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Surface contribution to the dynamic structure function of liquid He
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The liquid-He dynamic structure function S(q, co) at wave vector q and frequency co is calculated within the
framework of quantum hydrodynamics of an infinite "slab" of a viscousless, compressible fluid bounded by a
free, sharp surface of area A and by a wall at depth V/A, where V is the volume. A simple technique of
representing momentum sums to O(A/V) is presented. S(q, co) is thereby represented as S = Sb,k + S p+ Sphp + Spppn where Sbulk is the usual bulk contribution to S, and the last three terms are 0(A / V) corrections.
S„p is a coherent ripplon contribution which diverges in the long-wavelength limit; Sph",„ is a. 8 function at the
phonon frequency co = qc, where c is the sound speed; and S',"„;„is a broad incoherent function, which behaves
as co

' for co —) cc, and which has a square-root integrable divergence at a threshold of co = qpc, where qp is the
component of q parallel to the free surface. Both limiting forms of S',"h,„provide probes of the boundary
conditions at the wall. Relevant sum rules are discussed —both formal and explicit verifications of the f-sum
rule are presented; the static structure function S(q) is discussed; finally, a surface tension sum rule analogous
to the compressibility sum rule is given.

I. INTRODUCTION

One of the most exciting events in the course of
liquid-helium study has been the confirmation of
the existence of Landau' phonon rotons through
direct observation by neutron scattering. ' Similar
investigation of the excitations associated with
oscillations of a free surface (so called "rip-
plons"), initially proposed by Atkins' to describe
the experimental temperature dependence of the
surface tension, is as yet lacking. However, with
present-day advances in neutron-scattering tech-
nology, it appears likely that the relevant experi-
ment is at hand.

To date, the only calculation of the neutron-scat-
tering cross section for liquid He with surface is
that carried out by Saam in 1973.4 The calculation
is based on a quantum-hydrodynamic model, which
is expected to yield results applicable to liquid He
in the long-wavelength regime, as is the case with
the bulk system. Furthermore, within a distorted-
wave Born approximation, estimates are obtained
for excitation creation by incident neutrons grazing
the surface. The experimental advantage of such
an arrangement is simply that all volume-depen-
dent contributions to the scattering cross section
are eliminated, thereby minimizing the excitation
of (bulk) phonon modes. Even though surfa. ce and
bulk modes are widely separated energetically,
such an isolation of surface contributions is evi-
dently necessary for a successful scattering ex-
periment involving basically a single surface
bounding a large amount of bulk fluid. The main
drawback to such an experiment seems to be that
the statistics are so poor that much of the energy
dependence of the scattering cross section, and
therefore, knowledge of the dynamic behavior of

the surface, is lost.
An alternative procedure may be to scatter neu-

trons through a camposite of He films adsorbed,
for example, on grafoil. Such an arrangement
would provide both a small volume-to-surface
ratio, as well as a large scattering surface area.
Information lost due to the substrate and angular
spread of the film orientation is yet to be under-
stood.

One problem, however, with Saam's work is that
the f-sum rule is violated by the calculated struc-
ture function. Furthermore, boundary conditions
on the density fluctuations are specified only at a
single (free) surface, which gives rise to ambi-
guities in O(A/V) contributions to the neutron
scattering cross section.

A major result of the present paper is the calcu-
lation of a representation of the dynamic structure
function S(q, &u) which satisfies the f-sum rule.
Furthermore, a physical discussion of the smooth-
ing involved in calculating momentum sums to
O(A/V) in order to obtain such a representation is
given. Uncertainty broadening and the effects of
various boundary conditions are considered. Fi-
nally, a variety of useful techniques and results
for calculational simplification are presented:
(i) use of current current response functions, (ii)
introduction of a convenient scalar product useful
for the discussion of completeness and commuta-
tion relations, and (iii) discussion of the impor-
tant sum rules, including the introduction of a new
sum rule which has the same relation to the sur-
face tension that the compressibility sum rule has
to the sound speed.

Explicitly, we have considered an infinite "slab"
of a compressible, viscousless liquid bounded by
one free surface and by a wall at a depth V/A,
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where V is the volume and A is the area of the
free surface. For simplicity, we calculate the
usual Born approximation to d'o/dgd&u, which is
related to S(q, e) via Van Hove's theorem' by

cPo Eo,q~
dg d(d 8% qg

Here dQ is a solid angle, N is the number of He
atoms, o, is the bound-atom scattering cross sec-
tion, and 5q,. and kq& are the initial and final neu-
tron momenta. We thus neglect the multiple scat-
tering effects important at grazing neutron inci-
dence, which have been adequately dealt with in
Saam's innovative paper. 4

We find that S(q, ur) may be represented as a sum
of the usual bulk contribution plus O(A. /V) terms
&S of the form

(1.2)

Here S„., is a 6 function peaked at the capillary
wave frequency with a factor which approaches
infinity in the long-wavelength limit, corresponding
to the divergence in the density of ripylon states
as the wave vector approaches zero. S,'„',"„ is an
O(A/V) coherent correction to the phonon 5-func-
tion peak at co = qc, where c is the sound speed.
Finally, S,"„'„is an incoherent broad background
extending from ~= qpc to (d ~, where q, is the
component of q parallel to the surface. Near
threshold &u = q~c, S,"„;,displays an (integrable)
square-root divergence, whereas for large fre-
quencies, S,'"„;, has an O(&u ') dependence on &u.

