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The effect of the percolation threshold on conduction in mixtures and on the magnetic ordering temperature

in alloys of high- and low- T& material is described using a real-space rescaling approximation (introduced by
Kadanoff, following an idea of Migdal} which is applicable to systems of arbitrary spatial dimensionality d.
%'e calculate exponents describing the regimes just above and just below p, for the case of bond dilution in

resistor networks or Ising ferromagnets. The results are accurate for d = 2 in those cases where comparison is

possible and qualitatively correct for d = 3, but are invalid in the limit- d —I ~. Ising spin glasses do not show

order in 2 dimensions, in this approximation, but may do so in 3 dimensions,

I. INTRODUCTION

Real-space recursion relations have been con-
structed for two- and three-dimensional Ising mag-
netic systems' in order to study their critical
properties without the usual need to extrapolate
fron1 tile critical dimensionality d~ = 4 ~ In this
paper we shall treat the percolation threshold that
results when an interacting system is randomly
diluted until no long-ranged connectivity remains.
For this problem, d, =6,' ' so extrapo1. ation down
to d =2 or 3 is not reliable, ' and a real-space cal-
culation is necessary.

Bond percolation' can be seen as a certain limit
of the transition which occurs in the Potts model, '
with the concentration playing the role of tempera-
ture. Several calculations of the critical exponents
associated with connectedness have used this equi-
valence. ""' However the Potts model formula-
tion is difficult to generalize to models other than
bond percolation and obscures the effects of dilu-
tion on other cooperative phenomena. Therefore,
we shall adopt the point of view of Stinchcombe and
co-workers, 'o'" who have shown that the principal
effect of rescaling lengths is to modify the prob-
ability P that a bond is present, and thus that the
percolation threshold can be identified as a fixed
point in the rescaling of P.

Kadanoff, '~ by rederiving and generalizing a re-
sult of Migdal, "has recently introduced a particu-
larly simple procedure for rescaling lattice models
in real space, not restricted to two dimensions.
The procedure is shown [for the two-dimensional
(2D) case] in Fig. 1: First simplify the problem
by shifting some of the horizontal bonds (the dashed
lines) up or down into groups of b bonds, fi lattice
spacings apart. Next transform the chains of 5 ver-
tical bonds which remain into equivalent single
bonds by exact "decimation" methods developed for
one-dimensional (1D) problems. '"'" Repeat the
process, shifting vertical bonds first, then trans-
forming horizontal bonds. The result is an overall

length rescaling by a factor of b.
Two arguments can be given in support of the

apparently ad hoc shifting of bonds. First, the
free energy calculated for magnetic models with
the bonds shifted is a lower bound to the true free
energy. '" For the percolation problem the cor-
responding statement is that shifting bonds can
only decrease the mean number of clusters per
site. ' Second, and more important, the error re-
sulting from shifting bonds is small in both the
high- and low-temperature limits'2 (in high- and
low-concentration limits for the percolation prob-
lem). Thus this approximate transformation should
have the property of interpolating between these
limits.

To generalize the transformation of Fig. 1 to
three dimensions (SD), shift bonds along all but
one axis, leaving planes of b bonds which can be
transformed into single interactions. Do this for
each axis in turn. Denoting the rescaling of a 1D
chain as R„;„,(b) and the bond shifting as R»„ii,i(b),
the net transformation can be expressed as

R(h) = tR»raiiei(b)l R series(~)

Since the strength of the interactions at the fixed
point will depend on the order in which the trans-
formations are applied, the resulting fixed-point
Hamiltonian is anisotropic. To remove this aniso-
tropy, one may continue R(b) to values of h close
to i." Writing

FIG. 1. First stage of the
Kadanoff-Migdal transfor-
mation (b =3, two dimen-
sions).
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R~„ea (1+r) = 1+gL„„„r
Rparallel(1+ 0) 1+ lL parallel

(2a)

(2b)

II. RESULTS

We first consider calculation of the percolation
threshold itself. Under 8„„„,p transforms into
p", while R„„ll,l takes (1 —p) into (1 —p)'. Letting
b - 1+g, using X~ -1+g lnX, and combining the
two terms as in (3) yields for the effect of R acting
on p

R[p] =p+ r[plnp —e(1 —p) ln(1 —p)],
and the condition that p, be scale-invariant is the
requirement that L[p,] vanish

p, lnp, =e(1 —p, ) ln(l —p, ) . (5)

For 2D (e =1), (5) gives p, =-, , the exact result'
for bond percolation on a square lattice. In 3D, (5)
predicts p, =0.16, while the best estimate of the
correct answer is 0.247.' The limit

p, -1 e-'~' as ~-0
is correct, but the opposite limit

p, -e ' as e-~

(6)

is not correct, since it violates the rigorous bound'

p, ~ 1/(2m+1) . (8)

Thus although it may be qualitatively correct in

(3) to express the effects of increasing dimension-
ality as an increase in the relative importance of
parallel paths, which can avoid defects, over
serial paths, which cannot, (8) shows that this
method overestimates the increased freedom ob-
tained in higher dimensions.

