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Spin-glass behavior from Mlgdal's recursion relations*

C. Jayaprakash, J. Chalupa, and Michael Wortis

(Received 29 July 1976)

The Edwards-Anderson model of a spin glass is studied by position-space renormalization-group techniques,

using an inhomogeneous generalization of Migdal s approximate recursion relation. We treat the spin-1/2

Ising model with independently random nearest-neighbor interactions in dimensionalities d = 2, 3, and 4. The
phase diagram, which is in qualitative agreement with mean-field results, exhibits paramagnetic, ferromagnetic,

antiferromagnetic, and spin-glass phases. The spin-glass and paramagnetic phases meet along an extended
second-order phase boundary, which terminates in two tricritical points. Critical and tricritical exponents are
calculated. The spin-glass specific-heat exponent turns out to be large and negative, compatibly with recent
experiments which show a rounded specific-heat anomaly.

I. INTRODUCTION

Edwards and Anderson' (EA) recently proposed
a simple, microscopic Hamiltonian model to de-
scribe the qualitative features of the experimental-
ly observed spin-glass transition, ' ' a cusped
susceptibility and a specific heat which appears
smoothly rounded. 4 This behavior is understand-
able as a spin-glass critical point with exponents
o.~o & —1 (specific heat) and yso &0 (ferromagnetic
susceptibility). The EA Hamiltonian consists of a
set of classical spins with random exchange cou-
pling, which we write, specialized to Ising spins
(V=+1),

—P3C= H[I,K'f, (hj]=-Q K(r, r') p(r) p(r')
(r, r'&

+ Q h(r) p(r),

where the sums run over the sites of a regular d-
dimensional lattice. Each exchange bond K and
magnetic field h is taken as an independently ran-
dom variable with assigned probability distribu-
tion P, (K) or P,(k), respectively. In calculations
below we shall specialize to nearest-neighbor cou-
pling only and

P, (K) =PS(K —K,)+ (1 P)5(K+K ), —

P, (k) =5(h —h, ).
The quenched random free energy per lattice site
of (1) is the thermodyna. mic limit of the averaged
partition function

f= Ijm& [In TreHt~r~~ ~"~~]

where N is the number of lattice sites and the
bracket [ ],„denotes the configurational average
f,.„~II dKP, (K) II dhP, (h). f depends on the

sites
functions P, and P, and is often conveniently re-
garded as a function of their cumulant moments, '

g„and p.„, respectively. Thus, p, , is the analog of
the pure-system magnetic field in that' Sf/S p, „
=[(p,(r))],„, while a derivative with respect to p, ,
generates the spin-glass order parameter' (see
below)

,'„=2[(u(r)') —( V (r))'].,
2

= -'{I—[(u (r)&'].,]
Mean-field"' (MF) and sphericalized" (SM)

versions of the EA model in a uniform magnetic
field have been solved exactly. A number of au-
thors" "have performed Monte Carlo calculations
for a Gaussian distribution of nearest-neighbor
(only) couplings K of zero mean (v, =0). Domb'4

has discussed our model (2) (restricted to p= —,') by
series methods. Finally, there have been two re-
normalization- group calculations: Harris, Luben-
sky, and Chen" developed the Landau-Wilson ana-
log of (1), found that it had a critical dimensionali-
ty at d* = 6, and performed an & expansion for the
critical exponents in 6 —E dimensions. Also, the
Ising chain spin-glass transition was studied" in an
exact transfer matrix formulation.

Phase diagrams are available from MF" and
SM" calculations, which take infinite-ranged in-
teractions of dominantly ferromagnetic sign (x,
&0). At h =0 there are three phases: paramag-
netic, for dominantly small K's [Ko small in our
model (2)]; ferromagnetic, for K's large and posi-
tive (K, large, p = 1); and spin-glass, for large
K's of mixed sign (K, la. rge, p- &). In the spin-
glass phase there are long-ranged correlations;
but, any individual spin is equally likely up or
down in the configuration average, so the usual
magnetization [(p(r))]„vanishes, while the quanti-
ty [(ij.(r))'], plays the role of an order parameter.
Each pair of phases meets along an extended phase
boundary; the three phase boundaries join at a tri-
critical point. "
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Critical behavior at the paramagnetic-to-spin-
glass phase boundary is of particular interest.
MF"' and SM" treatments show a cusped spe-
cific heat (corresponding to o.,o= —1). However,
Harris et al." find asG = —1 at d = 6 but nsG & —1 for
d &6. This latter would show up as a smoothly
rounded specific heat, as is indeed observed in the
Monte Carlo work" "for d =2, 3. The case of the
(uniform ferromagnetic) susceptibility )t~ is less
clear. Domb'4 proved that, provided the distribu-
tion of couplings is symmetrical P, (ff') = P,(- ff')