The divergences in both S„,and S,'"„,„, together
with the fact that they occur at frequencies below
the threshold [~= qc ( ~q, ~

& 0) ] for the usual bulk
phonon processes, may be important factors in the
experimental visibility of these contributions.

In Sec. II we present a description of classical
hydrodynamics of a viscousless, compressible
liquid with a free surface. State normalization and
completeness is expressed via a useful scalar
product peculiar to this system. Response func-
tions are also presented. Section III involves
quantization of the modes discussed in Sec. II.
In Sec. IV we evaluate S(q, &o) in terms of a cur-
rent-current response function by means of simple
techniques developed to represent momentum sums
to O(A/V). Finally, in Sec. V, the various sum
rules are discussed.

II. CLASSICAL HYDRODYNAMICS

A. Equations of motion

We first give an account of classical hydro-
dynamics of a compressible, viscousless, ir-
rotational fluid with a free surface. Specifically
we assume that the liquid lies between a wall at

z= L-and a free surface at z=t(p, t) =0. The
system is unbounded in p directions (pa, rallel to
the equilibrium free surfa. ce). Assuming that the
number density n(x, t) undergoes sharp discon-
tinuities at the boundaries we may write n in the
form,

n(x, t) = n„„,(x, t) 6(z+ L) e(g(p, t) —z),
where n„„is a continuous function of x. Ex-
pres»ng neont as

n„„(x,t) =n, + 6n„„,(x, t),

(2.1)

(2.2)

where no is the (constant) bulk density, and linear-
izing in 6n„„and g, n may be expressed as

n(x, t) = [no+ 5n„„,(x, t)]6(z+L) 6(-z)

+n, g(p, t) 5(z).

The density n satisfies a continuity equation

&n—+V J=0,
Bt

(2.3)

(2.4)

where the (number) current J(x, t) is given in
terms of the velocity v(x, t) by

J=nv.

In linearized form we have

I=n,e(z+L) e(-z) Vy(x, t),

(2.5)

(2.6)

where P is the velocity potential related to v by

neon t
at
""'+n06) =0, -L & z & 0, (2.8)

8$ 9$———=0 x=0
Bg 8$

(2 8)

=0, ~= I. .8$
az

(2.10)

The linearized Navier-Stokes equations for the
Quid of particles in an external potential U(X, t)

(per particle mass m) may be expressed as

n0~ (II)c'6n + ' =-n U -L&z&0.cont eg 0 (2.11)

Finally we have a boundary condition at z = 0 ex-
pressing Laplace's' relation of the pressure just
inside the free surface to the curvature of the sur-
face [the pressure at z& f(p, t) is equal to zero]:

mc'&n„„= -o4,g, z = 0, (2.12)

where o is the surface tension.
Equations (2.8)-(2.12) are a complete set of

equations determining n and fII). They may be suc-

(2.7)

Linearization of the continuity equation [Eq. (2.4)]
leads to
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L=-H-H, „,— d xmn— (2.13)

where the energies H and H,„, are

H d3& 0 + cont 8 8 68+Lmn v2 mc'Gn2

2 2n

ovg v, g 5(z}
+ (2.14)

cinctly expressed in terms of a Lagrangian L: ization, and completeness relations which the
above state functions satisfy. We have found it
convenient to introduce a singular weight function
p, , (z) defined by

P

p., (z) = e(-z+L) e(-z)+(p, c'/ok', )5(z). (2.23)

Then, as is shown in the Appendix, the functions
E, (z) and

P

(
Z/2

sin(k, z+ y)— y/

H,„t= d xnm U. (2.15) are orthogonal and normalized to unity under the
seals. r product defined for functions f, and f, as

(Variations are carried out with respect to 5n„„„
P, and) ). &filf2)=- dzf (z)f.(z) t4 (z).

