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Effect of magnon-yhonon thermal relaxation on heat transport by magnons*
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The experimental evidence for heat transport by magnons in magnetic insulators is reviewed. It is noted that
in a thermally isolated system, the magnon temperature comes to equilibrium with the phonon temperature
with a finite relaxation time v ~. Since a conventional thermal-conductivity experiment is inherently a
nonequilibrium situation, the steady-state magnon temperature gradient will differ from that of the phonons.

A calculation is presented to show how the experimentally measured conductivity depends on r ~, as well as

on the intrinsic magnon and phonon conductivities K and K~. In the- limit of very long relaxation times,

only K„ is experimentally observed, regardless of the magnitude of K . The calculation is illustrated for the
ferrimagnet YIG and the antiferromagnet MnF„using magnon-phonon relaxation times measured by
magnetic-resonance experiments. It is shown that v ~ for YIG is short enough to allow magnon heat transport
to be observed, which is in agreement with experimental results. It is also shown that the long relaxation time

for MnF, may be responsible for the absence of magnon conductivity in this material. This general explanation

may also apply to many other magnetic systems.

I. INTRODUCTION

In a magnetically ordered crystal the propagat-
ing excitations of the spin system, known as mag-
nons, can transport heat in the same manner as
the more familiar lattice excitations, or phonons.
In 1955, Sato' pointed out that at liquid-helium
temperatures the magnon system can have a specif-
ic heat equal to, or greater than, that of the pho-
nons. The velocities of the two excitations are
comparable, and at sufficiently low temperatures
their mean free paths are equal, since both are
limited only by the boundaries of the sample.
Therefore, at low temperatures a large fraction
of the total thermal conductivity of the crystal may
be due to the magnons.

There has been considerable interest in finding
experimental evidence for magnon heat transport.
These experiments have been confined to dielec-
tric magnetic materials, because the thermal con-
ductivity of a metal is dominated by the conduction
electrons. Magnon conductivity can be recognized
by a departure of the thermal conductivity from
the 7' behavior expected for boundary-limited
phonons. Another useful technique is the measure-
ment of the conductivity in an external magnetic
field. For a ferromagnet or a ferrimagnet, the
applied field raises the magnon energies, which
decreases their thermal population, and thus low-
ers the magnon component of the conductivity. In
an antiferromagnet, one magnon branch is lowered,
causing a net increase in the magnon contribution.

The earliest example of heat conduction by mag-
nons was reported in 1962 for the ferrimagnet
yttrium iron garnet (YIG).~ ~ The thermal con-
ductivity of YIG exhibited the expected dependences
on temperature and on magnetic field. By mea-

suring the conductivity in fields large enough to
completely remove the magnon contribution, it was
estimated that about two-thirds of the zero-field
conductivity was due to the magnons. ' The experi-
mental results for YIG have also been quantitative-
ly explained in terms of theoretical predictions
for the magnon and phonon components. "

Experimental evidence for magnon conductivity
has also been reported for the ferromagnets EuS
(Ref. 8) and' CuCl, (CH, NH, C1); the ferrimagnet
Li ferrite'; and the antiferromagnets CoCl, 6H, Q,"
Co[(NH, ),CS], Cl„"and GdVO, ." However, com-
pared to YIG, the evidence for these materials is
not as conclusive. In some cases [EuS and CuC1, —

(CH, NH~C1)] it is based only on the temperature
dependence of the conductivity, and in other cases
(CoC1, ~ 6H, O, Li ferrite, and GdVO, ) only on the
magnetic field dependence. Also, in most cases
there has been no attempt to compare the results
quantitatively with theoretical predictions.

Qn the other hand, many magnetic materials have
been investigated without finding evidence of mag-
non conductivity. A par tial list includes the ferro-
magnets GdC1~ (Refs. 5 and 13) and' Cu+Cl~ 2H20;
the ferrimagnets" MnFe, O„Co(Zn) Fe,O„and
Mn(Zn)Fe, O„and the antiferromagnets
CuC1, .2H Q ' MnClg ~ 4H P "'' FeCl»" RbMnF3, "
and MnF, ."'" Therefore, while the theoretical
prediction of heat transport by magnons has long
been established, experimental confirmation of
this prediction has been somewhat elusive. In fact,
in most magnetic systems, the experimental evi-
dence indicates that magnons do not contribute to
the conductivity.

