
PHYSICAL REVIE% B VOLUME 15, NUMBER 3 1 FEBRUARY 1977
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The off-diagonal long-range behavior of interacting Bose systems is studied in one, two, and three dimensions

and also for the interdimensional case. The one-dimensional result is new while the two- and three-

dimensional results present a rederivation of known results. A qualitative analysis of the interdimensional case
is presented showing the way by which the behavior of the single-particle reduced density matrix is changed
when going from v —1 dimensions to v dimensions.

I. INTRODUCTION

In a recent paper by the author, ' an approximate
expression for the single-particle reduced density
matrix was obtained in terms of the measurable
structure factor Bnd excitation spectrum. The aim
of this paper is to use that expression and the
known behavior of the structure factor and ex-
citation spectrum at large wavelengths to derive
the behavior of the single-particles reduced den-
sity matrix at large distances and to compare
the results with previous derivations.

In Sec. II the behavior of the one-dimensional
system is discussed. The T=O result shows that
at large distances the single-particle reduced
density matrix behaves like an inverse power law
of the distance where the power is determined by
the density and the velocity of sound. Considering
the partly soluble model of impenetrable bosons' '
it is found that the obtained behavior obeys an in-
equality derived by Lenard' and in fact agrees
with his conjecture about the actual behavior. At
finite temperature the result of this section dis-
agrees with the approximate result of Kane and
Kadanoff, ' who assumed the existence of Bose-
Einstein condensation at T = O.

The problem of a phase transition in a two-
dimensional system possessing a continuous
symmetry has been the subject of many experi-
mental and theoretical papers. ' " Proofs were
given that no ordering can occur in such a sys-
tem. ' ' Pn the other hand some evidence appeared
that although the order parameter remains zero,
these systems undergo a phase transition at some
finite temperature. ""

The arguments given by Berezinsky" and
Lasher" for the existence of a phase transition in

a two-dimensional interacting Bose system were
based on the behavior of the single-particle re-
duced density matrix at low temperatures and

large distances. In Sec. III their result is ob-
tained by a different method and this supports the
idea that a phase transition does occur at a finite

temperature.
In Sec. IV the three-dimensional system is dis-

cussed and the obtained behavior of the single-
particle reduced density matrix agrees with pre-
vious results of Chester and Reatto. " It is argued
that this result should serve as a consistency con-
dition to be obeyed by numerical calculations in
which the condensed fraction is obtained by estima-
ting the asymptotic behavior of the single-particle
reduced density matrix, and where uncertainty in
the results is mainly due to using a finite system
for the calculations. ""

In Sec. V the interdimensional behavior is ob-
tained. It is qualitatively shown that for a v-
dimensional system that is infinite in v- 1 di-
mensions and finite in one, the single-particle
reduced density matrix shows (v —1)-dimensional
behavior at very large distances, while v-di-
mensional behavior is encountered at distances
very large compared to the characteristic micro-
scopic distance and very small compared to the
extent of the finite dimension.

II. ONE-DIMENSIONAL SYSTEM

The approximate expression for the single-
particle reduced density matrix obtained in Ref.
1 is given for low temperatures by"
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%'here p 18 the deQslty of particles, N ls the num-
ber of particles, S is the structure factox', and

~, is the excitation energy. In the volume limit
this functloQ 18 given by

(0'(0)0(r)& = pe'I"""'"'fa(r),
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where c is the sound velocity at T =0.
Using the same considerations
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where R, contains the r- independent contx'ibution
from the upper limit of the integral as well as
lower x- dependent contributions. Consequently,

( pl(0)q(~)) pC ez (~/~)mc/aapa

and v denotes the dimension of the system.
Assuming that for small, lq l, S, is linear in

q I, and s, is given by the Feynman relation

&o, = 8'qa/2mS, ,

one cRQ ea81ly vex'1fy th6 following equRtlons fol
the one- dixnensional system:
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Equatlolls (7)- (10} llllply 'tllat Bose-Elnsteln coll-
densation exists neither' at finite temperature nor
in the ground state.

