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Within the interacting-quasiparticle model, we find several identities expressing the thermal energy (K) in

terms of parameters entering the thermal-neutron scattering function S(q, co) and an unknown interaction

term. A new form for S{q,n) at finite T is found which should be useful in analyzing neutron experiments,

The only approximations are that the self-energies X,,{q,co) are independent of co, and that the density p„ is

linear in the boson operators n and o.'q~ of the model.

I. INTRGDUCTIGN

Recently, Donnelly and Roberts' (DR) have shown

that a surprisingly good fit to thermodynamic data
in liquid helium can be obtained by assuming that the
energies 8, which appear in the entropy expression

s =vg(k 1 (1+ (;))+ h ",(n;)

are temperature dependent. Here, (n;) = (eEa~ —1) '

and h; is assumed to vary with temperature in a
manner given by the temperature variation of the
single quasiparticle peaks in the neutron-scat-
tering function S(q, e). DR have pointed out that
their results bear a resemblance to Fermi-liquid
theory and follow from simple assumptions con-
cerning the form of the energy and entropy, but
a microscopic justification of their procedure
is lacking. Here we explore whether the quasi-
particle Hamiltonian

& =&,+Q &(q) n'. n. + — p [g,(k„k„k,)nt nt n„+H.c]

g4 ki 7 7 k3 7 k4 Q Q Q ot + 4 ki 7 7 k3 7 k4 A A 0 A Q + H ~ c
ki, Q, k3, k4

can account for these results. We have discussed
this Hamiltonian critically in a previous publica-
tion and have emphasized the difficulties associated
with using it to account for neutron and light scat-
tering results. Nevertheless, in view of its wide
application to problems in liquid helium' and the
open nature of the problem of accounting for the
DR result, we explore the consequences of Eq.
(1) for thermodynamics here.

The theoretical determination, starting with the
microscopic Hamiltonian, of the coefficients g„
g„and g,' [ Eq. (1)] can be carried out in principle
using the procedure described in Ref. 4 by Jack-
son. Jackson has evaluated g3 by this means. In
the present paper, we are concerned not with
evaluating the coefficients, but rather with deter-
mining the phenomenological consequences of Eqs.
(1) and (4a.) below on the algebraic form of S(q, &o)

and on the connection between S(q, v) and the
thermodynamics. We will find in particular that,
at finite T, Eqs. (1) and (4a) imply that one cannot

simply use the peak energies in S(q, ur) in the non-

interacting entropy S in order to make this con-
nection. Several workers' have essentially done
this (though with approaches differing in some
details) .

We note that, if one derives Eq. (1) by use of the
procedures described by Jackson4 or by Bogoliubov
and Zubarev (references in Ref. f) then a pertur-
bation theory in the resulting interaction terms in

Eq. (1) should converge much more rapidly than a
perturbation theory in the potential in the micro-
scopic Hamiltonian (Eq. (3) below]. This is be-
cause the hard core in the He-He potential causes
very serious divergence difficulties in the latter
approach. For this reason, we believe that exact
conclusions based on Eqs. (1) and (4a) (as drawn

here) are more reliable [despite possible prob-
lems with Eq. (4a)] than approximate conclusions
based on approximate treatment of perturbation
theory in the He-He potential.

Cohen' has taken this same approach in ex-
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ploring the same questions considered here. The
differences between his work and the present study
are as follows: (i) terms involving g, and g,' in
Eq. (1) are omitted from Cohen's Hamiltonian.
There is no reason to expect that the effects of
g, and g,' are small compared to the effects of g, .
Jackson4 has shown that g, does have an important
qualitative effect on S(q, &o). (ii) In Ref. 5, only
the first terms in a series in e ~~ are studied (&
is the roton energy). Here we confine our atten-
tion to exact results. If we set g,'=g, =0 and confine
attention to the case of weak interactions, then our
results agree with those of Ref. 5. Further dis-
cussion of the relationship of this work to Ref. 5

appears in the last section.
Though we have not succeeded in accounting for

the Donnelly-Roberts results, we have obtained a
number of new results following from the Hamil-
tonian [Eq. (1)] at finite temperature. These re-
sults include a, new form for S(q, &u) at finite tem-
perature which should be useful to experimentalists
analyzing neutron data and several forms of a well-
known theorem' relating the thermodynamic in-
ternal energy (X) to the same response functions
which are involved in S(q, &), Unfortunately, in
contrast to the microscopic i,'e, the energy (X)
also involves terms which:. not be determined
from S(q, &u).

Our preliminary objective is to establish an
analog to the formula

de &u+q'/2mf(
)A ( )

q

established by many authors' for a system with
the Hamiltonian

and

G,(t, r ) = —ie(t) ([ q( r, t), q'(0, 0)]),

G„(t, r ) = i9(- t) ([ P( r, t), P~ (0, 0)])

(q, &o) is to be thought of as the density of
single-particle states with momentum q.

