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The analytical structure of the seve-number-dependent magnetic susceptibility y(k) is studied at small v]fave

number k and low temperature. It is found to exhibit a nonanalytic behavior in contrast to commonly
assumed forms for g(k) of interacting systems. The importance and implications of these results are discussed

for the cases of short-range point interactions and long-range Coulomb interactions,

I. INTRODUCTION

Fundamental information concerning the correla-
tion of spin-density fluctuations, on a microscopic
level, for a many-fermion system is contained in
the wave-number- and frequency-dependent sus-
ceptibility'2 y(k, m). For simplicity, consider a
paramagnetic translationally invariant system of
spin-& particles to which a weak magnetic field
H(rt) is applied which couples to the magnetization
density m(r, t) = p. s[II'(rt) —n'(r, t)], where p, ~ is the
magnetic moment per particle and n'(r, &) is the
particle density of spin projection a. The induced
magnetization, in linear response, is

(m(k, (u)) =y(k, (u)H(k, ru),

work. In Sec. II, we consider the simplified model
of very weak and short-range interactions, charac-
terized by interaction strength I and rigorously
evaluate the expansion coefficient o. in the leading
correction term in the long-wavelength expansion

y(k) =X(6)—ak'+0(k')

to second order in the small parameter I at finite
temperature 0&T «T~. It is shown that the domi-
nant contribution to n varies as ln(T/TF) at low
temperature. It is this fact which leads to the
failure of the common assumptions indicated above.
The calculations are carried out using a propa-
gator formalism for finite-temperature perturba-
tion. theory' ' to evaluate the Fourier transforms
of the correlation functions

y(k (u) —lim d'« '"'
Tt ~O+ 0 k

x ([m(r-, t), m(ti, 0)]) .
(2)

The calculation of even the static (~ =0) magn«ic
response, given by y(k, &o-0) =-y(k), is of very
great interest but also presents very great diffi-
culties in the case of realistic interacting systems.
It has been generally assumed (and supported by
approximate calculations) that: (i) the long-wave-
length (k«2k~) behavior of y$) can be described
by a regular series expansion in powers of k' (the
interparticle interaction is taken to be rotationally
invariant); (ii) y$) attains its maximum value at
k =6; and (iii) in the strongly degenerate limit,
T «T~, the leading temperature-dependent correc-
tions to the T =0 value of y(k) are the usual minor
additive corrections of order (T/T~)' which occur
for a noninteracting many-fermion system.

The above three assumptions are incorrect and
the correct form of g(k) for small k is given in this

P" tli, iu, )=f dv (Tn(i i)n (5,'0))e' ', '(4)

where &u, =2&tli/P and P=(&I,T) '. The static sus-
ceptibility requires only the cu, =0 point and is
given by

q(k) =21 ', [I "(k, o) -I "(k,o)].

The cases of strong short-range interactions
(e.g., 'He) and of the high-density elect:ron gas with
long-range Coulomb interactions (including dy-
11RllllcRl scl'eelllllg) RI'e examined lI1 Sec. III Rlld

the corresponding expansion coefficients A are
Rlso slllglllRI' R't low T. Some ilnpllcRtlolls (both
for matters of principle and for practical calcula-
tions) of this result for the analytical structure of
y(k) are discussed. It is also shown that this
logarithmic singularity does noI' appear in the
corresponding response function for charge-den-
sity correlations,

y. (k) =2e [I "(k, o)+I "(k, o)].
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II. ANALYSIS OF X(k,0) FOR WEAK SHORT-RANGE
INTERACTIONS

In this section, we shall explicitly determine the
leading k dependence, for small k, of }i((k, 0) in the
case of a model system which can be described
by weak short-range interactions. The Hamilton-
ian of the translationally invariant system is H =H,
+H~, where H, is the usual kinetic energy and the
two-body interaction, in standard second quan-
tized form is

x y'(rc)y'(r'v')q(r'o')y(rc),

where the spin indices a, o' can be either 4 or 4.
In the limiting case of very short-range interac-
tions, V(r —r')- I&(r —r'), the Pauli principle
then precludes interaction between parallel spin
fermions so that Eq. ('I) reduces to

Ha=I drn~r A~r (s)

This short-range interaction model has been wide-
ly used in the literature"" to describe "nearly
magnetic" systems.