Let us see how f,(r) behaves for large but finite

l
rl. To estima. te this behavior one may cut off

the integral of the oscillating part at some small
q = c//r, where o is independent of r (see Ref. 19)

where R 18 given by

ft =f, (a) —(mc/2wpff) inn/a.

and, according to the previous arguments, ap-
proaches a, finite constant when x becomes very
lax'ge.

It is interesting to compare this result with the
results obtained by Lenard' for the momentum dis-
tribution for the model of impenetrable bosons.
Lenard was able to show that for all x

( 0'(0) 4(a )) (e/I/pa )"',—
and conjectured that at large z,

( ('(0)0(~)) ~ (1/~)'".
The sound velocity in that model is given by

Hence the power law predicted by Eq, (14) agrees
with Lenard's conjecture. For T&0 one has to
look at the behavior of fa(a) at large a' The Feyn-.
man relation may be used, and the exponentlals
may be expanded (for small q} to obtain

dq -2fa(a") = —— a„(l—cosqr) ——Itp, 4S,(ea"a- 1)

leap
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where C is a constant to leading ordex' in x.
For' 1Rx'ge 7'~
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This result differs from the result of Kane and
Kadanoff which may be written

g~(0) i{(a))r „=n,e-"/ "o,

where J'o 18 R decx'6Rslng function of temper'atux'6
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that tends to infinity at zero temperature. In their
derivation as well as in the final result it is as-
sumed that n„ the condensed density at T = 0, is
finite. This a.ssumption contradicts some ap-
proximate results and some rigorous model cal-
culations that show that the one dimensional in-
teracting Bose system is not Bose condensed
even in the ground state. '"'

III. TWO-DIMENSIONAL SYSTEM

In two dimensions the following equations hold:

so that at very low temperatures Eq. (30) is ident
ical with the results of Berezinsky and Lasher who
used this kind of behavior in their arguments for
the existence of a phase transition in the above
system. The alternative derivation presented
above supports the belief that the approximate
results of Berezinsky and Lasher are correct and
thus supports the idea that the system undergoes a
phase transition at some finite temperature. The
author hopes to come back to discuss superfluidity
at low temperatures in future work.
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IV. THREE-DIMENSIONAL SYSTEM

For T= 0 the single-pa. rticle reduced density
matrix can be written again as

(((' (0)g(r)) = e~('"'f, (~)e~('"'

(I+ [f,( ) -f,(")]/f,( )] (33)
Equations (21)-(23) imply that at T=0 Bose-Ein-
stein condensation does exist, while Eqs. (21),
(23), and (24) imply that at any finite temperature
Bose- Einstein condensation does not exist. For
T = 0 one may write

(0'(0)(((r)), .= e"'"f,(r)

for la.rge r (Ref. 19):
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The function f, (r) —f, (~) is given for large r by"

The other function needed is

f,(r) —f,(~) ~ 1/r' for large r,
so tha, t

(35)
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It is also easy to check that for la.rge x

f,(r) —f,( ) "1/r',
so that one can write for large ~

(27)

(28)

(g~(0) P(r)) = n, [I+ (&nc/4&('ph ) (1/r') ]. (36)

Numerical calculations of ~p are really calcula-
tions of the single-particle reduced density ma, —

trix that are done for a. finite system for large x
that must be small compared to the size of the
system. This procedure is a source of uncertainty
in the results. Equation (36) suggests a consis-
tency criterion that should be obeyed by the numer-
ical results:

(g~(0)(t&(r)) = [1n(m+c/4((ph) (1/r)], (29) , (g ~(0)((&(r)) n, mc-
lim x'
r - np 4w'pk (37)

where np is the density of the condensate at T=0.
At T &0 one has to study the behavior of f,(r).