Next we expand L, as obtained in (4), about pp, a

'The coefficient of the term linear in p —p, gives
the correlation length exponent" v and can be
simplified using (5):

v ' =1+a+ lnp, +e ln(1 —p, )

=d+(e/p, )ln(1 —p, ) . (9)

For d=2, 3, (9) predicts v=1.629, 1.22. These
are in fair agreement with the best known re-
sults, ' 1„3+0.1 and 0.86+ 0.05, and show the cor-
rect trend with increasing dimensionality. As
e - 0, v - I/e, a result Stephen' has obtained for
the Potts model using a related method. Note,

where the L's are infinitesimal generators, yields

R(1+ g) = 1+ g(&Lparallel +Lee„ea) r

independent of sequence (e —= d —1). Calculation of
approximate eigenvalues of the L's for the magne-
tic and percolation problems proves to be fairly
straightforward, and is described below.

We consider lattice models in which the bond
conductances 0 are random variables. Some of
them may be zero. Besides changing the effective
concentration, rescaling lengths will modify the
distribution and arrangement of bond conductances
present in such a model. Since the present methods
do not introduce correlations among bonds if there
were none in the original model system it will be
sufficient to consider the simplest possible de-
scription. We characterize the model by a single
distribution of its conductances, of the form"

P(o) =PP(o)+ 5(o), (10)

where both P(o) and P(o) are normalized to unity.
Stinchcombe and Watson" find that I' may have
"fixed points" under approximate renormalization-
group transformations. After sufficient iteration,
rescaling produces only a change of the scale of o".

R[P(o)] = &P(&o), (11)

which has the effect of reducing (o) by a fa.ctor of X.
Using arguments customary for analysis of tri-
critical points, """one identifies the exponent t
of the conductance threshold

(o(p)) (p —p.)',
from

& = b'~" -1+g(t/v) .

(12)

Mixtures of conducting and superconducting ma-
terial are also of experimental interest" and can
be modeled by resistor networks. " If we describe
each bond by its resistance p the analog of (10) is

P(p) =p5(p)+ (1-p)P(p), (14)

and invariance of the form of P(p) at P, will imply
a second power law

(p(p)} (p. —p)' . (15)

As Straley' originally "pointed out (see also Ref.
1V), a complete description of mixtures of strong

however, that upon setting e = 0 (1D), decimation
becomes exact and expanding (4) gives the correct
result v=1. Therefore (9) cannot be regarded as
an expansion in e about the point e= 0. Finally,
as e- ~, (9) predicts v -1+ce ', which disagrees
with the expected diffusive limit v- —,.

'The results for v are insensitive to the value of
b. For example, taking b =2 in 2D gives a trans-
formation identical to Stinchcombe et al. 's S1,""
except that they identify the scale change as v 2.
Doubling their result for v to account for the fact
that our value of b is the square of theirs, we ob-
tain v(b =2, d = 2) = 1.636, which differs by less than

1% from the limiting value given in (9).

III. CONDUCTION THRESHOLDS
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and weak conductors in the vicinity of P, can be
constructed once the two exponents s and t are
known.

R „. and R,...~&,]for resistor networks simply com-
bine b conductors in series or parallel according
to the usual rules. Increasing the lattice constant
by a factor of b while keeping the macroscopic
conductivity the same in a uniform network re-
quires that all the local conductances be reduced
by a factor b" '. To eliminate this effect we add to
R a trivial rescaling back to the original lattice
constant. The result is

R'[o] = b'-'f R„.„„,[o])'-'R„„., [o] . (16)

The analogous transform for resistances is ob-
tained from (16) by interchanging R„„,»,~ with Rserjeg,

and replacingpwith(1 —p), b»»withb» '. In two di-
mensions, R'[cr] =R'[p], and the threshold exponents
above and below P, will be identical. Thus the pre-
sent approximate renormalization scheme satisfies
the duality relations between random resistor and
conductance models which must hold in general in