P
(2.24)

P = e'"4'~ ' "sin(k z+ y) (2.16)

where the boundary conditions [Eqs. (2.9) and

(2.12)] are satisfied by

y = tan '(o'k, k', /poc'k'), (2.17)

and the boundary condition [Eq. (2.10) ] is fulfilled
by requiring that k, satisfy the transcendental
equation,

B. Homogeneous solutions

We now list the homogeneous (U= 0) solutions of
Eqs. (2.8}-(2.12). The equations admit two types
of solutions, corresponding to (i) sound waves re-
flecting between z= Land z-=0 and to (ii) capil-
lary waves localized near x=0. As is easily veri-
fied by direct substitution into Eqs. (2.8)-(2.12),
the sound waves with wave vector (k„k,) are of
the form

Furthermore, the completeness relation is ex-
pressed by the statement that the sum 5„(z,z')

P
given by

5, (z, z') = Z, (z) Z, (z')

5(z, z') -=5„(z,z') p, , (z'), (2.26)

it is possible to show (see Appendix) that if f(z) is
a continuous function on the interval -L ~ z ~ 0,
and if F(z) is given by

+g sin(k, z + y) sin(k, z' + y)
L —dy/dk,

(2.25)

makes up a 5 function for the scalar product [Eq.
(2.24) ]. More precisely, defining

kg y=(j+-,')z, j=0, 1, 2, . . . (2.18) F(z) —= dz' 5(z, z') f(z'},
~ Oo

(2.27)

y, =exp(ik, p-i(o„ t)E, (z),
where

(2.19)

(po=mno and k'= k', +k',). For k, »L ' the capillary
waves are given by

then for L&z& 0, F(z)-=f(z) and is continuous
at z = 0 and z = -L, which is necessary for the con-
struction of useful Green's functions. Further-
more, it is possible to show that

k2 2 -1 /2
E4(z)=

2
'2 +

2p0(d~ 0'kp
P

Ok' ' '~' Ok'k'+ 2pc' 2pc' '
Poc 0

eK82

-k, (k, -0),
= C2(k2 —K2)

A'p p 8

= (o/p, )k',z, ,

—o'k4/c'+ (o4+'c4+ 4p,'o'k', )"'
2p0

—(o/p, )k', (k, —0).

(2.20)

(2.21a)

(2.21b)

(2.22a)

(2.22b)

(2.22c)

(2.22d)

Gn =—n n, e(z+ L) e(-z), - (2.29)

Eqs. (2.3) and (2.12) easily give for k, -Fourier
components

e( z) e(z+ I,) 5(z, z') = e(-z) e(z+ I,) 5(z —z'),

(2.28a)

8 8e(-z) e(z+ L} &(z, z') = e(—z) e(z+ L) —-5(z —z') .
ez ez

(2.28b)

We finally remark as to the physical origin of
the seemingly strange scalar product [Eq. (2.24) ].
Defining the density fluctuation 5n as

We now discuss the orthogonalization, normal- cont %con (2.30)
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Thus the orthogonality relations given above are
seen to be simply a statement of the orthogonality
of 5n-„,„and (tt}-„

daven; „y-„„,=0, (2.31)

for unequal frequencies co and co'. The relation
[E(I. (2.31}]is expected to hold generally, e.gk2

for more reasonable systems in which the (e(luilib-
rium) density varies smoothly through the surfa. ce
region at z =0. (For an interesting attempt at an
approximation to such a system see Edwards,
Eckhart, and Gasparini, 1974.') (See also Ref. 8.)

C. Green's functions

(2.32a)

(2.32b)

and which also solves

O„G (x, x') = 6"'(p —p') 6(z, z') 5(t —t') .

We obtain

(2.33)

Making use of the completeness relations given
above we can construct a retarded Green's func-
tion G"(x,x') which satisfies the velocity potential
boundary conditions obtained from E(ls. (2.9),
(2.10), (2.12),

C2
t„G&(x,x)=0, z=O,

Bg ~ cr

RGz(x, x') =0, z= I, -

dk, dts; .y-ky; t. & ( )
E() dt, ') ~ 2 s' (k, y)s' (k, '

y))

(2.34}

2;..(*)= f d'*' —.—„&'i*,*') (2*'),

2 ',;„',t*)= d'*' ——',) k„d (*,s') U( '),

(2.35)

The various functions induced by an external po-
tential m U(x) a.re then given by

Note that the properties of 5(z, z') as regards con
tinuity (discussed in Sec. II B) ensures that the in-
tegral reproduction of U(x) in E(I. (2.11) is continu
ous at the boundaries. This is vital as otherwise
an infinite fictitious force appears at z = 0 or z
= -L.

With Dn,.„d given by

g,„,(p, t}= d'x' —,—, G"(x,x') U(x')
t2'=0

(2.36)

(2.37)

6n,„=8(-z) 8(z+ I ) 6n,'",„",+ n &„6(z), (2.38)

the density-density response function D"(x,x')
takes on the symmetric form

nR/ P't 0 p if( (H')-it(&(t-t')I ( 277)

*
, d.(*)d.(*') s 2 k*s' (k. y)s' (k.*'+y))

c' (z+i)I)' —(d', ~ I. —dyldtt, ((d+iq)' —k'c' (2.39)

The induced density is then given by

5n,.„,=8 ' d'x' Dn(x, x') mU(x') . (2.40)

III. QUANTIZATION OF THE HYDRODYNAMIC MODES

We now construct a quantum hydrodynamic theo-
ry corresponding to the classical system consid-

ered in Sec. II. The results are similar to those
obtained independently by Saam, ' except that here
we have a boundary condition specified at z = -L
in order to obtain a well-defined accounting of the
photon modes.