Using the Feynman relation and expanding the ex-
ponentials for small ]q t

and also using the same
arguments as for computing f, (r) for the one di-
mensional case, it is easily seen that

f,(r) = —(m/27(ph'P) Ino. "/r+ R (30)

where R' is a constant to leading order in r. As a
result

(0'(0)0(r)) = pe'&("'"'f ( ) (c "/r) """
It is easily seen that

(32)

so that in a numerical calculation, the size of the
system must be large, compared to a region of
la.rge enough r where Eq. (36) should be obeyed.

The estimation of the long-range behavior at
T &0 is entirely equivalent to this estimation at
T = 0 in two dimensions, since one may expand the
exponentials and use the Feynman relation at
small ~q]. The expression for large and finite r
ls

((("(0)(((r))= n. ,).] I+ (m/4«'pi3) (I/r) ], (38)

where np lp), Q
is the density of the condensate at

the given temperature. In obtaining Eq. (38)
one uses again the fact that f,(r) —f, (~) is very
short ranged.
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where the allowed k's are

k= [(2v/L) n„(2v/L)n„(2v/D)n, ]. (4o)

n„n„n„are integers and a and a' are boson crea-
tion and destruction operators, respectively.

It is easily verified using the procedures de-
scribed in Ref. 1 that the single-particle reduced
density matrix is given by Eq. (1), where the sum-
mation is restricted to the allowed vectors of Eq.
(39). Since it is obvious that now the single
particle reduced density matrix will depend on
the direction of r as well as on its magnitude, let
us take r perpendicular to the z axis.

At T=O and L-~
S —1

d q coscj'1

00

—
D(2 )2 g Ag()

P 7T
(41)

where

S2[q+ (2wn/D)kl —1
4S[q+ (2'/D)k]

(42)

B= dq1 ",S'[q+ (2'/D)k] 1
pD(2v)' ~ 4S[q+ (2'/D)k]

(43)

q is perpendicular to the z axis and k is a unit
vector in the z direction. Assuming that the
structure factor depends linearly on the absolute
value of the wave vector, one obtains that Bt very
large distances the behavior of f, (r) is two di-
mensional because the functions g„(r) approach
zero faster than any decreasing power of x when
x tends to infinity. On the other hand one expects
that for small D the behavior will be two dimen-

V. INTERDIMENSIONAL BEHAVIOR

It is interesting to understand how the behavior
of the single-particle reduced density matrix de-
pends continuously on the dimensionality of the
system, namely, how does it change when one
increases the thickness of a v-dimensional box
that is small compared to its other dimensions.
Let us consider a specific ex3mple.

Let a system of N bosons enclosed in a box of
sides L && L && D, parallel, respectively, to the
xy and z axes, with periodic boundary conditions,
be described by the Hamiltonian"

2 v/[Q,
' —(2'/D)'] ' ~ ' &&r && D/n, (45)

for which g„.(r) is proportional to r ' with a pro-
portionality constant that does not depend on n'.
Also g'„(r) is effectively cut off at r-D/n'. In
order to estimate the long-range behavior of f, (r),
let us assume a sharp cut off at r =D/n', then

~P oo Df (r) =B- —1+2 Q 6 —,—r
n'=Z

Let R =D/M be in the range defined by Eq.
(45):

f, (R )=B (c'/R ) (1i—2m)

= R —c'D(1/DR + 1/R' ) .

(46)

By Eq. (44), R «D, so that Eq. (47) implies a,

x ' correction to the constant term that is charac-
teristic of the three-dimensional system. Equa-
tion (45) implies also R » 1/Q, , that is of the
order of the microscopic length parameters of
the potential and the density which are more or
less of the same order of magnitude in a realistic
situation. For all other cases of interdimensional
behavior one arrives at the same conclusions.
The very-long-range behavior is v- 1- and &-

dimensional behavior starts to be built up at dis-
tances large compared with microscopic dis-
tances and small compared with the thickness of
the system.

