p-wave pairing in metals

I. F. Foulkes and B. L. Gyorffy

H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom

(Received 8 December 1975)

It is argued that for most metals the pairing force is not much weaker for Cooper pairs in a p state than in the conventional s state. Because in an antisymmetric p state the short-range Coulomb repulsion is not effective, p-wave pairing can be under certain circumstances, energetically favorable. A theory for pair breaking by impurity scattering is presented and it is concluded that p-wave superconductivity should be observable in a number of very pure metals such as Rh, W, Pd.

I. INTRODUCTION

An efficient way of constructing a theory of the superconducting transition temperature T_c is to consider the electron-electron scattering vertex $\Gamma(T)$ which describes the exchange of a phonon between two electrons in the normal state of the metal and seek the temperature T_c where $\Gamma(T)$ diverges.¹ Since $\Gamma(T)$ plays the role of a particle-particle scattering amplitude a divergence in $\Gamma(T)$ may be interpreted as being due to the appearance of a bound state: that is to say, at T_c two electrons at the Fermi energy ϵ_F can form a bound pair with energy less than $2\epsilon_F$. This instability leads to the superconducting state. A divergence in the *s* channel leads to the conventional BCS state. We shall

assume that a divergence in the *p* channel signals the transition to a superconducting state where the Cooper pairs have a relative angular momentum l = 1 in units of $h.^{2,3}$

II. *p*-WAVE SUPERCONDUCTING TRANSITION TEMPERATURE T_c

We consider two electrons with a stationary center of mass and total energy which, when measured from ϵ_F , is zero. We then describe the scattering process taking the pair from the state $|\vec{k}, -\vec{k}\rangle$ to the state $|\vec{k}', -\vec{k}'\rangle$ by the scattering vertex function $\Gamma(\vec{k}, \vec{k}'; \epsilon_n - \epsilon_n)$. At the discrete imaginary frequencies $\epsilon_n = i\beta^{-1}\pi(2n+1)$, $\Gamma(\vec{k}, \vec{k}'; \epsilon_n - \epsilon_n)$ is determined by the following difference integral equation:

$$\Gamma(\vec{k},\vec{k}';\epsilon_n-\epsilon_{n'}) = I(\vec{k},\vec{k}';\epsilon_n-\epsilon_{n'}) - \beta^{-1} \sum_{n''} (2\pi)^{-3} \int d^3k'' I(\vec{k},\vec{k}'';\epsilon_n-\epsilon_{n''}) G(\vec{k}'',\epsilon_{n''}) G(-\vec{k}'',-\epsilon_{n''}) \Gamma(\vec{k}'',\vec{k}';\epsilon_{n''}-\epsilon_{n''})$$
(1)

where $G(\vec{k}, \epsilon_n)$ is a finite-temperature one-particle Green's function for Bloch electrons renormalized by the electron-phonon interactions, and the irreducible scattering kernel $I(\vec{k}, \vec{k}'; \epsilon_n - \epsilon_{n'})$ is that appropriate to the exchange of one phonon.¹ In deriving Eq. (1) it was assumed that $I(\vec{k}, \vec{k}'; \epsilon_n - \epsilon_{n'})$ does not depend on the spin orientations of the scattering electrons and the spin variables have been eliminated from the problem.

Let us describe the electron-phonon interaction by the Hamiltonian

$$H_{\text{int}} = \sum_{\vec{k}, \vec{k}'; \nu} g_{\vec{k}, \vec{k}'; \nu} a_{\vec{k}}^{\dagger} a_{\vec{k}'} (b_{\vec{k}-\vec{k}'; \nu} + b_{\vec{k}'-\vec{k}; \nu}^{\dagger}),$$