(i.e. , v,„„=0), the pa. ramagnetic (high-temperature)
is entirely nonsingular and exactly equal to its

value for uncoupled spins. " Extant calculations
are all consistent with this result. This high-
temperature behavior in conjunction with any low-
temperature behavior with ys~o &0 would certainly
produce a cusp. MF'"' and SM" results appear
to have a horizontal tangent on the low-tempera-
ture side of the transition (y~~ = —2?) but the Mon-
te Carlo" "data are more consistent with —1 ~y~~
&0. When couplings are not symmetrical,
Domb's" proof does not apply and one has only MF
and SM results to go on. It remains unclear
whether or not a non-mean-field treatment would
restore the symmetry of y~ about the transition.
Finally, all methods agree in predicting that a fi-
nite uniform magnetic field rounds the susceptibili-
ty cusp, so it appears that the spin-glass transi-
tion is magnetically unstable.

We carry out in Sec. II a position-space renor-
malization group treatment" "of the model (1),
(2) at k, = 0. To deal with a ra, ndom system"' "by
position-space methods one needs inhomogeneous
loca/ recursion relations"" for the couplings.
The quantity which transforms under the renor-
malization group is the joint distribution function
for the coupling strengths. " To make the calcula-
tion tractable we make two simplifying approxima-
tions: First, (a) we employ the inhomogeneous
generalization of Migdal's"" approximate recur-
sion relations. This approximation is certainly
crude and gives exceedingly poor values of the
pure-system critical exponents; however, it has
the great advantage of being analytically tractable
in all dimensionalities d. For a system with near-
est-neighbor interactions the Migdal recursion re-
lations have the additional important feature that,
if the initial coupling strengths are statistically
independent, then so are the renormalized coupling
strengths (see Fig. 1). Thus, the full, joint probability
distribution factorizes into a product over indi-
vidual bonds. Second, (b) we assume that the sin-
gle-bond coupling-strength distribution may at each
iteration be adequately parametrized by the two-
peaked form (2). This parametrization is always
exact at pure-system fixed points and it holds for

the spin-glass fixed point" in d=1. It has been
used with good numerical success in the d =2 di-
lution problem. ""Furthermore, the two vari-
ables p and K, suffice to parametrize the first two
moments of the K distribution (e, a.nd g,), which
serve to characterize the distributions used in
other treatments i, -i3

If these approximations are accepted, the re-
maining calculation is so simple that most of it
can be carried out analytically. Our principal re-
sults are the phase diagrams for d=2, 3, 4, dis-
played in Figs. 2-4. Our phase diagrams are quite
similar to the mean-field results mentioned above.
They extend the EA results symmetrically into a
regime of dominantly antiferromagnetic coupling
(g, &0, i.e., P &1/2), where an antiferromagnetic
phase and a new (para-antiferro-spin-glass) tri-
critical point appear. Table I gives exponents as-
sociated with the three independent critical fixed
points: pure-system, spin-glass, and tricritical.
While by no means quantitative, these results do
exhibit many qualitatively reasonable features,
such as a spin-glass specific-heat exponent n»
& —1. We hope that they will point the way to more
quantitative calculations in the physical dimension-
alities d =2, 3.