The simplest approach to quantization is to ex-
pand the operators ~n and P in terms of the state
functions given in Sec. II as

en,
6n(x, t) = ' g e'~d'" p. k (z) ' Ek (z) [rI exp(-i(d„ t)+r~- exp(ink t))

P

1/2

kg

(3.1)
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j./2 - &/2

)t)(x, t) = -i E, (z) [r1 exp(-iur„ t) —r~1 exp(i~, t)]mng „2ary p
kP

P

-X/2

'&(i d/db) (3.2)

[rf r1 ]= 61 k
p p p P

(3.3a)

[bn„„,(x, t) may be obtained from the expression
(3.1) for bn(x, t) by replacing p)),(z) —1)]. If the
operators x~ and b~ obey the commutation rela-
tions,

S(q, ~) = d'x d'x'e "'~ "'
2m%

dte '"' 0 &n x' 6n x, t 0,
(4.la)

[b-„, b&~, ] = 5f&, (all others vanish), (3.3b) dte ' '(Olbn(q} bn'(q, t) l0&,

then direct evaluation yields

[)t)(x),n(x')] = (tf/im) 5"'(p —p') 6(z, z') . (3 4)

(4.1b)

g 5(QP —E„/k) l(o.'l bn~(q) lo)l, (4.1c)

Equation (2.28) then implies that

[J(x),n(x')] = (8'/im)n(x) V„b'3)(x —x') . (3.5)

H= Qhkcbgbf, +Q tt&u, r„r-„.- (3.6)

Finally, the retarded density-density response
function defined by

Furthermore, substitution into Eq. (2.14) gives
H up to a c number as

where the sum runs over all excited states
l
o&

with energy E (above the ground-state energy).
(Operators expressed in terms of q will denote
Fourier transforms throughout this section. ) We
have found that the calculation is considerably
simplified by expressing S(q, e) in terms of cur-
rent operators. This is basically due to the sim-
plicity of the operator J [Eq. (2.6)] as compared
to the density n [Eq. (2.3)]. Two integrations of
Eq. (4.lb) by parts and use of the continuity equa-
tion [Eq. (2.4)] directly yield S(q, &o) in the form

iD (x,x') —= (0
l [n(x), n(x')]

l
0)e(t —t'), (3.7)

s(t), )=,f et ' '(o)q i(t))q. it(q t))0),
where

l 0) designates the ground state, is found to
be identical to Eq. (2.39).

Note that unlike the usual situation in the bulk
system, "the operators ft) and n are not canonical
conjugates over the entire space, since 6(z, z')
does not behave as 5(z —z') everywhere (even for
z infinitesimally outside of the interval I. & z & 0), -
nevertheless the fundamental relation [Eq. (3.5)]
obtains. In fact the operators ft) and 6n„„are not
uniquely defined for all z, since the equations of
motion apply only for -L & z & 0. However, the
various representations are expected to be equiva-
lent as regards physically observable quantities,
and the above representation is chosen primarily
for its simplicity.

(4.2a)

, g 5((u —E„/b}l(n lq J (q)lo&l'.

(4.2b)

(4.3a)

Ik& = br' l
0& (4.3b)

Since the operator J in the quantum hydrodynamic
model (Sec. III) is linear in the creation and anni
hilation operators, only single-excitation states
contribute to the sum in Eq. (4.2b). Thus the sig
nificant states of ( l o&) are

l k,) for ripplons and

lk) for phonons:

lk,&=,' lo&,

IV. CALCULATION OF $(q,~)

We now obtain a representation for S(q, m) to
O(A/I)'). S(q, ur) may be expressed4 in terms of
ground-state expectation values of density opera-
tors as

A. S„&(q,w)

Calculation of the ripplon contribution S„,(q, u)
to S(q, u) is nearly trivial. Equations (2.6) and
(3.2) determine the matrix element,
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1, /g
(0)it) i(t))) &.) = - () ~ '

P

x d'xe ""E (z)
Op

V 2Hz(d (q~+K~)[q~+(0'@2poc ) ]

x 5(()) —((), ), (4.5)

where z, = z,(q,) and &(),, are given in E(ls. (2.21)
and (2.22).