VI. CONCLUSIONS

The long- range behavior of the single-particle
reduced density matrix was obtained in one, two
and three dimensions for the interacting Bose
system. The basic assumption was that for small
Iq I

the structure factor is linear in Iq I
and that

the structure factor and excitation spectrum are
connected by the Feynman relation. This as-
sumption is very plausible since it is based on
general arguments that are dimension independent
and it was also verified by model calculations.

sional going over to three-dimensional behavior
when D is increased. In order to clarify what
happens, let us employ a qualitative, crude,
picture.

Let S(Q) be linear in Q for Q & Q, and let n be a
fixed integer. If D is large enough, there is a
range of Iql obeying

(2''/D) ' «q' «Q,' —(2''/D)'
for all n™n, (44)

where Iq I
is the absolute value of the two-dimen-

sional vector q. In this range S(q+ (2vn'/D)k) is
proportional to IQI. For small IqI it approaches
a constant. This means that there is a, range of
J' S
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The one dimensional results are new. The one
dimensional result at T = 0 was found to agree
with a model calculation. At finite temperature
the result of this paper differs from a previous
result that assumed the existence of Bose-Ein-
stein condensation in the ground state in contra-
diction with approximate and exact model calcu-
lations. The results obtained for two and three
dimensions are not new and their importance lies

in increasing the credibility of the results as well
as of the employed approximation schemes. The
interdimensional behavior was also studied and it
was qualitatively shown that for a system of finite
thickness in one dimension and infinite in all the
others the v-dimensional behavior is encountered
at distances that are small compared with the
thickness and large compared with the charac-
teristic microscopic distances.

M. Schwartz, Phys. Rev, A 10. 1858 (1974).
~M. Girardew, J. Math. Phys. 1, 519 (1960).
3A. Lenard, J. Math. Phys. 5, 930 (1964).
4T. D. Shultz, J. Math. Phys. 4, 666 (1963).
5E. H. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963).
6J. W. Kane and L. P. Kadanoff, Phys. Rev. 155, 80

(1967).
N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17,
1307 (1969).

P. C. Hohenberg, Phys. Rev. 158, 383 (1967).
~M. E. Fisher and D. Jasnow, Phys. Rev. B 3, 895

(1971); Phys. Rev. Lett. 23, 286 (1969).
' M. Bretz, Phys. Rev. Lett. 31, 1447 (1973).
'V. L. Berezinsky, Zh. Eksp. Teor. Fiz. 61, 1144
(1971) [Sov. Phys. -JETP 34, 610 (1972)].
G. Lasher, Phys. Rev. 172, 224 (1968).
An extensive list of references on two-dimensional
phase transitions with continuous symmetry may be
found in J. Villain, J. Phys. D 36, 581 (1975).

4G. V. Chester and E. Reatto, Phys. Rev. 155, 88 (1967).
W. L. McMillan, Phys. Rev. 138, A442 (1965).

6D. Schif and L. Verlet, Phys. Rev. 160, 208 (1967).
'7M. H. Kalos, D. Levesque, and L. Verlet, Phys. Rev.

A 9, 2178 (1974).
Equation (1) is expected to hold for r's large compared

to 1/~g, where Q, is the wave vector of largest norm
for which the Feynman relation ~~ =h q /2mSq ls obeyed
to a good approximation. This implies r's large com-
pared to the microscopic distances appearing in the
description of the system, i.e. , the range of the po-
tential and the interparticle distance.

'~The distance r may always be taken large enough so
that the dominant contribution to the q integration
comes from the region of very small

~ q~ for which.
S, =gl~li2~o.
As stated in Sec. II. this expression should be valid
at low temperatures. Comparing it to the hydrody-
namic result

(0 ~(r)4 (0)~ = np[1+(m/4nh pzP)(1/r)],

where pz is the superfluid particle density, we see
that the reduction of the superfluid density, important
at higher temperature, is not taken into account.
The particles may be said to interact via a two-body
potential v (r) defined by

only when D is large compared to the range of v(r).