In principle, the Hamiltonian [Eq. (3)] is valid
for liquid helium and the identity [Eq. (2)] applies
directly in the absence of Bose condensation.
Further, A (q, v) would be expected to have
peaks at the same places where the neutron-scat-
tering function has peaks. In liquid helium, how-
ever, one does have a Bose condensation. Never-
theless, one can show that the form of the identity
[Eq. (2)] will not be changed essentially. ' On the
other hand, when working with the microscopic
system, the residues of the poles in the single-
particle Green's function are different from the
residues of the poles in the density-density re-
sponse function as discussed, for example, by
Woods and Cowley. ' These residues, or the term
involving the chemical potential which must be
added' to Eq. (2) in the case of a condensed Bose
gas, must play a very important role in changing
the basic form of (K ) at low temperatures. One
can see this by inserting an appropriate form
[e.g. , Eq. (31) of this paper] for A (q, e) into
Eq. (2) for (X ). The poles of A (q, &u) will nec-
essarily be near those of the neutron-scattering
cross section, so that if the residues or chemical-
potential term mentioned above did not play a
major role in determining (K ), then (K ) would
be in error by about a factor of 2 at low tempera-
tures. As a consequence of these difficulties, we
proceed from the more phenomenological Hamil-
tonian (1) together with the relation

r' Pt(r) P(r') V(r —r') g(r') g(r) .

(3)

In Eq. (2), f(e) = (e8 —1) ' and A ( q, a&) is a spec-
tral weight function given by

p; = [ &( q)]'"(o;+o";),

where p; is the density operator

(4a)

A„(q, (o) =i[G (&o+ic, q) —G ((o —ie, q)], (4)

G (++i&, q) = dr dt e""' ''"Ga(t, r),

G (e —ie, q) = dr dte""' ''"G„(t, r)

in which G (e+ ie, q) is the Fourier transform of
the retarded single-particle Green's function, and
G (e —ie, q) is similarly the Fourier transform of
the advanced Green's function:

In this framework, S(q, e), the neutron-scattering
function, is directly related to the single-particle
Green's functions and the problems of unknown
residues do not arise. On the other hand, the
terms of order g, and g4 mean that the identity
[Eq. (2)] will take a. different form for the Hamil-
tonian (1). In the following, we first find two dif-
ferent expressions analogous to Eq. (2) but fol-
lowing from the Hamiltonian (1). Secondly, we
investigate the relationship of the result to the
neutron data and to the thermodynamics.
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QUASIPARTICLE FORMS OF THE

IDENTITY DETERMINING (K)

We follow the derivation' of Kadanoff and Baym,
forming the equations of motion of Q; and Q; in
order to relate (K) to the spectral weight as-

sociated with a Green's function involving Q; and
We have, using

BXi,—=[x,x]
that

i =E(q)a-„+ p (2[g3(q, k„k,)+g,(k„q, k, )]n'. n. +g f(k„k„q) ag n;]
kI, k2 I 2

+ Q [g,(q, k„k„k,)+g,(k„q, k„k,)]n n. n
\0 kI k2 k3kI, k2 k3

+ g [3g,'(q, k„k„k,)nl n'- n. +g,'(k„k„k„q)n„n" a~ ];
kl ~ k2 ~ k3

(5)

together with the Hermitian conjugate of this equation. We use these two equations to form an equation for
the quantity

We use the facts, following from Eq (1), t. hat

g,(k„k,k, ) =g, (k, k„k,), g,(k„k„k„k,) =g4(k, k„k„k,) .

The resultant equation is

= 2+' E( q) n'. (t'}a.(t)+ — Q f g, (k„k„k,)[—,'a'. (t') o.'. (t) n. (t) +-, a'. (t') n'- (t') n- (t)]
Q kI, k2, k3

+g,*(k„k„k,)[-', n' (t') n- (t') n- (t)+-', n'. (t') n- (t) n (t)]j-
k3 k2 kI k k kI

+4 g4 kl. . .k4 2 Q'. t' Q'. t' Q. t' Q. t +2 Qt (it' Qt t Q- t Q. t

+ g [ 3g4(k„k„k„k }nt (t') nt (t) nt (t) n. (t) +g,'*(k„k,k„k,) nt (t') n (t) a- (t) n. (t)
4 I 2 3

+ 3g 4*(k„k„k,k, ) af (t') n. (t') n. (t") n (l) +g', (k„K,k„k~) nt (t') nt (t') nt (t') n (t)] .
k4