For q, «p, c'/o (the "incompressibility limit, "
corresponding to c-~), S„,((l, (0) becomes inde-
pendent of q, and we obtain the j,mportant, simple
limiting expression:

V 2m+,
(4.6)

x [i(l k + q,z,(k,)]e' ) ',
(4 4)

where the z integration is from z = -I, to z = 0,
Carrying out the indicated integrations and sub-
stituting Eq. (4.4) into Etl. (4.2b) leads directly to

j.
I -dy/dk, v

We emphasize that thj.s procedure yields an aver-
aged representation of S „„(tl,~) to O(A/ V),
rather than a strict "thermodynamic limit" of the
function,

E(luations (2.6) and (3.2) determine the matrix
element,

(4.7)

than in the ripplon case, as we now have a trouble-
some sum (over k,) to contend with . Furthermore

S,„„(j,&o) contains O(1/L) oscillations in the vari-
able q, which are probably physically uninteresting.
Finally, at fixed (l„S,„„(q,&o) is nonzero only for
z equal to one or another of the discrete frequen-
cies corresponding to the modes delineated by Eq.
(2.18). This discreteness is again uninteresting
from an experimental point of view. Thus, in
order to obtain a reasonable form for S,„,„we
average out the q, oscillations by representing the
summands (to appear) in terms of 5 functions and

principal-value function of q, . Finally, the dis-
crete dependence of S,„,„((l, &u) upon v is smoothed
out by replacing

Note that the factor of the 6 function in E(l. (4.6)
diverges as q,

' ' as q, -0, corresponding to the
long-wavelength infinity in the density of ripplon
states.

8. s»~{q,w)

Determination of the O(g/V) phonon contribution
S,„„((l,ar) to S((l, ~) is considerably more difficult

x d'xe ""[ij,k, sin(k, z+y)

+ q,k, cos(k,z+y) ]e'"~'.
(4.8)

parrying out the simple p integration and sub-
stituting into E(l. (4.2b) gives

kc' 5(e —ke)
S,h,„((l)~) =L, L d /dk

dze ""[iq',sin(k, z +)y+q kco ( s, kzy+)]Leam ~ I, -dy dA,

where k is given by

k'= q', + k', .
Integrating over z we obtain after minor rearrangement

S,h..((l, ~) = „3 „„[(q,'+ q.k,)'a'(q. —k.) +(q', - q.k.)'a'(q, + k.)
ac' &((o —kc)

+(-q +q', k', )4(q, —k,)n(q +k,)2cos(Lk, —2y)],

(4.9)

(4.10)

(4.11)

where n(Q) is defined by

h(Q) = (-sinQL)/Q . (4.12)

We now smooth the O(1/L) q, oscillations by
representing the products of 6 functions in Eq.
(4.11) in terms of & functions and principal-value
functions of q, . n'(q, —k,) is given by

(a~(q —k ) = -g(e "~~ 4'z —2+ e "oe)~'~)/()q —k )'

(4.13)

f

This function is sharply peaked at q, = k„whereas
for [q, —k, [»1/L, is given by 1/[2(q, —k,)']
(averaging over the q, oscillations). Thus we rep-
resent a'(q, —k,) as

a'(q, —k,) = &Lv5(q, —k,)+ [2(q, —k,)'] ', (4.14)

where the second term is a double-pole principal-
value function which satisfies
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f
+eo

dqg
( ~ )

2
= 0 ~ (4.15) „,

( )
4 Sq', e((o'/c' —q', )

~hon q~ V smcaq2 (~a/c2 2)i'pa ~

The coefficient factor of the 5 function in Eq. (4.14)
is determined by integrating Eq. (4.13}over
-~&q, &+~. Similarly, A{q, -k,)A(q, +k,) is rep-
resented by

Furthermore, at large +,

inc zA Neq
V' mm{d' (4.24)

A{q, —k,)A(q, + k,) = — ' [0(q, —k,) + 0(q, + }t,) ]

cosL}t,
2(q, —k,)(q, + k,) '

which is consistent with Eq. (4.14) in the limit
k, -0. This function [Eq. (4.16)] as appearing in
the sum [Eq. (4.11)] is considerably simplified,
since application of the boundary condition [Eq.
(2.18)] yields

A(q, —k,)A(q, +k,)2cos(f,k, —2y)

[5(q, —k,) + 0(q, + k,) ]

sin'y
x cos+ sing —

( )( ~ )
. (4.1/)

Finally, the replacement [Eq. (4.7)] is made,
smoothing out the discrete dependence of S,„„(q,&u)

upon +. The integral over k, is now easily carried
out, and after considerable algebraic rearrange-
ment S,„„(q,&o) is obtained in the simple form:

(4.13)

where Sb„» is the usual

S,„,„=(h'q/2mc) 5((u —qc) . (4.19)