where $a_{\vec{k}}^{\dagger}, a_{\vec{k}}$ create and annihilate Bloch electrons and $b_{q;\nu}^{\dagger}, b_{q;\nu}$ create and annihilate phonons with wave vector \vec{q} and mode index ν , respectively. Furthermore, assume that $I(\vec{k}, \vec{k}'; \epsilon_n - \epsilon_{n'})$ only depends on the angle between \vec{k} and $\vec{k'}$. Then, to a useful approximation, we may write

$$I(\mathbf{k},\mathbf{k}';\boldsymbol{\epsilon}_n-\boldsymbol{\epsilon}_{n'}) = \begin{cases} \sum_{l} I_l P_l(\hat{k}\cdot\hat{k}') & \text{for } |\boldsymbol{\epsilon}_n-\boldsymbol{\epsilon}_{n'}| \leq h\omega_c, \\ 0 & \text{otherwise,} \end{cases}$$
(2)

where ω_c is a cutoff frequency and

$$I_{l} = -\sum_{\nu} \int \frac{d^{2}k}{v_{F}} \int \frac{d^{2}k'}{v_{F'}} \left| g_{\vec{k}, \vec{k}'; \nu} \right|^{2} \frac{2}{\omega_{\vec{k}-\vec{k}'; \nu}} P_{l}(\vec{k} \cdot \vec{k}') \\ \times \left(\int \frac{d^{2}k}{v_{F}} \int \frac{d^{2}k'}{v_{F'}} \right)^{-1}.$$
(3)

Note that in this approximation the *s*-wave part of the effective electron-electron interaction $I_{l=0}$ is always attractive. However, for l > 0, I_l may be negative or positive depending on the band structure.

15

1395

We may further assume that $\Gamma(\vec{k}, \vec{k}'; \epsilon_n - \epsilon_{n'})$ will also have the form given in Eq. (3). This assumption defines Γ_i . We can now derive, from Eq. (1), an algebraic expression for Γ_i and show that the temperature where it diverges is given by

$$T_{c, l} = (\Theta_D / 1.45) \exp[-(1 + \lambda_0)\lambda_l^{-1}], \qquad (4)$$

where Θ_D is the Debye temperature and $\lambda_I = -n(\epsilon_F)I_I$. The prefactor on the right hand side of Eq. (4) differs from its BCS value of $1.14\Theta_D$ only because we have chosen the cutoff frequency ω_c so that this factor would agree with McMillan's solution of the strong-coupling gap equations⁴

$$T_{c,0} = \frac{\Theta_D}{1.45} \exp\left(\frac{-1.04(1+\lambda_0)}{\lambda_0 - \mu^*(1+0.62\lambda_0)}\right),$$
 (5)

where μ^* is a pseudopotential designed to describe Coulomb repulsion between the electrons.

Note now that for l = 0 Eq. (4) agrees well with the well-tested⁴ result given in Eq. (5) except for the neglect of the Coulomb repulsion between the elec-

trons in our theory. Of course we are interested in Eq. (4) for l = 1. One might then be tempted to think that here too Eq. (4) should be corrected by a term analogous to μ^* in Eq. (5). However, a moment's reflection will reveal that this is not the case. In an antisymmetric p state the probability amplitude that members of a Cooper pair are at the same spatial point is zero. Because the Coulomb interaction between the two electrons is well screened and therefore short ranged in the p state the repulsion will be much less effective than in the symmetric s state. Therefore, in discussing $T_{c,l}$ we shall use Eq. (4) as it stands for l = 1 but use Eq. (5) for l = 0.