Qne possible reason for this is that the magnon
conductivity may be much less than its boundary
limit because of other magnon scattering process-
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es. If impurities with different spins or exchange
constants substitute for magnetic ions in the crys-
tal, these magnetic impurities can strongly scat-
ter the magnons. This has been analyzed by Calla-
way"'" for the case of ferromagnets. It was
shown that magnetic impurity scattering can cause
a large reduction in the magnon conductivity from
its boundary-limited value. However, it would
seem to be an unfortunate coincidence if the mag-
nons are scattered so much more strongly than
the phonons by residual defects in so many ma, -
terials.

The magnons can also be scattered by phonons.
The interaction is strongest at the point where the
dispersion curves cross, since at this point energy
and wave vector can be conserved in a one-phonon-
one-magnon interaction. At the point of intersec-
tion a gap is introduced into the dispersion curves,
and near the gap the excitations are neither mag-
nons nor phonons, but coupled magnetoelastic
modes. The size of the gap is determined by the
magnitude of the magnetoelastic coupling constant.
If this is large, it can cause a significant reduc-
tion in the magnon conductivity. This has been
shown to be the case for YIG.'

The magnon-phonon interaction can also affect
the phonon conductivity. Because of the gap, a
band of phonons is effectively removed from the
heat-carrier spectrum. Therefore, the magnons
can act like a resonant phonon scatterer, and pro-
duce resonance dips in the temperature depen-
dence, or magnetic field dependence of the con-
ductivity. This type of behavior has been found
in GdC1„'"MnCl, 4H 0 "" and FeCl

Higher-order interactions such as one-phonon-
two-magnon processes are also possible. " Unlike
the resonant magnon-phonon interaction, these
are not limited to a narrow range of frequency and
wave vector, but they also can cause mutual scat-
tering of the magnons and phonons. '

Therefore, in searching for evidence of magnon
conductivity, it would seem reasonable to investi-
gate systems with weak magnon-phonon coupling
in order to minimize these effects. However, a
fact which has not been universally recognized is
that some degree of interaction between the mag-
nons and phonons is necessary for any magnon
heat transport to be observed in a conventional
thermal-conductivity experiment. Since only pho-
nons are generated by the heater at one end of the
sample, and absorbed at the cold end, this heat
can enter or leave the magnon system only via
magnon-phonon interactions. Therefore, the heat
flux in the magnon system depends on the magnon-
phonon coupling, as well as on the magnon conduc-
tivity. If the coupling is too small, there will be
no magnon heat flux, and only the phonon conduc-

tivity will be experimentally observed, even though
the intrinsic magnon conductivity may be large.

These ideas are quantitatively developed in Sec.
II for a simple model. In Sec. III, the results of
the calculation are illustrated for two well-known
magnetic systems, YIG and MnF, .

H. CALCULATION

dT Cq T~ —T
dt C~ vms

(2b)

where C and C~ are the specific heats of the mag-
non and phonon systems, and C ~ = C~ +C

Now consider a thermal conductivity sample of
length J. and cross-sectional area A, with heat
flow along the x direction. A total heat flux Q is
supplied at x=--2L, and absorbed at x=-,'L. In gen-
eral, the temperature of the magnon system T (x)
at any point x will differ from that of the phonons
T~(x) If there w. ere no heat flow down the sample
through the magnon system, the magnon tempera-
ture at each point would come into equilibrium
with the phonon temperature, as in Eq. (2b).
Therefore, in volume element Adx of the sampl. e,
the amount of heat per unit time flowing into the
magnon system from the phonon system would be

dP (x) =C A dx
dT (x)

C~C T~(x) —T (x) Adx,
C~ gamp

where the specific heat is now explicitly the heat
capacity per unit volume.

However, if the magnon system has a finite con-
ductivity K, the heat which flows into it will be

Expressing the total conductivity as a simple
sum of the magnon and phonon conductivities im-
plicitly assumes that the temperature gradient in
the magnon system is the same as that in the pho-
non system. Since thermal transport is inherently
a nonequilibrium phenomenon, this is not neces-
sarily the case. In a thermally isolated system,
the difference between the magnon and phonon
temperatures, T and T~, would decay exponen-
tially. The magnon-phonon relaxation time 7.

is defined by

d ~T—bT=-
7mp

where hT =T~ —T . It is easy to show from Eq. (I)
that T and T~ approach each other according to
the expressions

de C T -T~
df C~

and
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conducted along the sample and a steady state will
be reached. The contribution of a small length dx
to the heat flux in the magnon system is