R' also has a homogeneous fixed point P =1 at
which P(a) iterates to 6(o o*) for some o*. As a
test of the adequacy of the approximate recursion
relations in treating fluctuations outside the imme-
diate region of the critical point, we have iterated
R' to convergence for several 2D random network
models in which all conductances are nonzero, let-
ting b =2 for numerical convenience. The fixed
point is anisotropic; o,*, which results from iterat-
ing (R„„»,~ R„;„,), may be much less than og, the
result of iterating (R„„„R„„„„),starting from a
given distribution of "bare" conductances. How-
ever, the geometric mean (o,*o'f)'+ obtained when
the bonds are initially distributed uniformly over
the interval (1-A, 1+A), where the parameter A
may take values from 0 to 1, agrees to within
numerical accuracy with the predictions of effec-
tive-medium theory, "w'hich is known to be accu-
rate for this rectangular model. We also consid-
ered a model with bonds distributed according to
P,(o) = (2o lnA) ' over the interval (A ', A). In this
model, effective medium theory predicts o,«=1
in 2D, and numerical experiment" (in 3D) has
shown that the actual conductance agrees with 0,«
for A K 100, and is only slightly higher for A= 1000.
We calculated (o',*o',*)' ' = 1 + 0.02 for A ~ 10 in this
model, and =1+0.1 for A =1000." These results,
besides supporting the use of the Migdal-Kadanoff
transformation to study the regime near p„sug-
gest that the method may provide an economical
way of studying general properties of more elabor-
ate network models of inhomogeneous conduction.

To obtain the exponents s and t, it is only nec-
essary to calculate the effect of R' on (o) and (p).

In the limit b -1 we can consider L„„„andL~ .~~,~

separately. We consider the evolution of a distri-
bution of bonds, initially of uniform value and pre-
sent with probability P„ through one stage of each
transformation. (Stinchcombe and Watson" have
shown for b =2 that a reasonably accurate value of
& may be obtained from even the first step of this
evolution. )

In this approximation, R„„„takes (o') into (o)/b,
so we can identify

L.„.. [&o)]=-&o) . (17)

R„„»„transforms (o) into b p(o)/[1 —(1 —p)']. (The
average conductance of from 1 to b bonds in paral-
lel, weighted by the probability of occurrence, is
found by summing

p ~(.') p"(I -p)' "&o& =p —, (p+ e)' (o) =bp&o),
n=1 Bp e=l-P

where („') denotes a binomial coefficient. Then the
factor [1—(1-p)'] is required to preserve nor-
malization. j Taking the limit b -1 we obtain

L„„»„[(o)]=(o)(1+[(1—p)ln(1 —p)]/p) . (18)

Adding the trivial rescaling (2 —d) (o) to obtain R
and identify &, then using (13) gives

t/v =-~ [(1-p, )ln(1 p,)]/p, , —

s/v = -(P, lnP, )/(1 -P,),
which can be simplified via (5) to

s/t =p, /(1 p.)—
(19a)

(19b)

(2o)

IV. MAGNETIC THRESHOLDS

Following the same line of argument, we shall
next treat threshold effects due to bond dilution in
Ising models of arbitrary spatial dimension. If the
interaction strength associated with the i-th bond
is denoted Z; =J;/kT, then the ser—ies transforma-

The numerical results are: (2D) s =t=1.13;
(3D) t =2.36, s =0.46. The 2D results are in excel-
lent agreement with the values of t =1.$ +0.1 ob-
tained from computer simulations, '"while the
3D result for t is too high (simulations give' 1.6
+ 0.1) and that for s is slightly low (Straley finds"
s =0.5 —0.7). We note that the ratio s/t found in
the computer simulations is consistent with (20).
Since this method in 3D gives a P, which is too low,
it is not surprising that the predicted critical re-
gion is too stretched out (t is too high) above p„
and slightly compressed below P, . To check the
method of calculation one can obtain ~ from the ex-
act fixed point distribution at b =2. The results are
not very sensitive to b: t =s = 1.33 in 2D (using re-
sults of Ref. 11), and t =2.34, s =0.64 in 3D (this
work).
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tion reduces a set of n bonds E, to a single bond
E' according to tanhK'= ll ltanhK, , and the paral-
lel transformation is K' = ", ,E,.

