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The effect of the self-diffusion of a Mdssbauer active atom, by the vacancy mechanism, on the resonance line
shape is studied in several approximations and by direct computer calculation of the motions of the active
atom and a vacancy. The results for self-diffusion in simple and body-centered-cubic lattices show that the
empty-lattice solution can be used as a first approximation if the jump time is scaled by the Bardeen-Herring
correlation coefficient for bulk diffusion. This approximation is correct within about (5 to 10)%.

I. INTRODUCTION

In 1960 Singwi and Sjdlander® predicted that the
Mossbauer effect could be used to study diffusion
in solids and liquids. With some simplifying as-
sumptions, they showed that the resonant line
should broaden by an amount proportional to the
diffusion coefficient of the Mdssbauer probe. It
can thus be expected that such an effect will be ob-
served if the lifetime of the excited state is of the
order of the inverse of the jump frequency.

For the case of uncorrelated jumps in random
directions in space, the predictions of Singwi and
Sjdlander could be shown to give a broadening

AT=27/7,. (1)

From this and the uncertainty relation we can
immediately see that when 7,2 7,, the broadening
is of the same order of magnitude as the natural
line width, where 7, is the inverse of the atomic
jump frequency, and 7, is the lifetime of the
Modssbauer excited state.

The first direct measurements of diffusion
broadening of the M&ssbauer peaks in solids,
carried out by Knauer and Mullen,? ® did show the
general behavior predicted by Eq. (1). The peak
shapes were Lorentzian, as predicted by the
theory, but the actual broadening measured dif-
fered by about a factor of 2 from the predicted
one. Later measurements on Fe-3-wt%-Si by
Lewis and Flinn,* however, gave results close to
the predicted ones.

Several other measurements of diffusion co-
efficients of solids and liquids have been done
using this method.*~® Two of these are on solids.
Anand and Mullen report a broadening about 0.6
of the one predicted by equation. Measurements
by Sgrensen and Trumpy do not contribute to the
existing controversy as the authors doubt the
reliability of the bulk diffusion measurements
used for comparison.

The Singwi and Sjélander assumptions differ from
the physical situation for diffusion in polycrystal-
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line metals in two ways. Diffusion in metals oc-
curs in crystallographically determined direc-
tions rather than in random directions and since
it occurs by the vacancy mechanism, successive
jumps of a given atom are correlated. The effects
of the crystallographic restriction of jump di-
rections has been discussed in a previous paper.°
In this paper we will discuss the correction to
equation one due to the correlation effect.

Previous attempts to obtain a theoretical ex-
pression for broadening in the case of diffusion
by the vacancy mechanism have used several ap-
proximations and adjustable parameters,!!~13
It seemed worthwhile, then, to carry out a direct
calculation.

We follow the movements of the active atom and
a vacancy in detail, showing that the principal
correction to the uncorrelated solution for single
crystals (as obtained by Chudley and Elliott'*) for
the simple cubic and bce cases is simply the well-
known Bardeen-Herring correlation factor for
bulk diffusion and there is no reason to expect that
the fcc will be significantly different. The method
used can easily be generalized to cases where the
marked atom jump frequency is different from the
host’s.

When the single-crystal solution is averaged
over all directions, the result is substantially dif-
ferent from the solution to the liquidlike model
generally used to analyze experimental data. Ap-
plication of this correction, together with the bulk
diffusion correlation factor, largely eliminates the
discrepancy between theory and experiment.

II. GENERAL FORMULATION

It is well known'® that the intermediate scattering
function & (k, ¢) is the space Fourier transform of
the Van Hove function G(R, t), which in the classi-
cal limit is the probability that the particle be at
R at the time / if it was at R=0 at /=0. The cross
section of resonant absorption o may be obtained
from the intermediate scattering function as
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where E, is the resonant energy and I" the natural
width.