Taking a thermal average of this and setting t =t', we have

i ——i—, Qqt' Qqt
8 . 8

Ot Bt g p

+ g (g,(k„g,&c„k,)(n~f (t') at (t') n-„(t') n; (t)) ~. .. + [g,'*(k„k„k„k,)(n~ n„n„. n , )+H.c.]j . (6).
kIk2k3k4
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Alternatively, this can be written

=4&K) —2+E(q)&nfn. ) —Q [g (k„k„k,)&aI nt o,.)+g,*(k,k k )&oj (y. o )] (7)
Q k~ k2k3

The two expressions [ Eqs. (6) and (7)] give different (though equivalent) formal results for the thermal
energy &K). From Eq. (6)

«)=pf 3
—f(~)&(i ~)2 —

~ F (g.(k„k„k,, k)(a'. al a. a )
ye 2 ~ k3e 4

while from Eq. (7)

+[gP(k„k„k„k,) &n'. n. n n )+H-.c.]),
k~ k~ k k

(8)

«) gf ="; ' f(.)A(i')
2

+,
8 F [z,(k„k, k, )(ul nI a. )+H.c.]

kj krak123 k~ k k3

Here A(q, e) is defined in a manner analogous to Eq. (4):

A(q, &o) =t[G„(&o+te,q) —G„(u& —ie, q)],
where

(10)

lim G»(&@+i', q) = dt e'"'G„(t,q),
6~0 w dO

lim G»(e —te, q) =
6~0

dt e'"'G, (t, q),

(12)

z ——i — o- t o.- t'
c

B B

Bt Bt' „1 a

G„,(t, q) =ate(~ t)&[ n;(t), o.;(0)]) =&&o.;(t); n;(0)))„„,
where the last expression in Eq. (12) uses the notation of Zubarev. ' In order to apply Eqs. (8) and (9) to
thermodynamics, we need to establish restrictions on E(q). We get these, together with some other con-
straints, by requiring that this model satisfy sum rules on S(q, &o).

Another form of Eq. (8) can be derived by using the equation for

formed from Eq. (6) and its Hermitian conjugate. Adding this to the equation for (is/st is/st )-P-n-(t )n-(t)
and making manipulations similar to the ones just described, we find

2(o A(q, (o) —A'(q, (u) d(o ~E(q) A(q, &o)+A'(q, (o) d(o

(g,(k„k„k„k,)&o»in", n, o., )+[g,'*(k„k„k„k,)&n" o. n, n, )+H.c.]j

g, (k„k„k„k)&n+ nf ) —g [g,'(k„k„—k„k,)&o.'I o.t- )+H.c.] . (12a)

Here an infinite, temperature-independent part of
the form 2Z; E(q) has been dropped A'(q, &o).in
Eq. (12a) is defined by

A'(q, &o) = i[G»(&@+i',q) —G»(&o —ie, q)],
(12b)

where

G.,(e, q) = «o.;;o';))(e) .
Although Eq. (12a) looks more complicated than
Eq. (8), it might be somewhat easier to use in
some cases because the sums and differences in
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the first two lines of Eq. (12a,) have a, somewhat
simpler form than the individual terms A(q, (()) and

A'(q, ((j). (n. o(- ) in Eq. (12a) is easily related to
A( k„(()):

III. SUM-RULE RESTRICTIONS ON THE QUASIPARTICLE

THEORY AT FINITE T

We get an expression for E{q) by requiring that

2

(() S( q, (d) d(() = (13)

Using the definition

while (o„, ()("„") is rel"ted to the quantity S(q, (())

which is measured in neutron scattering. 'This re-
lation is established in Secs. III and V.

The identity [Eq. (21)] derived in Sec. III can be
used to write other forms of the unknown g, and

g', terms in Eqs. (8) and (12a.). One such form is
presented in the Appendix for the case go =0.

""'(p (t)-p )«-.
The analysis commonly used to prove Eq. (13)
shows that

f
""„S(-„)d„([P;,[P;, ]])

2

We require, combining Eqs. (13), (15), and

that

(18)

q' $(q)([(o.;+ n;), [(n;+ n';), K]])
2%i 2

in which K is given by Eq. (1). We require, in
addition, that E( q) and $( q) be temperature in-
dependent. (Otherwise, K is not a meaningful
Hamiltonian and p; is not a microscopic operator. )
Working out the commutators in Eq. (17)

2

=((q){E(q) E[[—2[@(-t(,k, —q, k)+(;,(q, k, q, k)[ +B[g',( t(, t(, lc, k)+(, ', (t(, t(, k, (j)jj(;)

(18)

where (n-„) = (o(t o.-). Equivalently,

2

&( q) = + g (f 2[g ( —q, k, —q, k) +g ( q, k, q, k )] —3[g,'(- q, q, k, k ) +g,'*(q, —q, k, )]j (n )

- ([g(q, —q, k, —k) —3g,'(- q, k, —k, —q)] (n. o. .)+H.c.j)

In deriving Eq. (18), we have used the fa,ct that

(n
~

o.';
~
n) = (n ( n; ~

n) = 0 for any eigenstate
~
n) of

the quasiparticle Hamiltonian if k w0 (a.s a con-
sequence of momentum conservation) in order to
eliminate terms depending on g, . At T =0, the
relation n„~ )g=0 for the ground state means that

&(q) =q'/2m((q) .