The O(A/V) contributions to S,„„(q,&o) consist of
coherent (5 function) and incoherent parts given by

which implies that the second &o moment of S(q, &u)

does not exist within this model. Both limiting
forms [Eqs. (4.23} and (4.24)] are manifestations
of the existence of R wall at z = -I.. This can be
seen most easily by letting 0- ~ in Eq. (4.21),
which replaces the free surface at z =0 by a (sec-
ond) wall. In this case the a&- q,c and ~- ~ limits
of S,"„;„areequal to the expressions in Eqs. (4.23)
and (4.24) multiplied by a factor of 2. These con-
siderations lead to a simple separation of S,'"„'„as

inc inc incS „,„=S q, +Sf„,, (4.21'a)

where S ~)i Rnd S~ Rre contrlbutlons due to the
boundary conditions at z = -I. Rnd z = 0, respective-
ly, and are given by

h&u'q', 8(k,) (4.21'b)
V vmc'k, ((o'/c' —q')' '

A hto'0, q'+ (oq,q,'/p, c')' 6(k,)
V smc~ e'/c'+ (ok,q',/p, c')' (&u'/c' —q')' '

(4.21'c)

Note that the dlvex'gences Rt (d = Qc in S h „Rl"e
only apparent as they occur in principal-value
functions and are simply a reflection of the O(1/1.)
"uncertainty broadening" of S(q, ru) vs q, . This
corresponds to a width A&v =0(q,c/qf, }in S(q, ~) at

V 2mc q'+ ( q~c',lp,c')'

{4.20)

inc
V vmc'i

(4.21)

2q2 qs~a/cs
((u'/c' —q') [a '/c'+ (ck,q', /p, c') ']

2q „,)e(a,),((d C —q}

O

4O

Ct'

l 5o

3
&cr

CO

where k, is given here by

0,= (u'/c' —q',)"'. (4.22)

0
0 IO 15

S"„',„ is plotted as a function of + in Fig. 1 for
q

—0 3 A i
q

—0 4 A ' and depth I.= V/A = 50 A
Note that near the threshold at co= q,c (which

lies below the coherent phonon threshold at &a= qc),
S';h;, manifests a divergent (though integrable) be-
havior:

FIG. 1. 8(j, a&) as a function of ru at q~= 0.3 A ~, q~
=0.4 A, and depth L=V/2 =50 A. Line at 8~=1.94 K
represents the ripplon 5 function contribution 8~a(q, cg).
Divergence in S(g, {d) at I{d=l'q~c=5.41 K, the tail at
large ~, and the shoulders of the "uncertainty broad-
ened" bulk phonon peak centered at I'{d =I'qc =9.01 K are
clearly indicated.
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fixed q. For a similar use of principal-value
functions in another context, see Ref. 11.

At this point, comparison with the work of
Saam4 9 is possible. Equations (34) and (36) of
Ref. 4 give S(q, ~) for a liquid of depth I. for scat-
tering in which the angle between the neutron beam
and free surface is not infinitesimal and for which
the present paper is applicable. As is easily seen,
S „"„(q,&u) is missing. This is possibly related to
the fact that the completeness relation published
in Ref. 9 [Eq. (25) ] is invalid for the important
regime z =z' = 0 [compare with Eq. (A19) of the
Appendix]. However, as calculational details a.re
omitted from Ref. 4, the error is difficult to pin-
point. Furthermore, as no boundary condition is
specified at depth L into the liquid, Saam's result
has no contribution analogous to Eq. (4.21'b). Both
of these omissions lead to a violation of the f-sum
rule as computed from Eqs. (34) and (36) of Ref. 5.
This fact, however, does not invalidate the small-
angle scattering results which constitute the main
import of Saam's paper.

since the 5 function contributions (in J,) at z = 0
and z= -L cancel. Thus, since

q J(q) = (1/k) [5n(q), H ],
we have

(5.3)

[ [5n(q), H], 6nt(q) ] = a'q9r/I . (5.4)

[ [5n(q), H], 5nt(q) ]

=&0&(&'~&|&&,H] E I )& I'"'&t&)

5n~(q) P (
n&(n [ [5n(q), H] (0)

= QE.[l«15 (q)lo&l "I( I5 (q)I0&l'], (55a&

But the commutator in Eq. (5.4) may a.iso be ex-
pressed as

= 2ks, (q), (5.5b)

V. SUM RULES

We now consider the interesting (d moments of
S(q, &0). A system of particles in an external field
interacting via two-body forces is known' to yield
the "f-sum rule" for S(q, &d),

by Eq. (4.1c), as the two sums in Eq. (5.5a) are
equal. Thus, Eqs. (5.5b) and (5.4) imply that the
f-sum rule [Eq. (5.1)] is satisfied.