In the present work, we shall initially assume
that I is sufficiently weak to treat by second order
perturbation theory and we make a consistent cal-
culation of interaction contributions to X(k, 0) up
to and including second order (which is where
dynamical effects first appear). In the usual
propagator formalism for finite-temperature per-
turbation theory, ' ' the graphs through second
order for )('. "'(k, 0) and y (k, 0) are shown in Figs.
1(a) and 1(b), respectively. In Fig. 1(c) are indi-
cated some of the graphs which also contribute
for a general interaction but which give exactly
zero contribution, due to the combined effect of

(c)

FIG. l. (a) Lowest-order graphs which contribute to
the P&&(k, 0) term in g{k) (see text) to order I; (b) con-
tributions to P && (k, 0) to order I2; (c) some of the graphs
of order I which do not contribute to X(k) in the limit of
short- range interactions.

spin conservation and the Pauli principle, for this
short-range model. The contributions of the graphs
in Fig. 1(a) are

P (k, 0)=Po(k, O)+Pi (k, O), (~)

where

P.(k, o) =-tr, (; gp+k/. (&.) gp-k/. (&.)

and

t;, ( )((2 )'0) 'f&'( 2("=").
n

The chemical potential for noninteracting particles is denoted by p., and the effect of interactions on the
exact (to order I') chemical potential, p. =p, , +&))., have already been explicitly accounted for by the pres-
ence of the last term in Eq. (11). [The Hartree graphs in Fig. 1(a) contribute a, trivial shift in chemical
potential and are of no consequence. ] Similarly, the graphs of Fig. 1(b) contribute

P' (k, 0) =-I[Pop, 0)] + ,'I'tr &tpr (;pg p, k/~(—&„)g p k/, (L„)g p (k/, (r„)g p k/, (K„)

xtr-, g[gp, ;(g„g )+gp;(g„—g )][gp, ,;(g„, +$ )+gp, -„(g„,—( )]. (12)

IPo(" 0)] —I trp(: trp't '[gp+k/ (& ) g'p-) /, (K,)PD(P —P, t, —t, )g p +k/, (f, ) g p»/, (&, )]

—I tr t tr (; 1[g (g„)J g (g„)P (p —p', g„—g„)[g k(g„)+g k(j„)J]

+tr, ~G g p(&.)]'~) [g;.»(K.)+g , k(t. )] I- (11)

The single-particle propagator is denoted by g-(f„)=I/(g„—ip) where r„= (2n+1)vi/p is the usual "frequen-
cy,

" ep=h'p'/2m —p, „and
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The expansion of Eqs. (10) to (12) in powers of k is easily carried out by using relations such as

sg &) s'gt L)g- -(C)=g-(&)+(e- --e-) ' +-'(e- --e-}' ' +p+k p p+k p S+ 2 p+k p 8+20 0

The algebraic details of this expansion are identical to those already given in the corresponding problem
of charge density correlations" and need not be repeated. Collecting all contributions, we have

5P"(k, 0) -=P "(li, 0}-P"(k -1},0)

given by

&P"(k, 0) = -b "0'+ O(k4),

where 5 =&0+hz, with Eq. (10) contributing ho=(5'/24m)San/Bp, ' and Eq. (11) contributing [Po(k-|), 0}
=No(0) =mk~/2m2h 2],

8'n h 2

bl =3[I No(0 }J' 5+ 1j.i,— I'trp( trp I Po(p —p', t'„—f„)
247FL 8 p. 0 2PPl

1 8', 84 8 1 8 g 8
g-, (t. ) » , g; (&.) ——,' e-. . . g-, ((.) + , g; (&. ) 2 , , g; (C„) --,' e » , g-, (&.)

Similarly, we obtain (14)

x[gp+q(g +$ )+gp q(&„—$ )1 Po(q, g ).P-q ft m 8 0 P m (15)

At finite temperature, all contributions to Eqs. (14) and (15) are well defined. However, in the limit of
1'-0, both b~i and bi' develop singular behavior of the form 1 (n& Ts/g, ). The physical significance of this
behavior will be discussed below and, for the present, we shall isolate and evaluate those terms in Eqs.
(14) and (15) which are responsible for the singularity. As will be verified by the following analysis, the
singular contributions arise in terms with the largest number of confluent propagators and are contained
in

tt 83
l*&|pgt|,1&(a&.)'p Ep*-, 0:.+4), zp(4))

and

(1 7)

We can rewrite Eq. (16) as

8 83
bz --bz + I' tr &tr-„~P-,(q, $ )e g,-(f„~(+),g (g„).