The motions of an atom in a lattice include both
oscillations and jumps to neighboring sites (dif-
fusion). We assume that these two types of motion
are uncorrelated, since even at very high tempera-
tures, the frequency of diffusive jumps is much
smaller than the frequency of oscillation (v, ~10°
jumps per sec; v, ~ 10! vibrations per sec). Then
we may write

Giot = Gaitr Gibr -

Gy has been thoroughly studied™ '* for harmonic
solids and is known to give an absorption cross
section with a central peak of Lorentzian shape and
natural width (M8ssbauer effect), We will con-
centrate on the effect of diffusion which can then
be convoluted with this Lorentzian.

III. DIFFUSION IN AN EMPTY LATTICE

The simplest case, that of diffusion in an empty
lattice, was studied by Chudley and Elliott." The
probability G(F, ), of finding an atom at a posi-
tion T at a time ¢, satisfies the following differen-
tial equation:

9 " 1 -
57O 1)= ;[G(ﬂi’, t)~ G(F, t)]

nT,

L ( > §D-n) 6 1), 3)

where g (I) is the displacement operator,'® defined
such that

§MFE) =fF+D),

and we sum over the set {I}, the positions of the

n nearest neighbors relative to the atom. 7, is

the inverse of the jump frequency of the atom,
which we will also call the jump time. The time
actually spent in the jump itself is of the order of
one vibration period and can be neglected. The
solution may be obtained by using the time Fourier
transform

GE, t)=(?717—)-5

fdke-ik'r—[l-D(k)]t/r,,, (4)

and thus the broadening can be shown to be of
Lorentzian shape and of width

AT=(@%1/7,)[1-DE)], (5)
where for sc

D(k) =3[ cos(k, a) +cos(k,a) +cos(k,a)],

for bee
D (k) =cos(3k, a) cos(5k,a) cos(bk,a), (6)
for fece
D(k) =3[ cos(3k, a) cos(tkya)
+cos(3k,a) cos(3k,a) + cos(3k,a) cos(3k,a)l.

k., k,, k, are the components of the momentum
of the y ray, referred to the crystal axes, and a
is the lattice parameter.

IV. DIFFUSION BY THE VACANCY MECHANISM

When diffusion occurs by means of vacancies, the
atomic jumps are correlated. When an atom has
just interchanged places with a vacancy, it is more
probable that it will jump back to its original posi-
tion than that the vacancy will jump around, by
interchanging with other atoms, so that the atom
we are considering can jump forward.

We will see, however, that if we do not resolve
the jumping process for times of the order of the
atomic jump time, we will still be able to write
an equation similar to Eq. (3) for diffusion by the
vacancy mechanism.

We will study systems with a low concentration
of vacancies, such that our equations will not
describe the case of two vacancies meeting. This
also implies that once a vacancy is near a marked
atom, during the time that the atom has a signifi-
cant probability of interchanging with the vacancy,
there is near zero probability that another vacancy
will approach. This approximation leads to a use-
ful concept, that of “encounter.” An encounter
designates all interchanges'” between one given
vacancy and the marked atom, We can define the
encounter time 7, as the time elapsed from the
moment the vacancy first approaches the atom to
the moment when it leaves its neighborhood, after
possibly more than one jump of the marked atom,
Our approximation can then be stated as

Te<<T/C=T,,

where C is the vacancy concentration, 7 is the
jump time of the vacancy (the time it takes for
any atom, not just the marked one, to jump into
the empty space), and 7/C gives a typical time
between arrivals of vacancies to a fixed point,
i.e., the site of the marked atom.

Let us suppose we can consider dt, the time
differential, such that

Te<<dt<<71/C,

which means, essentially, that we do not resolve
(i.e., “look into”) the jumping process for times
of the order of the atomic jump time, but take the
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results of one encounter as a whole, that is, as
one process with more complex results.

With this assumption, we can now write an
equation for diffusion by the vacancy mechanism
similar to Eq. (3) but including additional terms
corresponding to the probability that an atom may
move more than one nearest-neighbor distance
during one encounter:

:_t G(Y" t): <w1z: [§ﬁ)— 1]

1

+w22[§(1")—1]+--->0(?, t), (7

1’

where w, is the probability that the atom will jump
from the original site to a nearest neighbor posi-
tion, w, to the second, etc. This equation has
been obtained by Krivoglaz.'' The solution to this
equation is similar to Chudley and Elliott’s, with
the same time dependence of the space Fourier
transform, which thus also leads to a Lorentzian
peak shape.