K
Q sinhAx

cos (15)

and (14), the magnon temperature is found to be

(
dP (x) C, C T, (x) —T (x)

(4) By substituting (15) into Eq. (11), the phonon tem-
perature can be expressed

Therefore, the total magnon heat flux at any point
x is given by

Q K sinhAx
K K& A cosh2Af. (16)

q (x) = l™— [T ( ') —T ( ')]d '.C~C 1

CT ~mp L/2

But, by definition of the magnon conductivity,

() dT (x)

(5)

Combining Eqs. (5) and (6), and differentiating
yields a second-order differential equation for the
magnon temperature T,(x)- T (x)- To —(q/Kr)x ~ (17)

Typical solutions for T&(x) and T (x) are illustra-
ted in Fig. 1.

The parameter A is related to the coupling be-
tween the magnons and phonons. If they are perfect-
ly coupled, v ~-0, so A- ~. In this limit the
magnon and phonon temperatures are the same;
l.e. )

+ ' [T,(x) —T (x)]=0. (7)
On the other hand, if there were no coupling be-
tween the two systems, 7. ~- ~, so A-0. In this
case the solutions are

The total heat flux Q is divided between the mag-
nons and the phonons according to

and

T,(x) - T, —(q/K, )x

(18)
q-q() q ()- K (8)

T (x)-T, ,

Therefore, T,(x) is related to T (x) by

dr(x) q K dT (x)
dx K~ K~ dx (9)

with the boundary condition that at the center of
the sample, the phonon and magnon temperatures
are both equal to the average sample temperature
7 ' l.e.

so there would be no gradient at all in the magnon
temperature. These limiting cases are also shown
in Fig. l.

In a thermal-conductivity experiment, thermo-
meters are attached to the sample which measure
the difference between the temperature of the pho-
non system at either end

(19)
T (o) =Tp(0) =T.

Solving Eq. (9) using (10), it is found that

Tp(x) =~ T, ——x —T (x), -K Q I
(10)

Q
Kp+Km

where Kr =K, +K . Substituting (11) into Eq. (7),
the differential equation for T (x) becomes

d'T (x), qA' T ——*-T (x)) =0,
T

where

(12)

CpC K~ Tp(X)
I

Since heat enters or leaves the sample at each
end only via the phonon system, the magnon heat
flux must be zero at both ends. Therefore, from
Eq (6),

dTm dTm
dx Ii/a dx -l./2

(14)

Solving Eq. (12) with the boundary conditions (10)

FIG. 1. Temperature profiles in a thermal conductivity
sample. The sample length is L, and its average tem-
perature is To. Typical solutions to Eqs. (15) and (16)
for the magnon temperature T (x), and the phonon
temperature T&(x), respectively, are shown by the solid
curves. The limiting cases given by Eqs. (17) and (18)
for 7~ 0 and , respectively, are shown by the dashed
lines.
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K„f = —QI /&T~. (20)

Therefore, the presence of magnon heat transport
can be detected only in so far as its affects the
phonon temperature gradient. From Eq. (16), hT~
is given by

Q K tanh —,'A L
K, K, —,AL

Therefore, the effective conductivity is

(21)

Knowing the heat flux Q supplied by the heater, the
effective thermal conductivity is then calculated
from

2m' k4~T'

15 A3V~
(23a)

Harris' have suggested that these internal boundar-
ies are thin layers, rich in Fe", which are pro-
duced during the crystal-growing process.

ff was calculated for a hypothetical thermal-
conductivity sample with the typical dimensions
of 3.0 cm long and 0.5 cm in cross-sectional diam-
eter. Therefore, the boundary limited mean free
path for YIG is taken to be A, =0.05 cm. The pho-
non and magnon conductivities can then be calcu-
lated from~ 6

K. tanh-,'AL
(22)

If the magnon-phonon relaxation time is very
short, A. -~ and K,«-K~. Therefore, only in this
limit is the experimentally measured conductivity
the sum of the magnon and phonon conductivities.
If the relaxation time is very long, A-0 so from
Eq. (22), K«-Kr (1+K /K~) '=K~. Therefore,
in this limit only the phonon conductivity can be
measured, regardless of the magnitude of the in-
trinsic magnon conductivity.