Consequently, the singular contribution to the expansion coefficient n=2p, 2s(tpi' —b ) in Eq. (2) is given by

~4p (19)

(18)

since the second term on the right-hand side of Eq. (18) will be shown (see below) to be finite.
It is useful to have an explicit representation for the function sP, (q, $)/sg, which enters Eq. (17). Return-

ing to Eq. (10}, the f„msuand the angular integration are straightforward and yield, for the p, , derivative,

Re dPPf'(e~) ln e, + +$ —ln e, — +g
0 0

(20)

This need not be evaluated in full generality as we are interested only in the strongly degenerate limit.
In Appendix A, we give an approximate evaluation of Eq. (20) which is valid for 0-T «T~ =—e~/ks. The re-
sult [see Eq. (A5)], for $ on the positive imaginary axis, is

Re g —,'+ ~ (e, +hv~q+() —g &+ ~ (e —Kv~q+5) (21)
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where v„=kk~/m and $(Z) =(d/dZ) inl'(Z) is the usual digamma function. Note that the above is a regular
function of q and $ for TWO, as expected on general grounds .It may be verified that Eq. (21) reproduces
exactly the T -0 limit of P, (q, $)/Si). , and of its derivatives. Also note that Eq. (21) is logarithmically di-
vergent [$(Z)-1nZ+ for ~Z~ -~] for T =0, q =2k~, and )=0. It is this fact, coupled with the repeated
propagators in Eq. (17), which leads to the lnT divergence in k for T-0. Using the methods which led to
Eq. (21), the sums over the propagators in Eq. (17) may be expressed in the same spirit. From Eq. (A9),
the relevant singular contributions are contained in (again, $, is on the positive imaginary axis)

(22)

where we used the fact that the contributions to Eq.
(17) from $,/i & 0 are just the complex conjugates
of those for g, /i &0. The coefficients C, and D,
are given in Eqs. (A10) and (A11). Having explicit
representations for the quantities which enter Eq.
(17), the evaluation of t)~ can be carried out. The
calculation is lengthy and the details are given in
Appendix A. The final result [see Eq. (A22)] is

())) ( = -(m'kzi2/1 152g8k ~) In(ksT/ez) . (23)

From Eqs. (3), (19), and (23), the coefficient
of the k' term in the expansion of X(k) is given by

n = o('+ n" ln(ksT/ez), (24)

where

n" =g'I'k f2/288v'k' (25)

and e' contains all regular contributions for T-O.
For small I, o(' is simply given by n' = o., + O(I'),
where no= p, asm/12m'k'k~ is given by the I.indhard
function [Eq. (10)J. In the limiting case of a weak
interaction, which can be treated by perturbation
theory and which does not destroy the Fermi sur-
face, the above analytic structure will remain to
all orders in the interaction. When I is not weak
enough to treat by a simple form of perturbation
theory to finite order (e.g., 'He, nearly ferromag-
netic metals such as Pd), the above conclusions
are no longer rigorous. Nevertheless, we have
seen no way that higher-order terms could conspire
to cancel the in(T/T~) in Eq. (24), provided the sys-
tem remains normal, and we thus expect our con-
clusion to extend to interactions of arbitrary
strength (see Sec. III). In fact, such cancellation
is also highly unlikely for interactions having finite
range (as opposed to point interactions). In par-
ticular, the electron gas will also exhibit the struc-
ture implied by Eq. (24). In Sec. III, we discuss
the implications of these results for paramagnetic
many-fermion systems.

III. IMPLICATIONS AND DISCUSSION

A. Short-range interactions

First, we focus attention on the case of weak
interactions. From the fact that the expansion
coefficient n [Eq. (24)] is logarithmically divergent
for T-O, we may conclude that the low-tempera-
ture and long-wavelength structure of y(k) is given

by

(26)

where k'0 is of order jest'~. The immediate implica-
tion is that g(k) is not an analytic function of k at
zero temperature.