III. ESTIMATING $T_{c,1}$

We now want to estimate λ_1 and calculate $T_{c,1}$ from Eq. (4). To do this we recall that, to a reasonable approximation, the high-temperature resistivity of a solid may be written as⁵

$$R = \frac{6\pi k_B T}{e^2 h} \sum_{n,\nu} \int \frac{d^2 k}{v_F} \int \frac{d^2 k'}{v_F'} |g_{\vec{k},\vec{k}';\nu}| \frac{1}{\omega_{\vec{k}-\vec{k}';\nu}} |\vec{v}_n(\vec{k}) - \vec{v}_n(k')|^2 \left(\sum_n \int \frac{d^2 k}{v_F} \vec{v}_n(\vec{k})\right)^{-2}, \tag{6}$$

where $\vec{v}_n(\vec{k}) = \hbar^{-1} \vec{\nabla} \epsilon_{k,n}$ and the other symbols have their conventional meanings. Note now that if we make an effective-spherical-Fermi-surface approximation by taking $|\vec{v}_n(\vec{k}) - v_n(\vec{k}')|^2$

 $= \langle v^2 \rangle (1 - \hat{k} \cdot \hat{k}')$, with $\langle v^2 \rangle$ defined as the average of $\vec{v}_n^2(\vec{k})$ over the Fermi surface, *R* may be written as a linear combination of λ_0 and λ_1 . In fact we find that

$$\lambda_1 = \lambda_0 - (4k_B)^{-1} \hbar \omega_p^2 \left(\frac{dR}{dT}\right)_{T > \Theta_D},\tag{7}$$

where the plasma frequency is defined by

$$\omega_p^2 \!=\! \tfrac{4}{3} \pi e^2 \sum_{\vec{\mathbf{k}},\,n} \vec{\mathbf{v}}_n^2(\vec{\mathbf{k}}) \delta(\epsilon_F - \epsilon_{\vec{\mathbf{k}},\,n}). \label{eq:phi_prod}$$

Our estimates of λ_1 and $T_{c,1}$ using Eqs. (4) and (7) are shown in Table I. For superconductors λ_0 was obtained from measured values of $T_{c,0}$. For Pd we used a calculated value.⁸ We took $(dR/dT)_{T>\Theta_D}$ and ω_p^2 from experiments.

Admittedly Eq. (7) represents only a rough approximation for λ_1 . Nevertheless, we may conclude from Table I as a whole that while λ_1 is always smaller than λ_0 it is reasonable to expect that for a number of metals $T_{c,1}$ is of the order of 1 K.

Of course we may expect to observe *p*-wave superconductivity only if $T_{c,1} > T_{c,0}$. To clarify how such a situation may arise in our calculation we

calculated $T_{c,0}$ from Eq. (5) using the same values of Θ_D and λ_0 as in our calculation for $T_{c,1}$. As is customary we took $\mu^* = 0.13$ for transition metals. The results are shown in Table I. Evidently, the decrease in λ on going from l = 0 to l = 1 is frequently overcompensated by μ^* being zero in our formula for $T_{c,1}$. In physical terms this implies that though the pairing force is less effective in a

TABLE I. Values of parameters involved in estimating λ_i , and results for λ_i , $T_{c,i}$, and α for a number of transition metals. For explanation and discussion see text.

	λ_0	(eV)	$ \begin{pmatrix} \frac{dR}{dT} \\ \mu\Omega/\mathrm{K} \end{pmatrix}_{T>\Theta_0} $	λ_1	<i>T</i> _{c,1}	<i>T</i> _{c,0}	α (×10 ³)
Nb Mo W Pd	0.82 ^a 0.41 ^a 0.29 ^a 0.31 ^b	9.1^{d} 7.4 ^d 5.04 ^e 5.63 ^f 2.80 ^g	0.04 0.027 0.029 0.030	0.409 0.226 0.199 0.192 0.280	1.94 0.61 0.41 0.20 1.7	8.00 0.84 0.01 0.028	$3 \\ 1.3 \\ 1.3 \\ 4.7$
Ir	0.37 ^c	$3.6^{\rm h}$	0.028	0.325	4.32	0.33	$\begin{array}{c} 1.8 \\ 2.1 \end{array}$
Rh	0.44 ^c	5.2 ⁱ	0.025	0.356	5.80	1.42	
^a See Ref. 6.				^f See Ref. 11.			
^b See Ref. 7.				^g See Ref. 12.			
^c See Ref. 8.				^h See Ref. 13.			
^d See Ref. 9.				ⁱ See Ref. 14.			
^e See Ref. 10.				^j See Ref. 15.			