II. FORMULATION AND RESULTS

In an inhomogeneous system the value K, of each
individual local coupling must be regarded as an

K) ) K)p K)p
0 0 ~ ~

~ Kz ( Ka z ~ Kzs~

K~ ) K~~ K~~

FIG. l. Interactions which enter the Migdal recursion
relation (6) in d =2 with scale factor b =3. The heavy
dots represent lattice sites remaining after decimation.
The renormalized horizontal bond between the two
middle sites depends only on the labeled horizontal
bonds X& J, 1~i, j ~ 3. These bonds contribute to no
other renormalized bond in the Migdal approximation.
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FIG. 2. Phase diagram of the nearest-neighbor
Edwards-Anderson spin-glass model in d =2. P is the
fraction of ferromagnetic couplings. The inverse coupling
strength Kp ~ measures the temperature. Results from
two different renormalization-group approximations are
shown [n =1 and n =2, defined in (9)]. Phase boundaries
are shown as solid lines. Light dashed lines sketch some
representative renormalization-group trajectories. The
four phases are paramagnetic, ferromagnetic (&), anti-
ferromagnetic (A), and spin-glass. The phase bound-
aries are symmetric about p= 0.5 because of the sym-
metry of the model {2) [but the representative trajector-
ies are not drawn symmetrically]. Fixed points are in-
dicated as pure-system (P), spin-glass (SG), and tri-
critical (T).

independent variable. Under renormalization-
group iteration" "each new, renormalized local
coupling K', , is a function of the full set of variables
(K,) which we write

KI, = f,,[E]. (4)

In practice K', , only depends appreciably on those
couplings K, located on the lattice in the near vi-
cinity of K', In a quenched random system the
probability that the couplings (K, ) have a particular
set of values is described by a joint probability
distribution[I'[K]. By virtue of the local recursion
relations (4) the renormalized couplings are cor-
respondingly distributed according to"

4"[K']=JlldK, |P[K]llil(K,', f,[K]]—,

The fixed distributions [P* of (6) play the same role
for random systems that fixed Points play for pure
sys tems.

In this paper we adopt [approximation (a) of Sec.
I] the inhomogeneous generalization of a set of ap-
proximate recursion relations due to Migdal2' and
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FIG. 3. Phase diagram of the nearest-neighbor
Edwards-Anderson spin-glass model in d =3. Notation
follows that of Fig. 2. Flows near the tricritical points
(T) are unstable against perturbations of both P and

K p, Slopes of the phase boundaries are continuous across
T. Note that the breadth of the spin-glass phase appears
to decrease as d increases.

analyzed extensively by Kadanoff. " The Migdal
recursion relations are closely related to "decima-
tions"'o'" and preserve nearest-neighbor-only in-
teraction. (Henceforth we specialize to nearest-
neighbor interaction and zero magnetic field h,
=0.) For Ising-like models they are exact at d=1
and give'~the right O(e) corrections"' "for the pure
system in d = 1+&. The Migdal recursion relations
refer to a hypercubical lattice in d dimensions and
give renormalized nearest-neighbor couplings
which are eac11 dependent on 5" original couplings
according to

(6)

as illustrated in Fig. 1. b is the scale factor by
which the lattice spacing is increased at each iter-
ation. In calculation we have chosen" I] = 3 (odd! )
so as to maintain the symmetry between ferro-
magnetic and antiferromagnetic phases. '~ Note that
a coupling K' in a given direction depends only on
5' parallel" couplingsK. The single index / is here
replaced by the pair (i,j) i(1 &i &

b.
~ ') labels the

particular "string" of b end-to-end couplings K,
while the index j (1 &j & b) distinguishes the in-
dividual couplings along each string. Equation (6)
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TABLE I, Fixed points and critical exponents for dimensionalities d=2, 3, and 4. Results
from two different renormalization-group approximations are shown [n= 1 and n=2, defined
in (9)]. Exact and series-based results for the pure system are shown by way of comparison.
The exponent eigenvalues y& and y& are defined by Eq. {10). y& is related to the specific-
heat exponent & by 2 —&=d/y&. When y&&0, it determines a crossover exponent Q by Q
= Pp~Sg.

0

(a) d =2
Pure system (P)
n=1, 2
exact'

Spin glass (SG)
n=l
n=2

Tricritical (T )
n=l
n=2

(b) d=3
Pure system (P)
n=l 2
series

Spin glass (SG)
n=l
n=2

Tricritical (7')
n=l
n=2

(c) d =4
Pure system (P)
n=l 2
series, etc.