III. EXAMPLES AND DISCUSSION

The order of magnitude of the magnon-phonon
relaxation time which can suppress the magnon
conductivity may be illustrated by considering two

examples: The ferrimagnet YIG and the antiferro-
magnet MnF, . As pointed out in Sec. I, it is well
established that YIG exhibits a magnon component
in its thermal conductivity. ' ' On the other hand,
it has been demonstrated that MnF, shows no evi-
dence of magnon conduction in either the tempera-
ture dependence or the magnetic field dependence
of its conductivity. "'" Moreover, this result is
in disagreement with calculations of the boundary-
limited magnon conductivity" which predict a large
magnon contribution. These two materials are
chosen because both are very well studied mag-
netic systems, and some information about magnon-
phonon relaxation times is available from magne-
tic-resonance studies.

A. YIG

In order to calculate K,«, it is necessary to have
expressions for K~, K, C~, and C . It has been
shown' that the thermal conductivity of YIG in
zero magnetic field can be reasonably well ex-
plained by assuming boundary-limited conduetivi-
ties for both the magnons and the phonons, but
with a boundary-scattering mean free path approxi-
mately an order of magnitude smaller than the
smallest dimension of the sample. Friedberg and

m SD
(23b)

In (23a.), V~ is an average sound velocity. For YIG,
the velocities of transverse and longitudinal pho-
nons are Vr =3.67x10' and V~=7. 17 x10' cm/sec. "
In (23b), g is the Riemann ( function, and D is de-
fined by the magnon-dispersion relation her =Dq'
For YIG, D =8.3&10 Jcm . Therefore, Kq
=0.0104T' and K =0.0183T' Wcrn 'K '

Simple expressions can also be obtained for the
phonon and magnon specific heats"; i.e. ,

2m' k4~T3
P 5 f y (24a.)

and

15 gP) I,5~~T~~~

m 32 ~3/2 D3/2 (24b)

Therefore, C~ = 1.52 x 10 'T' and C =3.34' 10 'T' '
JK 'cm '.

Using Eqs. (23) and (24), K,«for YIG was calcu-
lated from Eq. (22) as a function of 7„~ The re-.
sults for various temperatures are shown in Fig. 2

which gives K,ff in terms of K~. Since K has a T'
temperature dependence, whereas K~ varies as T',
the magnon contribution to the total conductivity
increases with decreasing temperature. However,
it can be seen from the diagram that if the magnon-
phonon relaxation time is greater than 10 ' sec,

ff for any temperature differ s from K~ by les s
than 5%. Therefore, only the phonon conductivity
could be observed experimentally. This is shown
as 7 max &n Flg. 2.

On the other hand, if & ~ is shorter than the
mean free time for boundary scattering, the mag-
non-phonon interaction could cause significant
mutual scattering of the magnons and phonons
which would reduce both K and K, from their
boundary limits. This is shown as z, =A~/V~=10 '
see in Fig. 2. Therefore, there is a range of re-
laxation times, 7„&7. ~ &z, over which one could
hope to observe magnon heat transport.
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from"'"heat can ebe calculated numerically from"

3.0

2.0 and

m 6+

X . q
COS'0 d,
sin9 (25a)

I.O—
I

+OP

I I

-5 -4
10

-8
IO 10 IO

T, (sec)

f the effective conductivity ofFIG. 2. Dependence o e e
on- honon relaxation time. Keff lsYIG on the magnon-p on

of K the boundary limj. e p't d honon con-given in terms o

ectively, the maximum re axare, respec '

t the mean free time forservab1e magna on heat transpor, e
boundary scatters g, and the magnon-p-phonon relaxation

surements.a etic resonance meatime estimated from magn

IO IO

xation times for YIG haveMagnon-phonon relaxa ion
26S encer and LeCraw. ybeen investigated by Sp

able toodulation technique, they were a e o
df thfsure the time require ordirectly measure
to the lattice.resonance mode to relax to e amagnetic reson

ature of 2.5 K, they foundAt their lowest temperature of 2.
x10 ' sec which is also shown in ig.that w» =1.5 x

2. Therefore, i e2. T, 'f th relaxation time of th q-
f the magnon systemmagnon is pre resentative o

is short enoughs a whole, this indicates that 7.
&

is s
f th agnon conductivity toto allow aim ost all of e mag

of course, is consis-be observed in YIG. This, of course,
tent with the experimental results.