1397

p state than in an *s* state the lack of Coulomb repulsion in the former might make the formation of Cooper pairs in the *p* state energetically more favorable. Clearly, the role played by the core repulsion between ³He particles in superfluid ³He is entirely analogous to the above effect.³ Also, Appel and Heyszenau¹⁶ had reached the same conclusions in the context of alkali metals. However their formula for $T_{c,1}$ involves the term $1 + \lambda_1$ in place of $1 + \lambda_0$ in Eq. (4). As this factor arises from the self-energy of the electrons which then scatter from each other, the expression $1 + \lambda_0$ is clearly the appropriate one.

Of course, the case of Pd should be considered separately. Like ³He Pd sustains long-lived paramagnetic spin fluctuations. These are believed to be responsible for the nonoccurrence of ordinary s-wave superconductivity in Pd.¹⁷ However, they should enhance *p*-wave pairing.¹⁸ Thus, $T_{c,1}$ in Table I for Pd should be bigger rather than smaller.

IV. EFFECTS OF IMPURITIES

Before attempting to assess whether p waves should be observable or not we must discuss the effects of impurity scattering on $T_{c,1}$. As has been frequently remarked² these are drastic and constitute the main obstacle to the occurrence of the phenomenon.

In the presence of a random arrangement of impurities the Green's function $G(\vec{k}, \vec{k}'; \epsilon_n)$ is no longer diagonal. Moreover, Eq. (1) must be replaced by one for the ensemble-averaged vertex part $\vec{\Gamma}(\vec{k}, \vec{k}'; \epsilon_n - \epsilon_n)$. Evidently, we must write

$$\begin{split} \overline{\Gamma}(\vec{\mathbf{k}},\vec{\mathbf{k}}';\boldsymbol{\epsilon}_{n}-\boldsymbol{\epsilon}_{n'}) = &I(\vec{\mathbf{k}},\vec{\mathbf{k}}';\boldsymbol{\epsilon}_{n}-\boldsymbol{\epsilon}_{n'}) \\ &-\beta^{-1}\sum_{n''}\left(2\pi\right)^{-6}\int d^{3}k''\int d^{3}k'''I(\vec{\mathbf{k}},\vec{\mathbf{k}}'';\boldsymbol{\epsilon}_{n}-\boldsymbol{\epsilon}_{n''})\langle G(\vec{\mathbf{k}}''\vec{\mathbf{k}}''';\boldsymbol{\epsilon}_{n''})G(-\vec{\mathbf{k}}'',-\vec{\mathbf{k}}''';-\boldsymbol{\epsilon}_{n''})\rangle\overline{\Gamma}(\vec{\mathbf{k}}''',\vec{\mathbf{k}}';\boldsymbol{\epsilon}_{n''}-\boldsymbol{\epsilon}_{n'}). \end{split}$$

$$\end{split}$$

$$(8)$$

Clearly, a theory for $\langle GG \rangle$ follows the usual arguments leading to a theory of impurity resistivity.¹⁹ Assuming that $\overline{\Gamma}$ and \overline{I} have the functional form of Eq. (2), in what might be called the relaxation-time approximation for $\langle GG \rangle$, we find from Eq. (8) that

$$\overline{\Gamma}_{l} = \overline{I}_{l} (1 - \overline{I}_{l} \overline{F}_{l})^{-1}, \qquad (9)$$

where

$$\overline{F}_{l} = -\beta^{-1} \sum_{n=-\infty}^{\infty} 2\pi \overline{n} (\epsilon_{F}) [2(1+\lambda_{0})\epsilon_{n} + \hbar(\tau_{0}^{-1} - \tau_{l}^{-1})].$$
(10)