In numerous applications, the long-wavelength
behavior of y(k) is important and it is assumed that

li(k) can be expanded in powers of k'. From Eq.
(26), this is clearly valid only for k'/ko & T/Tz.
How important is this fact~ To obtain the above
structure for y(k), it was assumed that the system
remains in a normal paramagnetic state. For
many-fermion systems which do remain normal
and paramagnetic to very low T (e.g. , the electron
gas, see below) the usual expansions of X(k) at
T =0 are clearly invalid. Qn the other hand, for
systems which exhibit a transition to a nonpara-
magnetic state at finite T, (e.g. , 'He) the k' expan-
sion is valid for T + T„but the expansion coeffi-
cients will inevitably show a strong temperature
dependence for T near T, .

Further scrutiny of Eq. (26) reveals an additional
interesting feature of y(k). Owing to the fact that
both e' and n" are positive, there is a finite tem-
perature To, below which y, (k) has its maximum
value occuring at some finite k, with this tem-
perature given by

T, =T e (27)

Thus, below T„ the system is more susceptible
to magnetic perturbations of finite wave number
than it is to uniform perturbations. In this re-
spect, the situation may appear to be "reminis-
cent" of a spin-density wave state' (Sec. IIIB be-
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~2Byg ~~EI2

5'l6v'h ' [1 —IP, (2&, 0)]' (28)

As might be expected, the higher-order contribu-
tions are reflected through an enhancement factor.
However, it is interesting to note the following
observations. While the inclusion of paramagnons
has a very significant effect in many properties, "
due to the usual Stoner enhancement, this is not
the case for the nonanalytic contribution of y(k)

low). However, it must be emphasized that the
present analysis is restricted to & «k„and con-
clusions concerning the region of k-2&~ are not to
be drawn.

What is the origin of this surprising nonanalytic
behavior of y(k)? Mathematically, a careful in-
spection of Appendix A reveals immediately that
the result is indePendent of the form of the inter-
action. It is strictly a consequence of the dynam-
ics arising from the creation of electron-hole
pairs around a sharP Fermi surface; the electron-
hole scattering events contributing to this sin-
gularity are those on opposite sides of the Fermi
surface. It is worth pointing out that an instability
toward a superconducting state, also independent
of the interaction and due to the sharpness of the
Fermi surface, has been noted by Kohn and Lut-
tinger" in the electron-electron scattering func-
tion. The peculiar analytic behavior at small k,
which we note is different in that if any instability
should be associated with it (certainly not demon-
strated by the above results), it would be towards
a nonparamagnetic state rather than a supercon-
ducting one. Let us now turn to the case of inter-
actions which are not weak. Certainly, contribu-
tions of higher orders in I have to be included in
the calculation of y(k). These will modify the coef-
ficient n" in Eq. (26) but we see no way there can
be cancellation of this term provided the Fermi
surface remains sharp. It would be interesting
to speculate on the effect of these higher-order
corrections on n". A common approach, in 'He,
for example, is to include those effects via the
virtual excitations of longitudinal and transverse
paramagnons. For the sake of brevity, we will
consider only the contribution of the longitudinal
paramagnons to lowest order shown in Fig. 2(a).
The transverse paramagnons [Fig. 2(b)] give
similar contributions. Straightforward calculation
of the k' coefficient contributed by Fig. 2(a) gives
Eq. (14) with I'P, replaced by I[1/(1 —IPO) —1]
where we have neglected the regular contributions
of the charge fluctuations associated with the longi-
tudinal paramagnons (t.e., I[1—1/(1+IP )]j.

Following the analysis of Sec. II and Appendix A,
we find that Z(k) has the structure given in Eq.
(26) with n" replaced by

i
]

L[ + ~L

I

hAf~

+

(b)

FIG. 2. (a) Lowest-order contributions to the sus-
ceptibility, due to virtual excitation of a single longi-
tudinal paramagnon I.; the dashed line represents the
point interaction I; (b) the same as (a) for the transverse
paramagnons T; (c) the usual dynamically screened
Coulomb interaction (dashed line)—:4~e /q .

investigated here. The difference lies in the fact
that the Stoner enhancement [1 —IP, (0, 0)] ', is
very large since IPO(0, 0) is almost unity for 'He
or Pd while the "enhancement" factor in Eq. (28)
is [1 —IPO(2&z, 0)] = 2. This again emphasizes
that our second-order analysis is unlikely to be
drastically modified by higher-order corrections
in real systems.