We now explicitly prove that the representation
[Eqs. (4.5), (4.19)-(4.21)] satisfies Eq. (5.1). The
only nontrivial integral is S,'"„,,' given by

S,(q) -=

CO

Aq
d&0 (d S(q, M) = 2' ' (5.1)

S,":.'(q, ~&

It is important to prove that Eq. (5.1) is satisfied
by the quantum hydrodynamic model discussed in
this paper, as otherwise little confidence can be
placed in the results of Sec. IV. We first give a
very simple formal demonstration (along the lines
of a proof in Pines and Nozieres, ' 1966) that the
f-sum rule is satisfied by the quantum hydro-
dynamic model of a fluid with free surface. Sec-
ondly, we explicitly prove that the representation
of S(q, ~) in Eqs. (4.5), (4.19)-(4.21) satisfies the
f-sum rule

The forma. l proof is as follows. Equation (3.5)
immediately allows evaluation of the commutator,

C
P

d &a (u s,'"„;„(q,(u), (5.6)

h
1/' 27tm

[(k, + iq)' —&I,'][k'+ ( k,qo', /p, c')'] '

(5.7)

where k'=&I'+k', . The integrand of Eq. (5.7) has
two poles in the upper half plane given by the
zeros of

k'+ (ok,q', /p, c')' = (k, —iz,)(k, —iz, )

—[Z,(q), 5nt(q)] = d'x d'x' e "'""' 'n, e(-z) x(k, +xz,)(k, +iz,), (5.6)

=iq~N,

x e(z+ I.) 5"'(x —x'),
Bx~

(5.2a.)

(5.2b)

where Eq. (5.2b) follows upon integration by parts,

0'q2 2 1/2 Oq2
K = + P

c qP 2p c 2pc (5.9)

Completing the integral [Eq. (5.7)] in the upper
plane, the pole at k, =i K, contributes

where «,(q,) is the inverse capillary wave damping
length [Eq. (2.21)] and z, is defined by
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V2vm(-kg —qg)(-ioq', /p, c')(2ix, )2i[q', +(oq'/2p c')']"' V 4m ()('+ q') [q'+ (oq'/'2p c')']"'
(5.10)

(f(() (()[S„,(q, (()) i S,"„",„(q, (()) + S™„;„(q,&u)] = 0,
(5.12)

which leaves the f sum "exhausted" by Sb„,„(q, ~).
%'e now briefly discuss the static structure func-

tion S(q) given by

d~S(q, e) . (5.13)

Although a closed-form expression for S(q) at
arbitrary q may be obtained from the representa-
tion [Eqs. (4.5), (4.19)-(4.21)] for S(q, &()), the cal-
culation is quite tedious and is omitted here. How-
ever, for small q, (q, «p, c'/o), the ripplon branch
must dominate the O(A/V) contributions to S(q) in
order to satisfy the f-sum rule, since (A), «q,c.
Thus we have simply from Eqs. (4.6) and (4.19)

kq A 8'q,
2mc V 2m&v

qp

Note that the second term diverges as q, -0. [In
fact for depth f.= V/A = 50 A and q, = 0.1 A ' the

(5.14)

where the f sum S'„.,(q) from the ripplon branch is
easily found from Eq. (4.5). The integral about the
pole at k, = jx, is calculated similarly, and after an
amount of algebra it is found that

(5.11)

where the f-sum Sg,"„' is found from Eq. (4.20).
Thus we have for arbitrary q

ripplon contribution in Eq. (5.14) is of the same
order of magnitude as that from the bulk phonons
(see Fig. 2). ]

Finally, we remark that it is a simple matter
to obtain a long-wavelength "surface-tension sum
rule" analogous to the compressibility sum rule.
Equations (2.22) and (4.6) directly yield

d(o &u'~'S(q, (o) =———0 (q-0) . (5.15)
V 21 cr

(5.16)e2 = (o/p, )q', tanh(q, L) .

Thus for very low wavelengths (q, «I. '), the sum
rule [Eq. (5.15)] is replaced by

d(() (() S(q, (()) =——J A h po
t/'2m I.o

as Eq. (4.6) is still valid.

(5.17)

APPENDIX: ORTHONORMALIZATION AND

COMPLETENESS

The orthogonality of the state functions given
in Sec. II is easily proven as follows. I,et P, and

p, be two k, solutions with frequencies ur, and ~,.
Then since P, and P, satisfy the wave equation,
we have

Furthermore, (() moments of S(q, &o) for o. & —,
' di

verge in the long-wavelength limit. In particular,
the compressibility sum rule is violated at O(A/V).
Note that for q, comparable to I. ', v, ecomes
dependent upon I. in the form'0

4284 j.
Qg 8z ~ 0

0.3

q (4 ')

FIG. 2. Hipplon {solid curve) and bulk phonon {dashed
curve) contributions to the static structure function
S{q) vs@~ for @~=0.l A"~ at depth I =V/4=50 A.

(Al)

where the last equation follows from Eqs. (2.8),
(2.9), and (2.12). Thus, if (o, e (o„@,and y, are
orthogonal under the scalar product [Eq. (2.24)].