In Eq. (10) $\overline{n}(\epsilon_F)$ is the averaged density of states, which we assume to be practically the same as that for the pure system, and the various relaxation times are given by

$$\frac{1}{\tau_{l}} = \frac{2\pi}{\hbar} \frac{2l+1}{4n} c \int \frac{d^{3}k'}{(2n)^{3}} |t_{\vec{k},\vec{k}'}|^{2} P_{l}(\vec{k}\cdot\vec{k}')\delta(\epsilon_{\vec{k}}-\epsilon_{\vec{k}'}),$$
(11)

where *c* is the concentration of the impurities and $t_{\vec{k},\vec{x}'}$ is the electron impurity scattering amplitude.

Note that the form of Eq. (10) also arises in the theory of magnetic impurities in superconductors.²⁰ The renormalization of the energy ϵ_n by the factor $1 + \lambda_0$ is the mass-enhancement effect and $h(\tau_0^{-1} - \tau_l^{-1})$ is the pair-breaking parameter. Clearly for l = 0 there is no pair breaking. This is the well-known result of Abrikosov and Gorkov.¹⁰ However

for l=1 there is pair breaking and the pair-breaking parameter is just the transport relaxation time $\tau_{\rm tr}^{-1} = \tau_0^{-1} - \tau_1^{-1}$. For small concentrations it follows straightforwardly from Eqs. (9) and (10) that the reduction in $T_{c,1}$ due to this pair breaking is given by

$$T_{c,1} = T_{c,1}^0 - \hbar \pi (\tau_{tr})^{-1}.$$
(12)

The same expression was obtained by Larkin²¹ using a slightly different method. Clearly, Eq. (12) sets a severe limit on the observability of p-wave superconductivity. Roughly speaking it says that the broadening of the electronic levels due to impurity scattering must be less than the expected gap $k_B T_{c,1}$, at best a few degrees.

The deep reason for such a fundamental difference between the behaviors of s- and p-wave superconductors in the presence of impurities is the difference in the time-reversal symmetry of the two states. Members of a pair with a finite relative angular momentum are not in states related to each other by a time-reversal transformation. As a consequence the Anderson theorem⁶ does not hold and even nonmagnetic impurities act as pair breakers. In fact an observation of a transition temperature T_c which decreased linearly with concentration of nonmagnetic impurities could be taken as evidence for p-wave pairing. Note that anisotropy of the Fermi surface can also cause a linear decrease of T_c .²² However, this is a two-ordersof-magnitude smaller effect and therefore it should

be possible to distinguish it from p-wave pairing on quantitative grounds.

To illustrate the practical significance of Eq. (12) we estimate the transport lifetime from the resistivity ratio $R_{273}/R_{4.2}$. In terms of this more easily available quantity we may rewrite Eq. (12) as

$$T_{c,1} = T_{c,1}^0 - \alpha (R_{4,2}/R_{273}), \qquad (13)$$

where α is a different constant for different metals. Our estimates of α are given in Table I. Thus we conclude that *p*-wave superconductivity should be observable in Pd, W, Rh for resistivity ratios between 10³ and 10⁵ even if our estimates of λ_1 are off by a factor of 2.

We note that for W $T_c = 15$ mK down to a resistivity ratio of 2×10^4 .²³ This means that our estimate