Although our interest in this work is the mag-
netic susceptibility, an interesting observation
can be made of the charge-density response (or
screening) function. From Eqs. (6), (13), and (18),
it is clear that the singular terms which contribute
to y(k) cancel exactly in the charge-density re-
sponse function. We thus see that the screening
function (to second order in I) does not exhibit the
nonanalyticity of y(k) at small k in accord with
Ref. 9. Careful investigation of the higher order
paramagnon corrections discussed above leads to
the same conclusion.

The screening function is related to the energy
of a nonuniform density Fermion system ' "
while y(k) refers to the nonuniform magnetic Fermi
system"" " (see also below). If the system should
show any preference to nonuniformity (see above),
we expect it to prefer a magnetically ordered
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state. " It is thus important and consistent to have
these nonanalyticities cancel in the screening func-
tion.

B. Electron gas

where v(q) =4xe'/q2 and v, (q, () 2P, (q, () taking
accountofbothspins. Nextdefine V(q, ) ) =V(q, ( )
—v(q), since the dynamics of electron-hole scattering
first appears in V(q, $ ). We now replace in Eq.
(14) the term 12PO(q, $ ) by V(q, g„). After some
algebra we get for n" in Eq. (26),

e ps I
288n4h 8k~3 (I+e'm/A22xk }

{80)

In addition to the singular contribution n", we
can also give the regular coefficient n' rigorously
in the HDL. Write n'=n, +n„'D and nHD=n, '„+n'„
where no is the I indhard contribution (Sec. II),
n,'„and n,' are the exchange and correlation con-
tributions, respectively, in the HDL. To get n,'„,
simply replace the wiggly line in Fig. 2(a) by the
bare Coulomb interaction. lt is given in Ref. 9
and is

o ' = V2 5I'e'/'l2 v 'k2 Ã 4

Some rearrangement of terms in Ref. 9 gives
o.,' as n,'=p s(b'+b~" —ba), where b' and b" are given
in Ref. 8 and 6,' in Ref. 9. Collecting terms yields

We next turn to a system whose interaction is
long range; the opposite extreme of the point in-
teraction considered above. With a finite-range
interaction, the terms in Fig. 1(c) make a con-
tribution and the simplicity of the point interaction
is lost F.or Coulomb interaction (I-4ve'/q )2,

further difficulties arise at small q. The latter
are removed, in the usual way, by always re-
placing these bare interactions by dynamically
screened ones [Fig. 2(c)].

A common set of graphs used for calculating the
susceptibility g(k) of systems with long-range
interactions are those in the random-phase approx-
imation. '6 ' Their lowest-order contributions
are given in Fig. 2(a} with the wiggly line replaced
by Fig. 2(c). (Note that there are no longer spin
preferences in the interaction and a usual multi-
plicative factor of 2 accounts automatically for the
'two splns. )

The lowest-order contributions in Fig. 2(a) rep-
resent rigorously the high-density limit (HDI. ) for
y$) of the electron gas. We thus confine our dis-
cussion for the HDL of the electron gas. The re-
quired analysis again closely follows that in Sec. II
and Appendix A.

Define V(q, $ ) as

V(q, &) = v(q)/[I+ v(q) v. (q, &)],

o.' =-v.'[0.0714/(2v)'] m'e'/O'h'. (32)

These results complete the rigorous evaluation of
both the regular and singular contributions to y(k),
of the electron gas, in the HDL and low tempera-
ture and long wavelength. The peculiar nonanaly-
tical behavior of y(k) at small k, is thus also pres-
ent in the spin susceptibility of the electron gas.

We observe that again, due to the sign of n",
for low T, the spin susceptibility reaches a maxi-
mum at some finite k for T T,. It is instructive
to estimate this I'o. Using Eq. (27) and the above
results, we get T~/Tz -10 400 for rz ——1. The de-
gree of preference, in the electron gas, towards
a state with "anomalous" spin correlations of finite
k is clearly an academic one as regards practical
realizable systems.