Q (2[g,(- q) k, —q) k)+g(q, k, q, k)]

—3[g,'(- q, q, k, k ) +g,'*(q, —q, k, k )]j (ng)

=Q 1 [g,(q, —q, k, —k)

But E(q) must be independent of T and g(q) js
independent of T. Therefore, the last term in

Eq. (19) must be zero for all temperatures. Fur-
thermore, we have previously shown, using
o; ~g) = 0 for the ground state ~g), that $(q)
=S(q, T =0). Therefore, we have in summary
that

(20)

and

- 3g,'(- q, k, —k, —q)] (n'. n -)+H.c.],
(21)

(d„(q) is the (zero-temperature) Feynman spec-
trum.

To further establish the meaning of Eqs. (8) and

(9), we next consider the relationship of the neu-
tron-scattering function S(q, (()) to the function
A(q, (()) appearing in Eqs. (8) and (9).
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IV. DYNAMICAL STRUCTURE FACTOR S(q,u) IN THE

QUASIPARTICLE MODEL AT FINITE T

Using the fundamental assumption

p;=[&( q)]'"( o;+n;),
we have

f ' (P "«)n.,-;&0)&e

e' '[&o.;(t) n;(0)&+&o. ;(t) n;(0)&

+ & tt;(t) o';(0))

+ & n-;(t) n; (0)& ] . (22)

At zero temperature, the first term of this is the

only one which contributes by virtue of the assump-

tion that n;~g&=0. On the other hand, at finite
temperature the second pair of terms will con-
tribute in a quasiparticle model. We proceed by
expressing the correlation functions in Eq. (22) in
terms of Green's functions of the quasiparticle
operators nq) Qq This is useful in two ways:
First, it permits a connection to be made with
the thermodynamic expression for (K) derived
in Sec. II. Secondly, it permits us to make a con-
nection with the formalism of the Dyson-Beliaev
perturbation theory developed for use with the
microscopic Hamiltonian K of Eq. (3) in the case
that a condensate is present.

This formal connection permits some statements
to be made about the form of the Green's function.
We will use the new form to propose an alternative
form for analysis of the neutron data. We use the
following identity, proved, for example, by
Zubarev'

i '" [«A; B&)(w'+ ie) —«A; B»(sr' —ie) ]e
'"' '

2
(23)

where A and 8 are operators in the Heisenberg
representation and the definition of the Zubarev
notation (&. . . ; . . . )) ha, s already been given in
Eqs. (11) and (12). Applying Eq. (23) to Eq. (22),
we have

S(q, ~) = —[&(q)!~(e '- I)]

Here

x[imG„( —&u+ ie) + ImG»( —&u+ ie)

+ImG„(- (a+i~)+ImG, „(—&u+ic)] . (24)

G„(a)=«o;; o-',»(e),

G,.( ) = « -"; ;&)( ),
G,.(e) = «o;; o=,»(a),

G„(e)= «o';; n »(e),
are the analytic continuations of the Fourier trans-
forms of the retarded and advanced Green's func-
tions as discussed by Zubarev. '

We now note that the Hamiltonian Eq. (1) is for-
mally identical to the one studied by Hugenholtz
and Pines" and others" as long as one bears in
mind the following features.

First, there are no terms in K of the form zqQ q

or n~n~;. Some terms involving products of three
and four n's and Q, ~'s in the microscopic K will
also not have analogs in the quasiparticle K. This
has consequences in that certain terms of the per-
turbation theory will not appear, but it does not
affect the general form of the Dyson equations.

For example, referring to Figure 69 of the book"
by Abrikosov, Gorkov, and Dzyaloshinski, the
first two terms for 520 in that figure will be zero
in this system, but the third term for Z» as shown
in the same figure of Ref. 11 will not be zero in a
perturbation theory for the quasiparticle Hamil-
tonian. The important point is that anomalous
contributions to the Green's functions and self-
energies will appear in just the same way that
they do in the microscopic theory a,nd the forms
of the Dyson equations will be the same, even
though not all the perturbation theory terms con-
tributing in the microscopic case will contribute
in the quasiparticle case.

Secondly, we note that as a consequence of the
assumption that n; ~g& = 0, the anomalous terms in

the Dyson equations will vanish at T = 0 (as they
do not in the microscopic theory). This is why a
consideration of these terms was not essential in

previous explorations of the quasiparticle model,
which focused on T=0.