We will study Eq. (7) in more detail because it
gives the limiting behavior (for large t/7,) of the
exact solution which will be discussed later.

The probability that the atom will go to a second-
nearest-neighbor position in an encounter is very
small: 0.2% in the bcc case, so we can neglect,
on a first approximation, the second term in Eq.
(7). But the probability of the tracer atom jumping
to the first nearest neighbor is no longer 1/7,, as
it is modified by the probability that it will return
to its original position. There is 1/z probability
that it will return there with the next jump of the
vacancy plus a slowly convergent series of proba-
bilities that it will return after the nth jump of the
vacancy, plus the probability that the tracer atom
will go back to the origin but after more than one
of its jumps.

If, in addition to the condition on df, we add that
dr >>a (i.e., our process cannot resolve distances
of the order of interatomic distances, as is the
case in bulk diffusion measurements) we can show
that, using the crystal symmetries, the sums be-
come the second derivatives of a Laplacian,

For sc Eq. (7) becomes, up to the second nearest
neighbors,

% G(F, 1) = a?w, +4w,)AG(E, 1); @)
for bce
0 > -
T3 G{E, ) =a*w, +w,)AG(T, t) . 9)

Thus we have obtained, for both cases, equations
similar to the one used for bulk diffusion'®:

9 -
B—t—G(?’ t) :DAG(r’ t)’

where for the case of diffusion by the vacancy
mechanism, D the diffusion coefficient, is

D =a®*f /n1,,

and f is the Bardeen-Herring correlation coeffici-
ent, defined as the limit, when the number of
jumps goes to infinity, of the ratio of the mean
square displacement of the tracer atom after n,
jumps and that of a vacancy for the same number
of jumps.

Compaan and Haven'® have shown that the infinite
series for f may be summed as

f=(1 +cos8)A1- cos,), (10)

where cosf, is the mean value of the cosine of the
angle between the last tracer jump and the next.
cosf, may be calculated as

Z
cosel=§:pkcosek, (11)
k=1

where p, is the probability that the tracer will
make its next jump to the kth nearest neighbor.
b, is thus calculated by summing all the proba-
bilities of the various vacancy trajectories which
will move the tracer to k on the tracer’s first
jump. This calculation of p, converges very slow-
ly with increasing number of vacancy jumps con-
sidered, but very accurate values of f have been
obtained by Compaan and Haven.

We have obtained from Eqgs. (8) and (9) the fol-
lowing expansion of f in terms of w,, w,, etc.:
for sc

fentw, +4wy+--+); (12)
for bce
f=nt,, +w, ++++) . (13)

This expansion can be used to estimate w, and
w, from f. For example, for bce, if we use as a
rough estimate for w, = g;w,, we can obtain

w,=2f/nt, (1+ ) (14)

to use in the estimation of the peak width with the
“encounter” approximation using terms up to w,.

V. NUMERICAL SOLUTION OF THE EXACT EQUATION

We will now construct an equation analogous to
Eq. (3) which does not involve the approximations
of Eq. (7). This we will do by constructing equa-
tions for the probabilities of configurations with
one marked atom and one vacancy in a finite cry-
stal, in a form suitable for numerical calcula-
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tions. Periodic boundary conditions are used at
the edges of this finite “crystal.” Thus one vacan-
cy can travel through the crystal simulating dif-
ferent vacancies or “encounters.” As the marked
atom travels “via” vacancies, its movement is
much slower, and, throughout our study, there is
a negligible probability of the atom getting near
the boundaries. This avoids the problem of in-

9 1
5}_ P(ya; s t) =—2—7_,
(ii) When they are nearest neighbors

at 27

and similarly for », =7 - 1.

cluding in our description, through the boundary
conditions, what would be the equivalent of other
incoming marked atoms.