The mathematical origin of the singular struc-
ture of y$) for the electron gas is identical to
that for the short-range case. At this juncture,
we wish to speculate on its physical origin. The
tendency of a system to be more susceptible to
magnetic perturbations of finite k may be sugges-
tive of spin-density waves. These are known to exist
in the ground state of the electron gas within the
Hartree-Fock approximation. " The addition of
correlation is known to strongly inhibit (and likely
remove" ")the instability of the paramagnetic state.

The singular behavior of y, (k) at small k and at
very low temperature shows that even with corre-
lation included, the ground state of the electron
gas still reflects "anomalous" correlations. How-
ever, it must be emphasized that the present
analysis makes no prediction about the position or
magnitude of the maximum, at finite k, of y(k). If
this maximum should develop into a singularity,
one could anticipate that, with decreasing tem-
perature, a transition to a nonparamagnetic state
might occur for the fully correlated electron gas.
Further discussion of this point would be specula-
tive and is beyond the scope of the present work.

In any event, even at temperatures where y(k)
is a decreasing function at small k, the structure
of Z(k) has important consequences both for funda-
mental reasons and practical ones, since vigorous-
ly the commonly assumed power expansions of y(k)
are invalid. We finally note that, as in the point-
interaction case, the screening function can be
shown not to exhibit these nonanaliticies at small k.

We conclude by choosing an example to demon-
strate some implications of the above results.
Consider a system with large density variation
(e.g. , a surface of metal} to which we apply a weak
magnetic field H(r). From the extension of the
functional density formalism to a paramagnetic
system in the presence of a magnetic field, the
energy of the system is given by"
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z = [v (r) n(F) —H(F)m(F)] dr

AH'(n r )+BH' n r Vm r dr. (36)

Using Eqs. (26), (31), and (32), the expansion of
Eq. (35) at small k is given by

'k' e'n -7 —0.0714x 9
JL'~ k'

k4
-

72

n(r) n(F'),
(r —r'

where G[N, m] is a universal functional of the den-
sity n(F) and the magnetization m(F) and the correct
m(F), n(F) make Eq. (33) a minimum. In Eq. (33),
v(r) is some external potential coupling only to the
density. For small H(F), expand G[n, m] in the
form

G[«, [=G[ [+-,' f !«r «)«' G(, '; )™() ( '),

(34}

where G[n] is the kinetic and exchange-correlation
functional in the absence of H(F}. The exchange-
correlation contribution has been successfully
approximated by a gradient expansion of n(F)„8'9 "
We can similarly split G(r, r'; n) into the kinetic
contribution Gs (r, r'; n) and exchange-correlation
G„, (F, F';n) Gs(r. , F';n) can, in principle, be
handled exactly. As in the case of G[n], the funda-
mental problem resides in G„,(r, F';n}. Taking
the limit of a uniform density, i.e., G„,(r, r', n(F))
=G„,(r —r', n, ), G„, is given by

G„, (k, ,) =1/X(k) —1/X, (k), (35)

where G„,(k, no} is the Fourier transfer of G„,(r
—r', n, ) and X,(k) is the susceptibility of noninter-
acting electrons. Following the gradient expansion
of n(F), we attempt to approximate the exchange
and correlation part of the second term in Eq. (3)
by

B"„'(n)= (e's/[)~~kz)+ (-7- 0 Q714x g) . (36)

In addition, we have to include the logarithmic
contribution separately in Eq. (37). It is interest-
ing to estimate the magnitude of this term for
reasonable temperatures. Setting 'I' =1 'K and
r, =1, and using Eq. (30), we find it to make a
correction of only 5/0 to Bs'(n(F)}; at T =100'K,
the correction is =2.5%. The gradient expansion
in m(r) is thus not rigorous but it is adequate
(to within =5%) for applications to problems at
reasonable temperatures.

In conclusion, we have rigorously demonstrated
that the expansion in powers of k' of the wave-
number-dependent susceptibility x(k) develops
nonanalytical structure at sufficiently low tem-
perature and that X(k) attains its maximum value
at finite k. These facts contradict previously as-
sumed behavior of x(k), based on approximate cal-
culations and they have several important implica-
tions (both in principle and for practical calcula-
tions) for the treatment of low-temperature many-
fermion systems.