Thirdly, the number of quasiparticles is not con-
served, so we cannot meaningfully introduce a
chemical potential, and p. should be taken equal to
zero in applying expressions valid for the micro-
scopic theory to this case. The arguments leading
to the Hugenholtz-Pines theorem (as described,
for example, in Sec. 25.2 of Ref. 11) fail. On the
other hand, we do have the conclusion (p. 221 of
Ref. 11) that, as q- 0, and setting p, = 0:

[Z„(q = 0, T) ]' = [Z,(q = 0, T) ]
' .
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We have argued that for the quasiparticle case,
Z»(q, T = 0) = 0, so that Z»(q = 0, T = 0) = 0. Here,
we cannot choose the sign in the relation
Z»(q = 0, T) = + Z22(q = 0, T) on the basis of the argu-
ments used in the microscopic case.

Fourth, one obviously replaces h'q'/2m by E(q)
in this system. It is very easy to write down re-
placements for the vertices but we will not need
them here.

With these remarks, we can write down the fol-
lowing expressions for the Green's functions ap-
pea. ring in Eq. (24):

G„((u, q) = ur, /[(u, (u +(Z„)'],
G„(u, q) = —Z„/ [e,~ + (Z„)'],
G„(&o,q) = G„(-&u, - q),

G„((u, q) = G„((o,q),
where

(o, = ur + E(q) + Z „(—u), —q),

(o = (u —E(q) —Z„(ur, q) .

(25a)

(25b)

(25c)

(25d)

(26a.)

(26b)

Here Z»(~, q), Z»(~, q) are the self-energies de-
fined in Ref. 11. We have assumed, following that
reference, that

Z,2( ~, q) = Z„((o,q) . (27)

We now make use of the restrictions on the self-
energies found to follow from time-reversal in-
variance by Iachello and Rasetti and others":

Z„*,(q, (o) = Z„(q, —ro), (28a)

Z,*,(q, (u) = Z„(q, —(o) . (28b)

We note that Eqs. (27) and (28b) together imply that

Z2p is real, a conclusion not drawn by Iachello and
Rasetti, but which we will assume. We are then
led to the following forms for the self-energies,
following Iaehello and Rosetti except for the as-
sumption that Z2p is real:

Z„(q, (o) =o(q)+i7(q),

Z»(q, —~) = o(q) —ir(q),

Z„(q, ~) = A(q),

(29)

where the functions o, 7, and X are real functions
of the three vector q. These equations contain the
consequences of the genera. l results [Eqs. (27) and
(28) ] and also the important assumption that the
self-energies can be regarded as functions of q
only. This assumption is also made in the analysis
of the microscopic case by Iachello and Rasetti. "
Qne might hope that this would be a more-reason-
able assumption in this quasiparticle ease where
the perturbing part of the Hamiltonian is expected
to be smaller relative to the zero-order part than

it is in the microscopic case. Qn the other hand,
calculations of the self-energy using the Hamilton-
ian" [Eq. (1)] at T= Oh-ave shown that the self-
energy Z» does, in fact, have a very important
frequency dependence leading to a qualitative ex-
planation of the multiphonon peak in S(q, co). If,
however, we confine attention to frequencies well
below the frequency at which this multiphonon peak
occurs (about 2h-16 K at low temperatures), then
we can expect, on the basis of the 7'= 0 calcula-
tions, that the assumptions embedded in Eq. (29)
would be reasonable. Inserting Eq. (29) into Eq.
(25), doing some algebra. , and putting the result
in Eq. (24), we find the following form for S(q, v):

S(q, &o) = —[&(q)/v](e " —1) '

4r(E+ o+ X)(u
X [~' —(E+c)'+ X2]2+ 4v2v2 (30)

V. CONNECTION OF THERMODYNAMICS AND
THE STRUCTURE FACTOR

To make the connection of Eq. (30) with the
thermodynamics, we write out the expressions
for ImG»(&u+ic) and lmG22(&u+ic), which follow
from Eqs. (25) —(30):

r( —3&@' —2ruE'+ E"—X')
ImG»(~+i e) =

(co —E +~ J +47 (d

ImG22(&g+ ie) = ImG»( —e —ic)

= —ImG„( —(a+ i&)

(32
—7(- 3&@'+2uE'+ E"—X2)

(~2 @&2 ~ y2)2+ 4r 2 2

We note that, from Eq. (10)

A(q, (u) = —2rmG„((o+ ie) .