We will start with the one dimensional case, for
simplicity. There are two conditions our equa-
tions must describe:

(i) When the marked atom and the vacancy are not
nearest neighbors

[Po,7,+1, 8)+ Plrg, v, — 1, 1) = 2P(r,, 7, )] . (15)

P, =r,v,=r +1,1)= 1 [P, =v+1,=r,=r,t) + Pry=v,v,=v +21,t) ~ 2P(r, =7, v, =v + 1, )], (16)

We can describe both cases in one formula by using the Krenecker & functions and the displacement
operator. We may then write Egs. (15) and (16) as a single equation

apP
5? (Va: Vs t) =

A=

{[1=8@,=7,) =0, =7, +1) =0 (r,~7, = D[ 38

7y (D) +28, (-1)-1)]

+[6 (Vv =%a +l)] [%éa(—l)év (l) +%§v (_l) - 1] +[ 6(’Vv =V l)] [éga (l)év(—l) +%g’:v (l) - 1] } P(Va ¥ t)s

and this may be written in the form
9 1
a_t P(yar ,Vv’ t) :;ep(ra’ /rw t)’

where the operator © is defined as

17)

(18)

=[1_ 6(ya_rv) _G(Va —7v+l)_6(lra—"rv— l)] [égv(l)+é§u (—'l)'— 1]

18 (1, = 7o + D138, (= D, (D +52,(D) = 1] +6 (0, =74 = 1) 32,12, (= D) + 58, (D) = 1].

Equation (18) may be solved symbolically as

P, vy, t) = e“/”élP(ra, ¥, 00,

(19)

(20)

where P(r,,7,, 0) is the initial condition, which in this case may be written

P(rg, 7y, 0) =8 () 1~ 8(r,)]/(N; = 1)

for the atom at the origin and the vacancy with equal probability of being anywhere in the lattice except at
the origin. N; is the number of lattice points in the finite crystal.
The exponential with an operator as an exponent means, as is customary

~ 2 A2
e(t/r)6:[1+_t©+<_t> @_J,j] ,
T T 2

and ©2 means the operator is to be applied twice on the initial condition, ©° three times, etc.

(21)

Each term

of the expansion may be obtained from the former one by applying t®/TN, where N is the order of the ex-
pansion being calculated. It is to be noticed that the displacement operator and the deltas do not com-

We may write for the general three-dimensional case the equation corresponding to (15) and (16):

mute.
_('fa, » ——(ZP(ra,r +T, 1) - nP(ra,r,,,t>
oP.,. . . > =
grazr,r,,:rq-f,t):—l—(P(ra:r ;

F+1+1,t) = nP(F, =7, F =Y‘+T,t>. (23)
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These can be written in the form of Eq. (17) with the solution given by Eq. (20), but now the operator &
takes into account displacements in a three-dimensional lattice. It may be written

6= (1- c(f,,,fv)-ch(fv-fa +1’)><le 5"'7(1')-1>+<2 o(F, - fa+i'))< év(—Z)éa(i’)+Z gruéi") _1>, 24)
1

where the sum’ is over all nearest neighbors ex-
cept T=-T". The term with T=-I" accounts for the
exchange of the marked atom and the vacancy and
is written out separately.

Let us study this operator & in more detail.
Since the nearest-neighbor and the non-nearest-
neighbor cases are selected by deltas, we can see
that the operators, when applied to a function
F(%,, T, t), simply tells us to take F(¥,, T,, t),
multiplied by -1, and add to this the same function
evaluated for lattice sites adjacent to the previous
ones, multiplied by 1/7.

The series expansion (21) converges very slowly
for large increments (large ¢/7) and leads to large
roundoff errors. We can, however, carry out an
iterative calculation. As, of course, ® commutes
with itself, we can use the fact that, if ¢, +¢{,=¢

G(F,, T, t=t, = ty) =108 | G(F,, Ty, £ = 0))
=¢'18[¢'8 |G (E, T, £ =0))]
=e"°|G(E,, T, t=1,)).  (25)

We calculate the probabilities at given time in-
tervals, each probability at ¢ being calculated by
propagating the solution at £ ~Af. We also store
these solutions at convenient time intervals as

we need them to carry out the time Fourier trans-

T T

form, Eq. (2).