APPENDIX A

In this appendix, we provide some details of the
evaluation of the singular contributions to b

[see Eq. (17)] in the low-temperature limit. We
shall first describe the derivation of Eq. (21) from
Eq. (20) which we rewrite

(A1)

where n" is given in Eq. (30). Comparison of Eqs.
(36) and (37) shows that, unlike the gradient expan-
sion of the G[n] for the density response, the
logarithmic term in Eq. (37) makes such a rigorous
expansion in m(F) impossible. Infact, B"„'(n(F)) in
Eq. (36) includes only the first term in Eq. (37),

@4~4
+ 2k2 + ln -y + k2Pl F 0

(37)
where

A(q, $)= » dPPf'(e~) ln e, + +( —ln e, — +$
m (A2)

At low T, the integrand of Eq. (A2) is sharply peaked at p =&~ and suggests that we introduce the simplify-
ing approximation of replacing h pq/m by (q/k~)e~+h v~q which correctly reproduces the integrand of Eq.
(A2), and its derivative with respect to P, at P =k~. We may then integrate over e~ and extend the lower
limit to -~ with negligible error. This defines the approximant

m2 oo

4(q, «)-x(«), ()= ™„, d«, f'( )E )n, ~ (« I«q)

Bl 1
(A3)



D. J. %. GKLDART AND M. RASOL'F

where $ is taken to be in the upper half of the com-
plex E plane. The integral may be evaluated in
terms of the diagamma function g(z) =(d/dz) tnl'(z),
where I'(z) is the usual gamma function, by defor-
ming the contour to enclose only poles of the Fermi
function in the complex c~ plane. Taking care w'ith

convergence questions, we find

A(q, ()=- 4,&, P (+)((~ ~ . t,), (A4)

where Z, =~, +@~„g+$. It is important to note that
A(q, $) and similar quantities which enter are regu-

lar functions of Z+ for T &0. The virtue of having
explicit forms, such as Eq. (A4), is that required
limiting cases when either or both of Z, or &~T
are small can be treated. For this purpose, Eq.
(At) may be replaced by

BP„(q, $} m g, pkp
8p 0

23' 5 Q' p 2FSQ

(A6)

These methods also provide a suitable approxi-
mant to the sums over repeated propagators which
appear in &"'. From Eq. (17), we require

8
d (q, 5)-=trpg&pgp. q(K. +&) e, g p(K. )

f"'(&p) 3f"(&p) 6f'(&p) f(&p) —f (&p+~)
e- - —e-+g (e- - —e-+g)' (e- - —e-+g)' (e- —e-+g)'p+q p p+q p p+q p p+q I

It is important to note that the integrand of Eq.
(A6) is not singular, even for ) =0 and e-,-„-&-,
for T 4 0, so the g =0 point can be isolated (and

has zero weight) in sums such as

tr&&, (5)=P ' g F&(4}

+P 'Q[&r(k ) +Fr(-& )]
J3 ~g ™

(A7)

Consequently, we require only &(q, 5) =& (q, ()+c.c.

for $ on the positive imaginary axis. The contribu-
tions to &(q, t'} which are dominant for q = 2k+ and
T«T~ arise from the first three terms in Eq.
(A6). Integrating over angles and using Eq. (A2},
we find the singular contributions to be given by

&~(q, () =2p, ,Re, +3 +3, A(q, f.).8 8 8

8 jJ. 8 $8/. 8E

(As)

Using Eq. (A4), the approximant to &~ (q, P) is then
given by

(A9)

C, (q, 8,) =+(m/k'kp')(v, —3 wq/k~) (A10)

d, ((I, g) = w[v', + (3 +2q/k~) v, +3(l +q/kz) +q'/k„'],
(A11)

with v, = (m/k'k2p)Z, . It can be verified that all of
the above results correctly reproduce the zero
temperature results [the regular terms not written
explicitly in Eq. (AB) can also be included] on

making use of asymptotic expansions of the poly-
gamma functions such as (t)(Z)-tnt + ' and
0'(&)-I/2+ "«r l~l-"

Using the above results, we can now evaluate
&~ at low 7. The singular contributions to Eq. (17)
arise from the vicinity of q =2&~ as can be anti-
cipated from the structure of Eqs. (A5) and (A9).
Collecting various factors, we have

k,"= (m~k2 I2/676~'k '}K,", (A12)

E,"=He dq dpe, P C, 24~0 . g' y, +d, 2k~0 . g" y, (A13)