Spin glass (SG)
n=l
n=2

Tricritical {T)
n=l
n=2

0,5

0.048 95
0.95015

0.5

0.1602
0.8398

0.5

0.7533
0.2467

0.7218
0.4407

1.6423
1.2811

0.9137
0.8469

0.3542
0 2217

0.8558
0.7218

0.6576
0.5822

0.1962
0 1499c

0.5657
0.4910

0.4985
0.4388

0.738
lb

0.362
0.471

0.634
0.669

0.926
1.60 '

0.665
0.738

0.774
0.816

0.977
2b

0.825
0.864

0.860
0.889

-0.710
0(ln)

-3.52
-2.24

—1.15
-0.988

-1.24
0.125 d

-2.51
—2.06

—1.88
—1.68

—2.10
0(ln)

—2.85
-2.63

—2.65
-2.50

0.486

0.739

0.863

0.761
0.721

0.955
0.906

1,00
0.971

' Reference 29.
"Derived via scaling.' Reference 30.

' Reference 31.
~ Reference 32.

is an approximation and not amenable to rigorous
derivation; however, the picture behind it is as
follows: Imagine decimating along a particular
direction (i.e. , summing out the h —1 spin layers
intermediate between new lattice sites). If the
couplings transverse to that direction were weak,
it would be reasonable to calculate the new parallel
coupling K,', for each string according to the exact
2 = 1 recursion relation (ignoring transverse cou-
plings) tanhK, ', =gtanhK„. Correspondingly, if the
parallel couplings were strong, then the spins in
each string would with high probability be aligned
and it would be reasonable simply to sum the
transverse couplings, K,' =2K,. The Migdal ap-
proximation consists in decimating successively
in t:he d directions (for an over-a. ll scale change of
b), while always treating the transverse couplings

as weak and the parallel couplings as strong.
Thus, in deriving (6) we first decimate parallel to
K', obtaining an effective coupling

K; = tanh ' tanhK,
&

/=1

along each string. These effective couplings are
transverse to the remaining (d —1) decimations,
so the full coupling K' is just a sum over b" '
strings

1

K'= Q K;.
c=1

The reader is referred to Kadanoff's" paper for
further discussion.

Generally a given coupling K, enters into the
determination of a number of distinct K', .'s [Eq.
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FIG. 4. Phase diagram of the nearest-neighbor
Edwards-Anderson spin-glass model in d =4. Notation
follows that of Fig. 2.

(4)). Thus, even if all bonds were statistically in-
dependent in +[K], there would be correlations
built into 6"[K' ]. It is a special feature'7 of the
Migdal approximation (6) that each K, enters into
the determination of one and only one K', There-
fore, it is true for the Migdal recursion relations
without additional approximation that statistical
independence of the K, s implies statistical in-
dependence of the K', ,'s, d"[K'] factors, and the
full content of the general transformation (5) is
just

P,'(K') = Q [dK;;P, (K;;)]6(K'—%[K]). (7)

where (8)

Although (7) is enormously simpler than (5), it
is still nontrivial for" d &1: Finding the fixed
distributions P,* would, for example, require solv-
ing a highly nonlinear integral equation. " How-
ever, if P, (K) is of the form (2), it is not difficult
to evaluate (7): The coupling along each string al-
ways has magnitude Ko= tanh '(tanh~K, ) and takes
the value +K, and -K, with probabilities q, and q

(q, + q = 1), which for b = 3 are q, =p'+ 3p(1-p)' and

q = (1 —p)'+ 3p'(1- p), respectively. When the
b' ' strings are added together [Eq. (6)], the re-
sultant K' is an integer multiple of Kp K kKp,
with A; = —b" ', —b '+2, —b~ '+4, . . . , b" '. The
distribution (7) of renormalized couplings is

d-1

P', (K'l= Q Q, 5(K' —hlf, )

p =gq„(K;)"=K",g q„Iu I".
k&0

(9)

Note that p' =p'(p), while K,'=K'(p, K ). These
expressions define our renormalization group.
The first simply assigns to +K, all the weight in
(8) at K' &0, while the second picks Ko by matching
averages of IK' I". In calculations we have tried
both n =1 and n =2. There are modest quantitative
differences in exponents, etc. (see Table I); how-
ever, major qualitative features are comfortably
insensitive to n.