For each selected value of the time ¢ and each
point of the vacancy-atom configuration, the terms
of the expansion (20) and (21) are evaluated until the
last term calculated constituted a correction less
than 1 part in 107, the maximum precision practi-
cal on the 360/67 computer used. Time intervals
from 0,1 to 1 give satisfactory convergence with
from two to seven terms in the expansion. The
detailed programs are given elsewhere.?°

In the calculation, the work of the deltas of
selecting the cases is done as follows: first all
possible configurations in the lattice are calcula-
ted as if they were non-nearest-neighbors (these
are, indeed, the majority of cases); then we re-
calculate explicitly for the nearest-neighbor con-
figurations.

To obtain the mth term of the series for a given
7, and »,, we take the previous term for that point,
multiply it by —¢/7 and add the previous terms for
configurations with vacancies in adjacent sites,
multiplied by ¢ /mn.

As an example, formulas (26) and (27) show one
term of the calculation @, , being obtained from
the former @,, for a non-nearest-neighbor case
and one particular nearest neighbor in a simple
cubic lattice.

Qm+1(1w Jv’ Kvs Ia’ ‘L: Ka) = (t/GT)[—GQm-H(Iw va Kv, Iay Jaa Ka) +Qm(11) +1’ Jv; Kw Ia; Jm Ka)

+ Qm(Iv - 1! Jw Kw Ia! Ja, Ka) + Qm(lv’ Jv + 1> Kv’ Ia; Jay Ka ) +Qm(1w Jy - 1, K,,, Ia’ Jﬂ, Ka)

+ QM(III’ e]U’ KD + 1’ Ia7 t‘ll’ Ka) +Qm(1w <]I/" K'U - 1’ Ia! (]zl’ Ka)] (26)

and

Qm+1(1: 1’ 27 1) 1, 1)=(t/6T)I._6Qm(1) 1’ 2; 1; 1, 1)+Qm(1’ 1, 1’ 1, 1, 2) +Qm(1y 1, 37 1, 1) 1)

+Q,(2,1,2,1,1,1)+Q,(0,1,2,1,1,1)+9,(1,2,2,1,1,1)+Q,,(1,0,2,1, 1, 1)] . (27)

The cubic symmetry of the crystal made it suf-
ficient to carry out calculations for atomic posi-
tions for only % of the crystal. If other positions
were needed in the calculation, appropriate logi-

r

cal statements converted them to the symmetrical-
ly equivalent sites.

Finally, we obtained the desired probability for
the marked atom by summing over all possible
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0.001

FIG. 1. Corrections to
the probabilities calcu~
lated from the empty lat-
tice solution (with T scaled
by the correlation factor).
The corrections obtained
by our method are shown
for several lattice sites of
the simple cubic case. For
all plots, the corrections
obtained by our method
have the times scaled by
the concentration of vacan-
cies, as described in the
text. The inset shows the
rapid change in this func-
tion for the atom at 000

positions of the vacancy:
1 - =
G(fa; t) =.IV;Z P(ra; Ty t),
rv

where N, is the number of lattice points.
We used the fact that the probability must be
normalized, that is

simple
cubic

[ 39 e

for very small times (a
linear scale was used).

G(F,, t)=1

for the sum over all the lattice, to check the
roundoff errors. This condition was satisfied to
a precision of 0.08%.

Once the crystal is sufficiently large, changing
the crystal size only scales the times at which
encounters follow each other. This was verified

FIG. 2. Correction for
the atom at the origin,
compared to the empty-
lattice solution (with 7
scaled by f).
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FIG. 3. Correction for
the atom at 001, com-
pared to the empty-lattice
solution (with T scaled by

B | f)'
1

for our runs; for both bcc and simple cubic, the
solutions for the crystal with 9% lattice sites scale
to the 7° case, while the 5° does not (and we ob-
served that for this smaller one the probabilities
for finding the tagged atom at the boundaries
could no longer be neglected).