The behavior of T, just above P, in dilute magne-
tic systems is an old problem. (For recent stud-
ies, and references to the earlier papers, see
Hefs. 20-24.) There is also an analog in mag-
netic systems to the "resistive" side of the perco-
lation threshold studied in Sec. III, which does not
seem to have been discussed previously. Consider
an alloy containing a fraction p of strong bonds E,
and (1-p) of weak bonds K . If K, » K„, the
strong bonds are quite rigid at temperatures com-
parable to Tc(p =0), and play the same role as
superconducting links in a conducting mixture.
Thus one expects Tc(P) to show a singular increase
as p-p, , cut off as it reaches a value comparable
to T,(p=1).

To obtain a (Iuantitative prediction for Tc(P -P,')
we again study the evolution of a distribution in
which the nonzero interactions initially have a uni-
que value. The appropriate small quantity to study
as T~ becomes small is'" 0=—e ~, since tanh E-1
—2k in the large E, low T limit. We shall there-
fore be looking for a threshold behavior of the
form

exp[ 2J/kTc(P)-]~(P-P, )' (P &P,) . (21)

Rescaling b bonds in series, all of which must
have nonzero E, gives k-bk in the low-T limit.
Thus, taking the limit b -1, we obtain

»Tc(p)" (P.-P) ', P&p. . (29)

To look for a dependence of this type we study the
transformation properties of lntanh(K). Below P„
R„„„describes the effect of combining v~1 weak
links in a chain, the remaining b —~ links being
treated as infinitely strong. Since for n identical
links in series, lntanh(K') =n lntanh(K), R„„„[ln
tanh(K)] can be evaluated by following the procedure
used above for R»„,»„[o'], with p and 1-p inter-
changed. Thus

L„„., (1ntanh(K)]= (3+
' ' 1 tanh(K) . (30)

C

In R~„,~~,~, b weak links are combined, with no
shunting strong links, giving lntanh(IC') = lntanh(K)
+ lnb for E«1, or

pothesis. Mean-field" and finite- cluster renor-
malizationt» group"'" treatments have also yielded
t =1. By constructing upper and lower bounds for
Tc(p), Bergstresser" has recently shown that

T (p)--2J/[I (p —p, )]+O([ln(P-P, )]') . (28)

Thus the present treatment is seen to be consis-
tent with the rather stringent constraint (28). It
is surprising that this method as well as the cal-
culation in Ref. 23 should give t exactly even when
v is only approximate.

For an Ising model with a mixture of strong and
weak bonds in the regime just below P„ the ob-
vious dual to (21) is

L„„;„[k]-k. L„„„»„[lntanh(K) ] = 1 . (31)

Rescaling b bonds in parallel, there is a nonzero
interaction whenever one or more bonds is non-
zero, and k(nK) =k". Thus,

The sums can be written
(23)

&k') = [(I P+Pk)' (1—P)—']/[1 —(1——P)'], (24)

and taking the limit b -1 gives

L„„»„[k]=k[l+p,'ln(l —p,)+O(k)] .

Combining (22) and (25) according to (3) we ob-
serve that the transformation is linear for suffi-
ciently small k, with eigenvalue

(25)

t/v = d + (& /p, ) ln(1 -p,), (26)

but, by comparison with (9) this implies that t=1,
and the behavior of Tc(p) as p —p; is

exp[-2~/T (P)]"P-P, (P&p.) (27)

The result found in (27) is not new. It has been
proposed by Stauffer, ' arguing from a sealing hy-

Since (30) dominates (31), we extract the eigen-
value

s/v = 1 + e ln(1 —p,), (32)

V. SPIN GLASSES

We close on a note of caution. Although the
bond-shifting transformation gives sensible re-
sults for the magnetic and conduction thresholds
it may not be reliable for all inhomogeneous sys-
tems. In particular, it may estimate interaction
strengths incorrectly in spin glasses»' For pur-
poses of this discussion, spin glasses are random
magnetic systems in which the bonds E, are ran-
dom, uncorrelated, and may take on either sign.
The success of the method in treating uniform
systems rests on the fact that the precise location
of the individual bonds is not very important at low

where we have made use of (5). Some numerical
results are s(2D) = —,'; s(3D) =0.85. The above pre-
dictions for s and the form of the threshold below

p, in this magnetic system are new, as far as we
know, and should be susceptible to experimental
verif ication.
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temperatures. " While this may still be true for
inhomogeneous systems in which the different in-
teractions are additive, it is false for models,
such as spin glasses, in which the interactions
may have either sign. An example in which bond
shifting causes spurious interference between
bonds of opposite sign is given in Fig. 2. The set
of interactions pictured locks the four spins into
a stable arrangement at low temperatures, yet
shifting any bond parallel to its axis causes a can-
cellation which leaves two noninteracting pairs of
splns ~