Equation (9) generates renormalization-group
flows in the space (p, Ko), which now character-
izes the distribution function P, (K). We have plot-
ted fixed points and phase boundaries in Figs. 2, 3,
and 4, along with a few representative trajectories.
Recall that p is the fraction of ferromagnetic cou-
plings. The inverse coupling K, ' measures the
temperature. Table I gives numerical values for
the positions of the three independent critical fixed
points (p*,KO) and their associated eigenvalue
exponents y,

(10)'p *.*
All phase boundaries are precisely symmetrical

about p =0.5: Because of the nearest-neighbor cou-
plings and the hypercubieal lattice structure,
P, (K)—P, (-K) [p —1-p in the restricted form
(2)] is an exact symmetry of the model at 5 =0.
Equation (9) respects this symmetry. The vertical
phase boundaries are a consequence of the fact
that P is independent of K,. Strict verticality
would disappear (even in the Migdal approxima-
tion), if P,'(K') were not forced into the two-pa-
rameter form of approxima, tion (b). The trend of
the phase diagram with dimensionality is clear:
At d = 1, where the Migdal form (6) is exact and all
critical behavior is at zero temperature, " the
spin-glass phase occupies the full range 0&p&1
and the ferromagnetic and antiferromagnetic
phases reduce to points. As d increases, the
width of the spin-glass phase shrinks.

The main physical content of Table I is the large

QI —~-iCn q+ q- ~

k=n, -n, and b '=n, +n . ~,C„ is a binomial
coefficient. Because (8) has a more complicated
form than (2), we must either deal numerically"
with (7) or adopt a second simplifying approxima-
tion. We choose the latter alternative [approxima-
tion (b) of Sec. I] and force (8) into the two-pa-
rameter form'7'8 (2) by writing

[P,'(K')]„„,„=P'5(K' —K,') + (1 —P ') 5(K'+K,'),

with"
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negative value of the specific-heat exponent nsG
characterizing the paramagnetic- to-spin- glass
transition. The predicted specific-heat curve (al-
though singular) would appea. r smoothly rounded.
Such behavior is compatible with present experi-
ments4 and quite consistent with the E-expansion
results, "which show o.so = —1 at d =6 and decrea-
sing in lower dimensionality. Unfortunately this
attractive conclusion is seriously weakened by the
fact that our results show strongly negative n's
for the pure system, as well. This represents a
failure of approximation (a.) [Eq. (5)]: at the pure-
system fixed point P, (K) = 5(K +K,), so approxima-
tion (b) is exact! The Migdal approximation de-
teriorates rapidly as d departs from d = 1. We
must conclude that results for d = 3 and d = 4 are
broadly qualitative, at best. It is encouraging,
however, that asG increases between d = 2 and d = 3

(both absolutely and relative to the corresponding
pure-system value), in agreement with the e-ex-
pansion" trend.

It is interesting to speculate how the phase dia-
gram might look in an approximation better than
ours. For 4&d&6 our phase diagram may be
qualitatively valid; however, for 2&d&4 there is
a puzzle: It is known" that the pure system is un-
stable against a weak random perturbation, when

a & O. This requires that the renormalization-
group flows along the paramagnetic-ferromagnetic
(and paramagnetic-antiferromagnetic) boundaries
be reversed relative to ours. It is possible that

flow simply proceeds to a tricritical point (T),
which would then have only one unstable (strong)
direction, instead of two; however, continuity
would then suggest that the paramagnetic-spin-
glass boundary should also flow towards 7 from
the other side. Alternatively, there might be one
or more additional fixed points and corresponding-
ly more complex flows. Illumination of this point
will require a substantial improvement over the
level of accuracy we have been able to achieve.

Note added in Proof Dr.. A. P. Young" and Dr.
S. Kirkpatrick" have kindly pointed out to us an
interesting problem with our method in d= 2 (but
not d&2). Near T=0 one can analyze the exact
Migdal recursion relations approximation (a) but
not approximation (b). In this analysis the fixed
point (P*=0.5, T*=0 in Fig. 2) of the spin-glass
phase is marginally unstable (thermally). The
meaning of this instability is unclear. We note
only that the Monte Carlo work" provides evidence
that the model itself does have a stable spin-glass
phase.
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