. 8. The moment-versus-
splitting curves so obtained are roughly propor-
tional to the pure-Ni curve. However, the de-
crease of moment predicted using these curves is
too large: the predicted critical concentration is
less than 40-at. % Cu. Instead of using those func-
tions we assume the following phenomenological
formula for the moment of a Ni atom at site r and

0.2

0.5 1.5

FIG. 5. Spin moment of Ni as a function of the relative
band splitting.
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given E(lz, v, c). We use this fact to determine
the values of o. and P that reproduce the magnetiza-
tion data. In doing this, we take into account the
random-alloy assumption by calculating, with Eq.
(5.6), the moment in the presence of clustering.
In the calculation only o. (R, ) was assumed nonzero.
We find the intervals 0.20& a&0.40, 0.01&@&0.02
for the parameters. The values a =0.32 and

P =0.0154 give the best agreement with the cross
sections. The average moment calculated using
these values is shown in Fig. 6, while I' and p are
given in Fig. 7 together with the experimental
values. The 10- and 40-at. %-Cu unpolarized-
neutron data of Aldred et al.' are compared with
the predicted cross sections in Fig. 8. We see
that this very simple model gives the right trend
of the cross sections. Some difference is to be
expected in the 40% alloy because of the problems
of the unpolarized neutron data already discussed
in Sec. III. We do not expect the model to properly
describe the critical region, because it completely
neglects the appearance of uncoupled superpara-
magnetic clusters which are polarized when a mag-
netic field is applied. It has been implicitly as-
sumed instead that all the moments are aligned.
The predicted critical concentration is 60-at. % Cu
(I"-I)which agrees more with the concentration
at which the Curie-Weiss interaction temperature
goes negative" than with the observed critical
concentration of 57-at. % Cu. The difficulties in
the critical region are due to the particular solu-
tion and not to the magnetic environment model
itself, which can actually be used for estimating

$.0
I

—0.08

-0.06

——004 P

0.2
-0.02

0
0 20 40

at. % Cu

Ml
60

FIG. 7. Experimental and theoretical values of the
parameters 1 and p of the magnetic environment model.

the stability of clusters and their moments in the
paramagnetic alloys.

A better and less phenomenological determina-
tion of I" (h, v, c) is needed for a better understand-
ing of the Ni-Cu systems.

C Dilute impurities

The value of I' at zero concentration Io is a
property of pure Ni. W'e should therefore expect

0 Ni-t0 at. % Cu I'=0.390 p= —0.0386
+ Ni-40at. % Cu I = 0.673 p= -O. OI)5

DATA: [Q(W)/S(A)j A/l(A)
CALCULATED CURVE: —C)t(&)

cn 0.4

0.2

LLI

c E.O
6)

I-
Vl
CI

Z
tAJ

O
0.5

0.2 0.4
ot. la CU

0
0 0.5

((It' t A )
1.5

FEG. 6. Data and theoretical calculations of the Ni-Cu
average moment. +, Ref. 9; &, Ref. 19 (normalized to
a pure-Ni moment of 0.616pg); 0, Ref. 2; &, Ref. 20;
')/', Ref. 21;, Ref. 22.

FIG. S. Ni- Cu unpolarized-neutron moment disturb-
ances from Ref. 2 compared with the predictions of the
magnetic-environment model.
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that any dilute nonmagnetic impurity produces a
moment disturbance @,(K) described by Eq. (6.25)
with I' equal to I'p and a p that depends on the
strength of the "chemical perturbation. " The
value of 1"p calculated with the chosen param-
eters e and P, is I'p =0.305 +0.05. Using this value
we have calculated p in the dilute limit for differ-
ent nonmagnetic impurities by equating d(ij, )/dc
with 4', (0). When no derivative value was available
we used a 4', (0) value calculated from the data of
Ref. 25. The results of this calculation are plotted
in Fig. 9, and show an increase of the chemical
disturbance as the atomic number of the impurity
moves away from Ni. As an example, we present
in Fig. 10 the ¹i-l-at./p-Cr polarized-neutron
data of Cable and Medina, '4 and the ¹i-Zn data of
Comly et al." together with the predicted moment
disturbances. The agreement of predicted and mea-
sured moment disturbances of impurities as different
as Zn and Cr indicates that the I'p estimated is not far
from the actual value. We should note that the present
model, in contrast with the one proposed by Comly
et al. ,"does not predict a universal moment dis-
turbance; the shape of the moment disturbance is
instead p dependent. For example, Zn was con-
sidered to be anomalous because of the shorter
range of its moment disturbance, but this is given
correctly by the present model. Their qualitative
discussion of the moment perturbation induced by
an impurity on its Ni neighbors and its propagation
through the nickel matrix is, however, also appli-
cable to our model.

VIII. SUMMARY AND CONCLUSIONS

We have measured the moment disturbances in
three ferromagnetic Ni-Cu alloys with the polar-
ized-neutron technique. The data indicate that all
the magnetic moment, including the negative mag-
netization previously assumed uniform, is to be
associated with the Ni atoms. This agrees with
the diffraction data, ' and with the theoretical"
and experimental' evidence that the Cu atoms
keep their 3d shell almost full.

The proposed nearest-neighbor magnetic-en-
vironment model gives an excellent description
of the observed moment disturbances. Within the
model one finds that most of the moment distur-
bances produced by Cu in Ni are due to its non-
magnetic character, but that some nearest-neigh-
bor chemical disturbance must be included to ex-
plain the observed cross sections. In contrast,
none of the first- and second-shell chemical-en-
vironment models, like those of Refs. 9, 21, 22,
and 35, is consistent with the diffuse-scattering
data. The proposed model also describes the dif-

—0.2
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) p -0.6

-0.8
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-~.o — 0Nb
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FIG. 9. Chemical disturbance parameter p for diffe-
rent diluents in Ni as a function of the charge contrast,

5

4
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m
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o -Af (K) /f (K) Ni —i ot. 'Io Cr
5/2

~ I2 (K)] Ni —Zn

I
I' = 0.306 p = —0.858

l' = 0.305 p= —0.239
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K(A )
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FIG. 10. ¹Cr(1-at. /0j polarized-neutron data of
Ref. 33 and Ni-Zn [between (2 and 4)/p] unpolarized-neu-
tr'on data of Ref. 25 compared with the theoretical pre-
dictions.

fuse scattering of other nonmagnetic dilute im-
purities in ¹i,because the moment disturbance
induced by the impurity in its ¹ neighbors is
propagated through the lattice with the same mech-
anism, regardless of the origin and size of the
disturbance.

The large and long-range moment disturbances
produced by impurities suggest that some type of
effective interatomic exchange is very important
for Ni. A rough Stoner type of calculation shows
that between 20%%uo and 40% interatomic exchange is
needed to reproduce the Ni-Cu data. Within the
same calculation each Cu atom induces a (1-2)%
moment reduction on its Ni neighbors for any given
exchange field. For a better determination and

understanding of these effects, a more accurate
and less phenomenological calculation should be
performed. However, our data indicates that, in-
dependent of the specific model used to describe
magnetic cooperative effects, such effects are
dominant in determining the magnetic moments in

Ni-Cu alloys.
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