Inserting Eqs. (33) and (31) in Eq. (8), we find

(33)

It is not hard to show that this gives the result
used by Dietrieh et al. ' in analyzing their data if
one takes X-0 and assumes r small. In using Eq.
(30) to analyze data, one can make use of the fol-
lowing facts: . ((q) is S(q) (the static structure
factor) at T=0 as proved in Sec. III. o and X are
even functions of q, and w is an odd function of q
as proved on general grounds by Iachello and
Rosetti. X will be zero at zero temperature. The
q-0 limits are such that 7-0, and cr-1 as q-0.
E(q) is the T= 0 Feynman spectrum, but in view
of the fact that it enters Eq. (30) only in the com-
bination E'(q) = E+ o, one can also fit data by fitting
to the single unknown function E'. Then one can' t
assume; however, that only even powers of q
enter a series for E'.
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2&v+ E(q) r(3ur'+ 2&uE'+ E"—X-')d~

(g4(k„k» k» k4) (n k n-„n1 n1 )
kyk2k3k4

+H. c.] ). (34)

A possible procedure for relating the neutron scat-
tering to the thermodynamics would be to fit the
functions E', X, and v to the neutron data using
Eq. (30), and then use them to compute the first
term in Eq. (34). We discuss some details of the

relation of Eq. (34) to thermodyna. mics below. We
note that, although the peaks in the function to the right
of f(&u) inthefirstlineof Eq. (34) andthose inEq. (30)
will be approximately the same frequencies (be-
cause the denominators a,re the same), the nu-
merators in the two expressions are different. We
discuss below (but do not resolve) the problem of
what to do about the last term in Eq. (34).

We also write the form of the identity [Eq. (12a) ]
which follows from Eqs. (31)-(33) together with

4'(q, &o) = 21mG»(&u+ ie, q)

[from Eq. (12b) ]. One finds

2 ~ (6(d —2E + 2X )T d(d 1 ~ 4RE T 4h)
(+) 3

+ f(~)
(

2 EI2 y2)2 4+2 2 g+ 3 M ( I) f(~)
(

2 E&2 y2)2 472 2
q

(d — + ~ + 7 (0 7T

(d +2(dE —E +X )7 d(d
((u' —E"+ X')'+ 4v'(u' 2vkg, k2

g, k„k„k„k, n-„n-k nk nk —g,' terms
kgb k2g k3~ k4

(35)

The second term of this equation now contains a
term which is quite closely related to S(q, ~) [com-
pare with Eq. (30)]. The frequency factor in the
first term, however, remains quite different.

We next make some remarks on the detailed con-
nection between thermodynamics and the expres-
sion we have found for (K). It is of particular
interest to discover the form of the entropy implied
by the first term in expressions like Eq. (8), be-
cause the theory of Donnelly and Roberts is based
on the expression for the entropy appropriate to
noninteracting bosons:

n- = a-o.-. We haveq q q'

NX

BT „;aBT' (e'q' —1)' '

so that

S~r= . T g2 ~gagq

fzBT' (e+~B —1)'

Changing the variable to

x= Sic,T
we have, because b; i s T independent:

(38)

(39)

S„,=Q ' ' + kB In(1+(n;))8;(n;)
q

(36)
dx = —8;dT/aBT',

so that

(40)

To find the entropy in terms of (X) given by Eqs.
(8) and (12a), we start with the thermodynamic
expression

(—':),= (—':,
and integrate giving

(37)

To clarify the following remarks, we will first
derive Eq. (36) from this, using

xe'
SNI Z B

(
x l)2dx

q S"qP ~—

=Z ( '"' x, i Ii (-,&)),
q

(41)

""2&u+E(q) 1 Bf 1 BA

3 T BT v T BT

where the last line is obtained by an integration by
parts.

Now we turn to Eq. (8) [simila, r remarks could be
made for Eq. (12a)]. Using Eq. (37), one has

where hq is temperature independent and
d(dx—dT+(g term) .
27T

4 (42)
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where

(n;&=(e'" -1) ". (44)

This looks very much like the first line of Eq. (38)
in the noninteracting case. The differences are:
first, that &[2$;+E(q)] appears instead of 8; in
the linea. r term but not in the argument of (n-„).
One might try to use Eq. (43) for the entropy a,s-
suming that 8; was given by the peaks in the neu-
tron-scattering function. The result would not be
a,s poor as simply substituting &[28;+E(q)] for
S; in the noninteracting formula, because most of
the temperature dependence is in (n;). We note,
however, that Eq. (43) cannot be integrated fol-
lowing steps [Eqs. (38)-(41)] to give an entropy of
the same form as that found for the noninteracting
case, but with a temperature dependent 8;. This
is because the step [Eq. (40)] fa.ils: h; is T de-
pendent so the differential dx contains both dh;
and dT. The result can be expressed in terms of
dS;IdT but the resulting integral will not give a,

result like that in Eq. (41). Thus we have not
succeeded in finding a form for the thermodynam-
ics which is the same as the Donnelly-Roberts
result, though our form for (X) is suggestive of
the philosophy of that paper, which was to ex-
press the thermodynamics in terms of the single-
particle peaks in S(q, ~).