Let us now discuss the limiting behavior expec-
ted. We know that for long times we expect to re-

ap

0.005

0.001

VI. LIMITING BEHAVIOR AT LONG TIMES

0
- MOI[\/

0.1

x10

cover the solution obtained by solving the problem
in coarser steps of di. We have already shown
that, to a very good approximation, this solution
has the form of the empty lattice solution, but
with the jump time scaled by the correlation fac-
tor. This provides a test for the convergence of
our calculations., Figures 1-6 show the correc-
tions to this limiting solution, as obtained by our
method. The limiting behavior is reached, to a
good approximation, when ¢/7 is of the order of 7.
Another independent check of the calculation was

bcc

FIG. 4. Corrections for
several bee lattice posi-
tions.
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U U T G |
0.2 1

obtained by computihg the Bardeen-Herring cor-
relation coefficient from our results for long
times. We can calculate the mean-square dis-
placement of the tracer atom and the vacancy:

@2(t) =D, 2 72 P(F, Ty £)

Ta Ty

and
3N =222 r3P(F,, T, t).
Ta Ty
We now obtain f(¢)

f@=@a N/ iy,

and, in the limit of long times, f(¢) becomes the
Bardeen-Herring coefficient f. For a simple cubic
lattice, at ¢/7=2, we obtained f=0.6557 as com-
pared to Compaan and Haven’s value of f=0.6555,

FIG. 5. Correction for
the atom at the origin, in
a bee lattice, compared to
the empty-lattice solution
(with 7 scaled by f).

For the body centered case, at {/7=2, our value
was f=0.7218 compared to f=0,7215.

VIL. CALCULATION OF THE MOSSBAUER PEAK SHAPE

In accordance with Eq. (2), to obtain the effect
of diffusion on the peak shape, one must perform
Fourier transformation in space and time. To
minimize the roundoff errors, we carried out the
transformation for the difference between our re-
sults and the limiting solution, the result of
Chudley and Elliott!¢ scaled by the Bardeen-Her-
ring factor f,

The results obtained are dependent on the angle
of the gamma ray with respect to the crystal
axes. In no direction are the corrections bigger
than 10%. Results for several directions in space
are shown in Figs, 7 and 8.

FIG. 6. Correction to
the probability at 333,
compared to the empty-
lattice solution (with T
; . scaled by f).

-+

0.2
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FIG. 7. Line shape from diffusion by the vacancy
mechanism in the [710 0] direction for the bce case.
The dashed line shows the approximation obtained from
the empty-lattice case (with 7 scaled by f). The solid
line shows the complete solution. This is one of the
directions where the correction is greatest (~10%).
ka=21.1, as appropriate for Fe—3-wt.%-Si and similar
alloys.
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FIG. 8. Line shape for diffusion by the vacancy mech-
anism in the [031] direction for the bcc case. Here
the correction is negligible, but the empty-lattice solu-
tion in this direction is near the direction of smallest
width (smallest diffusion broadening). The experimental
solid angle was estimated to be about 5°, and the re-
sults were averaged over this angle. ka=21.1.
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FIG. 9. Line shape for a bce polycrystalline sample.
The dashed line shows the empty-lattice approximation
(with 7 scaled by f). The solid line shows the complete
solution. The correction to the width is about 5%. ka
=21.1.
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FIG. 10. Line shape for a simple cubic polycrystalline
sample. The dashed line shows the empty-lattice ap-
proximation (with 7 scaled by f). The solid line shows
the complete solution. The correction to the width is
about 4%. ka=10.
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For single-crystal experiments the result should
only be averaged over the solid angle of measure-
ment. For powdered samples it should be aver-
aged over the complete solid angle.'® Figures 9
and 10 show the complete solution from our cal-
culation compared with the approximate solution
obtained by scaling Chudley and Elliott’s result

by the bulk diffusion correlation factor. These
show that our correction, once averaged over
solid angle is about 5% narrower for both the
simple cubic and the bcce case,

The actual peak shape is obtained by adding the
correction to the Lorentzian obtained from the
scaled Chudley and Elliott result.
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