- ¹A. Abrikosov, L. Gorkov, and I. Dzyaloshinskii, *Quantum Field Theoretical Methods in Statistical Physics* (Pergamon, New York, 1965), p. 381, Eq. (33).
- ²R. Balian and N. R. Werthamer, Phys. Rev. <u>131</u>, 1553 (1963).
- ³A. J. Legett, Rev. Mod. Phys. 47, 331 (1975).
- ⁴W. L. McMillan, Phys. Rev. 167, 331 (1968).
- ⁵J. M. Ziman, *Electrons and Phonons* (Clarendon, Oxford, 1960), Chaps. 9 and 5.
- ⁶P. W. Anderson, in *Proceedings of the VII International Conference on Low Temperature Physics*, edited by G. M. Graham and A. C. Hollis-Hallett (Univ. of Toronto Press, Toronto, 1961), p. 298.
- ⁷W. L. McMillan, Phys. Rev. <u>167</u>, 331 (1968); I. F. Foulkes and I. R. Gomersall, J. Phys. F 5, 153 (1975).
- ⁸O. K. Andersen, Phys. Rev. B 2, 883 (1970).
- ⁹J. H. Weaver, D. W. Lynch, and C. G. Olson, Phys. Rev. B 10, 501 (1974).
- ¹⁰L. V. Nomerovannaya, Zh. Eksp. Teor. Fiz. <u>60</u>, 748 (1971) [Sov. Phys.-JETP 33, 405 (1971)].
- ¹¹Zh. Duisebaeva, M. I. Korsunskii, and G. P. Motulevich, Opt. Spectrosc. 34, 307 (1973).
- ¹²G. A. Golotin, M. M. Kirillova, L. V. Nomerovannaya, and M. M. Noskov, Fiz. Met. Matalloved. <u>23</u>, 463 (1967).
- ¹³M. M. Kirillova, L. V. Nomerovannaya and M. M.

of $T_{c,1}^0$ = 0.41 is too large by at least a factor of 6.3. However, according to Eq. (13) a $T_{c,1}^0$ of 65 mK would have gone undetected for such a resistivity ratio. The possibility of $T_{c,1} > T_{c,0}$ would be eliminated by experiments on samples with 2×10^4 $< R_{273}/R_{4,2} < 8 \times 10^4$. Clearly this fact has implications for thermometry using low- T_c materials.

ACKNOWLEDGMENTS

One of us (B.L.G.) would like to thank Dr. A. J. Legett, Dr. W. Pickett, and Dr. P. Fulde for helpful discussions. Also, the hospitality extended to him by the Oak Ridge National Laboratory during the tenure of this work is gratefully acknowledged. I.F.F. would like to thank the SRC for financial support.

Noskov, Fiz. Met. Metalloved. 34, 291 (1972).

- ¹⁴G. A. Bolotin and T. P. Chukina, Opt. Spectrosc. <u>23</u>, 333 (1967).
- ¹⁵Tables of Physial and Chemical Constants, edited by G. W. C. Kaye and T. M. Laby, 14th ed. (Longmans Green, New York, 1973).
- ¹⁶J. Appel and H. Heyszenau, Phys. Rev. <u>188</u>, 755
- ⁽¹⁹⁶⁹⁾. ¹⁷N. F. Berk and J. R. Schrieffer, Phys. Rev. Lett. <u>17</u>, 433 (1966).
- ¹⁸W. F. Brinkman, J. W. Serene, and P. W. Anderson, Phys. Rev. A 10, 2386 (1974).
- ¹⁹J. M. Luttinger, in *Mathematical Methods in Solid* State and Superfluid Theory, edited by R. C. Clark and G. H. Derrick (Oliver and Boyd, London, 1968), Chap. 4.
- ²⁰A. A. Abrikosov and L. P. Gorkov, Zh. Eksp. Teor.
- Fiz. 39, 1781 (1960) [Sov. Phys.-JETP <u>12</u>, 1243 (1961)]. ²¹P. I. Larkin, Zh. Eksp. Teor. Fiz. Pis'ma Red. <u>2</u>, 205
- (1965) [JETP Lett. 2, 130 (1965)]. ²²D. Markowitz and L. P. Kadanoff, Phys. Rev. <u>131</u>,
- 5.63 (1963).
- ²³D. B. Utton, R. J. Soulen, Jr., and H. Marshak, Low Temperature Physics-LT14, edited by M. Krusius and M. Vuorio (North-Holland, Amsterdam, 1975), p. 76.