Normality is most easily proven by direct evalu-
ation. For the capillary waves we have

I~= 6LZpy ~ +0 ~ —+0 0 + 2

For the sound waves,
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I, —= dz p, ~ z) sin2 k,z+ y

1 poc' . , l dy=———sinycosy+ '-, sin'y= — L,
2 2k, okp 2 dk,

(A3)

We now produce a completeness relation for the
state functions given in Sec. II. Stxictly speaking,
we give a proof in the large-L, limit, although
generalization to finite I, with the appropriate
capillary wave states is evidently possible, albeit
complicated. We wish to evaluate the functions
5, (z, z') given by Eq. (2.25). For z and z' away

}o

from the wall at -L, , where the state functions
are wildly oscillating, the sum S over k, in Eq.
(2.25) may be directly replaced by an integral by
means of Eq. (2.18) which implies that

Diffexentiating I, with respect to $, we have for
z+z'&e, 0&& «1/z„and z, z' away from the
lower boundary

6, (z, z'}= 5(z —z') —5(z + z')

+ (2ok', /p, c')e(z+ z') . (A15)

For z and z' near -L, we must take the highly
oscillatory nature of the state functions into ac-
count before sums are approximated by integrals.
Transforming to

f = z+ I, g'= z'+I. ,

we have 8 in the form

(A16)

where ~, is the inverse capillary wave damping
length given in Eq. (2.21) and z, is given by

pk2 2 1/2 ok2
(A14)

so that we may replace
2

S=g d /d cosk, f cosk,f'. (A17)

2 2
dk .+ I. —dy/dk,

As sin(k, z+y) may be expressed as

sin(k +y) = »(BB*) 'i'(Be'»~'+B*e '»~')

ok &'8= ~ -ik'c',
po

8 is given by

(A5) Note that the functions cosk,f and cosk, f' are
smooth for g and f'=0, but are highly oscillatory
for f = f'=+I.. Replacing the sum by an integral
we have for z, z' = -L, ,

3= 5(z -z') + 5(z+ z'+ 2L,} .

The remaining region of (z, z') space may be con-
sidered similarly yielding the final, genexal result

5, (z, z') = 5(z —z') —5(z+ z') + 5{z+z'+ 2l.}
P

+ (2ok', /p, c')e(z+ z'), (A19)
S = 5(z z')+I, (A8)

+00

dk —g'z=2. . B
"' (A9)

+ I Qge 3kgg

dk 'B(k, —iq)
' (A12)

valuahon of I, by means of contour integration
yields

The singular integral I may be expressed as

I=—Id
d$

{All)

where -2I. —c&(z+z') &e.
We now show that 6»»(z|z ) ls a 5 function under

the scalar product [Eq. (2.24)] for continuous func-
tions f(z) defined in f —@&z(e. -For E(z} de-
fined by Eq. (2.27), we must show that E(z) =f(z),-I —c ~ z ~ c. For -L&z&0, the proof is trivial,
since only the first 6 function in &» (z, z') [Eq.
(A19)] contributes At z = .0 only the final terms
of both 5»,(z, z') [Eq. (A19)] and p», (z') [Eq. (2.23)]
contribute, thus

&(0) = (2ok', /p, c') e(0)(p,c'/ok'») f(0) =f(0) .
(A20}

At 0&z & &, the second and final terms of 5»,(z, z')
[Eq. (A19)] contribute and we have

F(z) = -f(-z)+(2ok', /p, c')e(z)(p, c'/ok', )f(0)

(ok', /p, c') e""
[(ok'/2p c')'+ k»»]"' '

[(ok', /2p, c')'+ k', ]"' '

(A13)

f( z) + 2f(0) -f(0) -as-z-0. (A21)

The lower boundary is handled similarly.
Equation (2.28) may be proven as follows. Equa-

tions (2.26), (2.23), and (A19) immediately give
5(z, z') in the simple useful form
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5(s, z') = 2(i(s) 8(z}+5(z —z') 8(-s') 8(z'+ L) —&(z+ z') 8(-z')+ &(s+ z'+ 2X,) 8(z'+1.}.

+ &(z'+z+ 2I) 8(a+I.) 8(z'+L)
2 (s) ~(s )

g( g) 8( }8( I) ( ) ( P )»~(&) ~(& )»&(s +Sr) &( s+L)

=8(-z) 8(a+I.) 5(s- z'), (2.28a)

ThQs ~

8(-z) 8(s+ ~) &(z, z'}= 28(s) 8(-s) &(z') + &(z z'-) 8( z)-8( ~'-) 8(~+L) 8(s'+ r, ) -8(-z) 8(-s') &(s+ s')

81DCe

1g
8'(-s)=8(-s) -'(-) .

Equation (2.28b) is obtained similarly.
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