It is natural to seek to extend to spin glasses the
present type of analysis, in which we study the
transformation of some simple approximation to
the fixed-point distribution of interactions. Such
a distribution cannot be a single 6 function, since
it is possible" to have a spin glass phase in which

(E) =0 in the bare system, and only (K') WO. Jaya-
prakash, Chalupa, and Wortis" have recently pre-
sented such a calculation, applying the Migdal
transformation to a distribution P(K) = ~ [5(K —Ko)
+ 5(K+K,)], and taking k =3. They argue that since
this is the exact fixed point distribution for 1D
Ising models with random interactions of both
signs" it should therefore be a good starting point
for discussing d =2 and above. However, when
d ~ 2, interactions between two spins which pro-
ceed along different paths can interfere (think of
a square like that in Fig. 2 with three bonds +E,
and one -K), and generate very small effective
interactions. In the remainder of this section, we
carry out the Migdal transformation for a spin
glass, taking the limit b-1, and show that the
presence of both strong and weak interactions in
P(K) has im. portant effects on the transformation

We consider only distributions P(K) such that
(K) =0, (K') c0, and P(K) =P( K). Applying -R»tn„e)

to b random bonds to obtain K' gives (Kd) = 0,
(Kd') = I) (K2) Thus

produces equal numbers of positive and negative
interactions, and preserves the symmetry in IC.
If the magnitude of K is unique, then in the limit
of low temperature, k' = bk (where k =—exp(-2

~

K
~
))

implies that ~K'
~

= ~K~ ——,
' Inb. In the b- I limit

this approximation to P(K) gives L„;„,[(K')]=-—,'.
A linear approximation to R„„„wasused to

study more general P(K). At low temperatures,

exp( 21K I) /esp( 21K;I)
t=1

(36)

b-j.
P'(K') = hP (K') (2 P(K) d K

0

or, in the limit b-1,
L„„„[P(K)] =P(K) ln2 P(K) dK .

(3V)

(38)

The distribution P*(K) which is invariant under
[R„„„(b)RP„,(),)(b)] for k =2, 3 was found by itera-
tion, using (37), and is plotted (for K)0) in Fig.
3. Compared to a Gaussian distribution (dotted
line), P* is more sharply peaked at small K, and
has longer tails. Since the results in Fig. 3 appear

1.20

1.00

0.80

0260

is dominated by the smallest ~K; ~, e.g. , by the
weakest link in the chain. We can incorporate this
feature by approximating

(36)

This has the effect of transforming P(K) into

pats()n) [( )]=
& ) (33)

for any such P(K). The effect of R„;„,is more
complicated and will depend in detail upon P(K).
If P(K) =P( K), the transfor-mation

OP40

0.20

b

tenh)P =jgtnnhKt =foehn(K )ts. )t~K;~
t=1 5=1

(34)
0.0

FIG. 2. Spin-glass con-
figuration in which bond
shifting underestimates the
effective interaction
strength even in the low-
temperature limit.

Standard Deviations

FIG. 3. Interaction strength distribution P*PC) for an
Ising spin glass in 2D, found by iterating the Migdal
transformation in its linear gow-T) form, using (37).
The solid line is the result for b =2, the dashed line the
result for b = 3, and a Gaussian distribution is shown
dotted for comparison. In both cases, the iteration con-
verged in two to three iterations, and the result was in-
dependent of the starting distribution.
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not to be sensitive to b, we have used P*(b =3) to
evaluate (3"I), and find that the change in (K') is

(39)

Combining (39) with (33), we observe that in this
improved ap. yroximation rescaling decreases (K')
at low temperatures in 2D, rather than increasing
it ap it must if the system is to flow towards a
stable T=0 fixed point characteristic of an ordered
state. Therefore under the Migdal transformation,
an Ising Spin glass does riot order in 2D. This con-
clusion is in agreement with recent calculations
by Young 3,nd Stinchcombe" using other decimation-
type transformations. Since bond shifting has un-
predictable consequences for this model, we can-
not draw any rigorous conclusions about 2D Ising

spin glasses from the preceding calculation. For
d~3, the Migdal transformation does predict the
existence of an ordered phase in spin glasses, so
the phase diagrams presented in Ref. 26 for 3D
and 4D may be qualitatively correct.
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