B. MnF2

d -limited conductivity K~ andThe phonon boun ary- '

s ecific heat C~ for MnF, can be simply ex-

Ho
'

th0 T JK cm 7

nF have a largen dis ersion curves for Mn, a
a o . ,

~ t ' t possible to ex-a of 12.5K, i isnoanisotropy gap o
and C in simple analytica orm .m m

Moreover, the ge lar e anisotropy ga
o ulated at lownon modes are thermally popu a efew magnon mo

non conductivity is small.

was calculated for a iefield. Therefore, K,ff w

t
'

h h theH =60 koe, which is the largest t field in w ic
it has been measured. "

Since the magno
'

pn dis ersion re a ion
well known, e m,

' th magnon conductivity an spe

0

1.8

1.6

1.2

I.O I

1 I I I I I

10
-7

10
6

IOIO IO

T'
~ (sec)

of the effective conductivity ofFIG. 3. Dependence o
on- honon relaxation time. egno -p

7', and ~0& aveation times labeled &m,„,
meanings as in Fig. 2.

it 6I is thewhere V co is the magnon group veloc' y,
nd the heat flow direction, andangle between V, cu an e

(26)h(u(q, j) =h(u(q) +gpss.
The results for e cath lculated effective conduc-
't t 60 kOe as a function of TT are shown intivity a

reaches a maxi-Fi . 3. The magnon component reac
t 8 of K at a temperature of 5 K."mum of about 609c o, a

b ble mag-The maximum relaxatio n time for observa
is 7. ,„=1.5x10 4 sec. For enon heat transport is Tm„=

the honon velocities ar[001]direction of MnF„p
There-t/' =2.85x1 an10' d V =6.65 x10' cm/sec. T ere-

t for boundary scatteringfore, the mean free ime o
is 7 = A /V, =1.2x10 ' sec.5 b

It can be seen from e ia
ation times for which mag-of magnon-phonon relaxa ion

liernduction can be observed is much sma er
M F than it is in the case ofor n

non- honon interaction is know ntobe
than in YIG. The magneto-much weaker in MnF, than in

onstant which determines eelastic coupling cons
for YIGin the dispersion curves forg p

=4x10' erg/cm' at 4.2 K.' For n»is Bg=
coupling constant"
f ma nitude smaller, and it has been note

f a resonant magnon-phononthere is no evidence of a resonan



1494 D. J. SANDERS AND D. WALTON

interaction in the thermal conductivity of MnF, .
Unfortunately, direct measurements of the

magnon-phonon relaxation time are not available
for MnF„as they were for YIG. However, Kott-
haus and Jaccarino" have measured the total tem-
perature-dependent part of the antiferromagnetic
resonance linewidth in a field of 83 koe. This
relaxation rate of the q =0 mode is the sum of its
relaxation rates to the lattice and to the thermal
magnons; i.e., Tpz 7pp +7p At the lowest tem-
perature of 5 K, they found that 7.,~=5&&10' sec '.

Moreover, White et al."have shown that this
relaxation rate can be quantitatively accounted for,
assuming only magnon-magnon relaxation. Since
these are normal magnon scattering processes,
they do not in themselves contribute to thermal re-
sistance in the magnon system. " If it is assumed
that their calculation fits the data to within 1%,
then an upper limit for the q =0 magnon-phonon
relaxation time at 5 K is 7» ) 1'//~

d'or

=2 x 10 ~ sec.
Alternatively, it should be noted'~ that v ~ varies
as B', so that 7 ~ for MnFshould be roughly 100
times longer than that for YIG or -10-~ sec.

It can be seen from Fig. 3 that Tp~ is greater
than 7. ,„. This indicates that the magnon-phonon
relaxation time for MnF, may be so long as to sup-
press any heat transport in the magnon system.
This may explain the absence of magnon conduc-
tivity in the experimental results.

C. Summary

The conductivity of a magnetic insulator, mea-
sured by a conventional thermal-conductivity ex-
periment, depends on the magnon-phonon thermal-
relaxation time. If this time is very long, it can
cause heat transport in the magnon system to be
suppressed. The available information for mag-
non-phonon relaxation times indicates that this is
not the case for YIG. This is in agreement with
experimental measurements of a magnon contribu-
tion to the thermal conductivity of YIG. However,
the long relaxation time for MnF, may be the rea-
son for the lack of magnon conduction in this ma-
terial. Since this explanation could apply to any
magnetic material, it may explain why magnon
conductivity has been such an elusive phenomenon.
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