VI. CONCLUSIONS AND DISCUSSION

We have pointed out that within the quasiparticle
model at 7 c0 a new functional form arises for
S(q, ~) which is not used in the existing fit to ex-
perimental data [Eq. (30)]. In an attempt to ac-
count for the success' of the approach of Donnelly
and Roberts to the thermodynamics, we derived
theorems analogous to a well-known' one relating
(K) to the single-particle propagator for the micro-
scopic Hamiltonian. We can relate a part of the
resulting expression to the results of neutron-
scattering experiments [Eq. (34) and the following
discussion]. As we discuss at the end of Sec. V,
however, the expression cannot be used to fully
account for the success of the Donnelly-Roberts

To simplify the discussion, we suppose that A. can
be adequately represented by the form

A = 2v) [((u —h)'+ r']

which is true if A. -0, w is small compared to 8 in
our previous expressions, and the temperature
T is much less than 8 (7 «T«h). Then, if
q. «heT, one can write the first term of Eq. (42)
as

r 2$;+E(q) 1 S(n;)
3 T aT

dT
q

approach though with an appropriate choice of
g„g,', our results will certainly be numerically
consistent with those of Ref. 1.

Comparing Eq. (24) with Eqs. (8) and (12a), one
sees that the anomalous Green's functions G» and

G» enter S(q, u), but not our expressions for the
energy. It is tempting to try to find an expression
for (K) which involves these anomalous Green's
functions but not the unknown part depending on

g, in Eqs. (8) and (12a). One can make some steps
in this direction by using the identity [Eq. (21)].
This has been done for the case in which g,'= 0 in
the Appendix.

Unfortunately, the terms involving g, and g4 in
Eqs. (8) and (12a.) are difficult to estimate. The
terms involving g,' are expected to be small in the
temperature range of interest. Light-scattering
measurements give only very limited information
about the terms involving g„both because the
light-scattering measurements involve a very
limited range of momenta and because there are
fundamental difficulties with using this approach
to describe the light-scattering data. ' We have
emphasized the use of Eqs. (8) and (12a) instead
of Eq. (9) because the spirit of the Hamiltonia. n

[Eq. (1)] is that the terms are successively
smaller, so that an expression for (K) involving
an unknown part depending on g, and g4 is prefer-
able to an expression involving an unknown part
depending on g, . By judicious combined use of
Eqs. (8) and (9), it may be possible to learn a.

substantial amount about the relative importance
of three- and four-quasiparticle interactions in
the thermodynamics.

We add some further comments on the relation-
ship of this work to that of Cohen'. If we accept
Cohen's Hamiltonia. n (equivalent to getting g, = 0,
g,'=0), then Eqs. (9), (10), (25a), (26a), (26b),
(29), (30), and (37) do establish a direct relation-
ship between the thermodynamics and S(q, ~).
This represents an advance on Cohen's work,
which only established this relationship to leading
order in the interactions. Qn the other hand, this
result is not very useful because g, cannot be ne-
glected, as shown by Jackson. ' Secondly, we note
that in

Cohen�'s

model ( g, = 0, g,' = 0) we would get
X= 0 in Eq. (30) so that Eq. (30) reduces to a sum
of two Lorentzians, which is Cohen's result for
S(q, v). Next we note that both this work and Ref.
5 make the assumption of Eq. (4a). [This is the
equation preceding Eq. (20) of Ref. 5 or equiv-
alently the retention of only the first term in Eq.
(20). ] The a.ssumption in Eq. (4a) is the weakest
point in the quasiparticle model used in this paper,
as is further discussed below. Finally, our re-
sults are consistent with the Cohen result that, at
low temperatures when the quasiparticle inter-
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actions are weak, the noninteracting entropy S
can be used with the quasiparticle energies 8,
taken as the positions of the frequency peaks in
S(q, ~). At higher temperatures, we agree with
Cohen that "there appears to be no simple con-
nection, " but in the equations cited at the beginning
of this paragraph we have established a connec-
tion in closed form within Cohen's model (g, = O, g,'
=0). When g, WO, and g4'40, wefindnodirectcon-
nection at elevated temperatures; but we have e stab-
lished that part of the entropy can be related to
parameters characterizing S(q, ~) [Eq. (42)].

The calculation of g4 and g4 by Jackson's method
will eventually make an exact evaluation of all the
expressions in this paper possible. Some static
correlation functions of the type involved have
recently been evaluated from first principles
using Monte Carlo techniques. " It should be em-
phasized, however, that the expressions pre-
sented here should be useful in analyzing data to
yield information about the quasiparticle model,
even without knowledge of g4 and g,'. Furthermore,
Eq. (9) could presently be evaluated using Jack-
son's result for g, . We leave this calculation to
the future.