The asterisk indicates that the g integration is
limited to lq —2kpl ~ qc where qc/kp is small but
finite and independent of temperature. Notation has
been condensed slightly by defining ( = sQ,

y, = ~ +IS(e, + hv~q)/4xi +PQ/4&,

and O, ($) =Re[/(y, )- Ip(y )]. We have set q =2k+
and ( =0 at various points [e.g. , in the coefficients
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2P-'P r, (g )- —dyI, (i y).1

p

(A14)

This is a well-known procedure' in cases where
limFr(i(t)) as T —0 is regular for all (t) or develops,
at most, a simple pole as a function of P. In the

C, (q, $) and d, (q, $)] where there is manifestly no

singular behavior. Also, we have indicated an
explicit procedure for the evaluation, at low T,
of sums such as Eq. (At) in cases where Er(t) does
not have a regular function of E as its T-0 limit.

case of present interest, higher order singularities
are developed at low T. However, Eq, (A14) is
still valid for determination of the leading singu-
larity Provided the T-0 limit is considered only
at an appropriate point &f«& integration over Q.
The importance of having constructed e&P~&«t rep-
resentations for the functions involved should not
be underestimated as it permits one to follow
through the above limiting procedure in detail.

Returning to Eq. (A13), we first integrate by
parts over Q to get

Iq"= qqg -C, (22, 0)8, (0)i I -+ . (e, *li q))+d, (2i, q)8, (0) — Req'(-, ~ . (e, eliv q))

pd p 8,'(qt)) C, (2k~, 0) Imp(y, ) —d, (2kr, 0) Re)i)'(y, )

The first term above is finite since Imp is bounded
(and an odd function of q —2kz) while O, (0) has only
an integrable logarithmic singularity for T- 0.
However, the second term above will have a large
contribution since

lim Ref' —,'+ (e, -hvzq) = 5(q -2k').
4m 4n2 ' ~ @v

(A18)

The corresponding quantity with &, —hv~ q replaced
by e, + kv~q has zero as its T -0 limit. Noting that

2PPp
O, (0),- 8 Re 0 2+ —(I'(2) r«r nPV8+' ' ',

(A17)

we find that the net contributions of the first two
(partially integrated) terms in Eq. (A15) is

(K~"), = (v/hvar) lnPi(, (A18)

Turning to the third term in Eq. (A15), we again
note that Im(c)(y, ) is bounded, so that its contribu-
tion is of order

qe

dq d 6' = dqO ~-6 0
p

which is finite since the final q integrand develops
only a logarithmic divergence for T -0. The same
conclusion applies to the d, (2k', 0) part of the
fourth term in Eq. (A15) since (P/4v)Ref'(y, ) is
also bounded for all $~0 and T. Thus the only
remaining contribution to consider is

0(II) f qq I 00 0 8eq (
0 0 )00080 0 ( 00) 2 (

82 liq) (A19)

where we have used the fact [see Eq. (All)] that
d (2k~, 0) =1 and have defined D,

' =8, +hvrq. The
above has been written in detail to permit easy
verification of the fact that, for T &0, the q inte-
grand (after integration over Q) is well defined even
for.q =2&„. Once again, for reasons given above,
the contribution from the term involving &', has no
singularity. On the other hand, the contribution
from the term involving the product of g' functions
with argument containing 4, has a delicate singu-
larity which may be appreciated by writing it in.

the form

(K~'), =-(v/2hvr) ln(Phv~kr/4r). (A21)

Combining Eqs. (A12), (A18), and (A21), we obtain

5 ' = (m'kryo'/1152v8h8) ln(p, ,/ksT)+const.

l

all temperature dependence has been isolated in the

upper limit of the S integration. Since this upper
limit is large and since the S integrand varies as
1/S for large S, Eq. (A20) can be evaluated by ele-
mentary means using the asymptotic form (C)'(Z)

-1/Z for ~Z~ -~, and we can readily obtain the
leading term

max
q)Q

(qq,'I), = 'J -'
02 J qi(0 2 (- -I 2))'...

p p

(A22)

(A20)

where S,„=phu„q/4v and variables of integration
have been scaled by PQ/4 tvand Ph —,/4v=S and

Finally, it should be pointed out that the above
methods may be applied to verify explicitly that
the terms dropped in the derivation of Eq. (A22)
are indeed finite for T-O.
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