In further work, it will be necessary to modify
the quasiparticle model in order to take account
of excluded volume effects. ' It is likely that such
a modification will result in a change in the as-
sumption [Eq. (4a) j along the lines implicit in
Jackson's approach' to microscopic justification
of the quasiparticle model. We anticipate, how-
ever, that at least at low temperatures these
modifications may not affect the predictions of
the quasiparticle model for frequencies in the
neighborhood of the roton energy. Thus Eq. (30)
may remain valid. The identities [Eqs. (8) and

(12a) ] do not depend on Eq. (4a) and we can antic-
ipate that they will remain unchanged.
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g4(k~, k2, k3, k@)&a a a1 Q )
ky, k2, k3, k4

n„- 2 g k„k„k„k, n„-

k2 kg

+Q (n;) Q g,(k„-k„k„-k,,)(n-„)
k2 kg

kg, kg
0 ~

ks, k4

(A2)

The first terms in this equation can be evaluated
directly from the Green's functions defined in the
text and related therein to the neutron-scattering
function. Alternatively, one can rewrite Eq. (A2)
using Eq. (21) to give

—Q g, (k„—k„k„k,) [&n -)(&n.„) &n,- ))
kj, ko

+ &n; ) *(&~~;,& —&n; &)1

——P g, (k„k„k„k,)& ' an' a. a- &, -. -

ky, k2

k3, k4

In these equations,

&".-&=&; ™-.-&

&n-)*=&a' a.-'). -
kl -kl kl

APPENDIX: REDUCTION OF g4 TERM IN EQ. (8) TO

SINGLE-PARTICLE TERMS AND A

FLUCTUATION TERM

The correlation function in the g, term is written

&n1 o " a.-- a. - &
= &a. -' a- &&a. -' n- ) + &o-" a- )&a-' a.- )kl k2 k3 k4 kl k3 k2 k4 kl k4 k2 ks

+ &~;" o &&o; ~-. &+ &"-' ar' ~-. "-&"

(Al)

where this equation defines &a.- a- cy- a ),. -Using
k2 kg k4

the symmetry properties of g, (k„k„k„k,), the
g, term in Eq. (8) becomes

*Research supported in part by NSF Grant No. GH-
34890 and No. DMR72-03221-A01, and AFOSR Grant
No. 76-2880.

)Permanent address: School of Physics and Astronomy,
University of Minnesota, Minneapolis, Minn. 55455.

'R. Donnelly and P. Roberts (unpublished). The entropy
S can be shown to be an upper bound on the true en-
tropy. Earlier work is described in P. J. Bendt et al. ,

Phys. Rev. 113, 1386 (1959); O. W. Dietrich et zl. ,
Phys. Rev. A 5, 1377 (1972).

2R. Hastings and J. W. Halley, Phys. Rev. A 10, 2488
(1974).

3A. Zawadowski, J. Ruvalds, and J. Solana, Phys. Rev.
A 5, 399 (1972); H. W. Jackson, Phys. Rev. A 8, 1529
(1973); l. M. Khalatnikov, An Introduction to the Theory
of SnPe~uidity (Benjamin, New York, 1965), p. 42.



l4$4 J. %. HALLF Y A1VD R. H AS TIN 6 S

See also Sec. 6.3 of Ref. 7.
4H. W. Jackson, Phys. Rev. A 8, 1529 (1973).
~M. Cohen, Phys. Rev. 118, 27 (1960).
L. P. Kadanoff and G. Baym, Quantum Statistical Me-
chanics (Benjamin, New York, 1962), p. 14.

A. D. B. Woods and R. A. Cowley, Rep. Prog. Phys. 36,
1135 (1973); Eq. (6.11).

D. N. Zubarev, Usp. Fiz. Nauk. 71, 71 (1960) [Sov.
Phys. -Usp. 3, 320 (1960)j.

~P. Kleban, Phys. Lett. A49, 19 (1974); P. Kleban and
R. Hastings, Phys. Rev. B 11, 1878 (1975).

N. M. Hugenholtz and D. Pines, Phys. Rev. 116, 489
(1959).

~~A. A. Abrikosov, L. P. Gorkov, and I. F. Dzyaloshinski,
Methods of Quantum Field Theory in Statistical Physics,
edited and translated by R. A. Silverman (Prentice-Hall,
Englewood Cliffs, N. J., 1963).

' F. Iachello and M. Rasetti, Phys. Rev. B 12, 134 (1975).
These relations are also given by P. Hohenberg and
P. Martin, Ann. Phys. (N.Y.) 34, 291 (1965).

~3C. Campbell and F. Pinski (unpublished).


