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Additional boundary conditions and surface exciton dispersion relations*
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The surface-exciton dispersion curves in Zno are derived from the surface impedances developed by Fuchs
and Kliewer (FK) and Rimbey and Mahan (RM) including retardation. There exists a distinctive splitting
between the two dispersions, the FK additional boundary conditions having longitudinal character, the RM
additional boundary conditions being transverse. Surface-mode attenuation due to spatial dispersion is more
pronounced in the RM formalism, although inclusion of a phenomenological damping parameter does not alter
either dispersion curve.

Experimental results have recently begun to ac-
cumulate on a variety of substances whose reflec-
tivity spectra exhibit structure attributable to sur-
face-exciton resonances. Included in such crystal
systems are semiconductors' (ZnO), ionic crys-
tals' (CuBr), inert-gas crystals' (Xe), and molec-
ular crystals' (tetracene). Formerly, observation
of such excitations was viewed with some sceptic-
ism primarily because of the weak exciton-photon
coupling and the possible decay into bulk mode
states through the mechanism of spatial disper-
sion. " Concurrently, theoretical developments
have been concerned with the effects of spatial
dispersion on surface modes particularly as re-
lated to the question of additional boundary condi-
tions. ' " It has been suggested that such experi-
ments may elucidate the applicability of the vari-
ous additional boundary conditions' (ABC's). In
this paper we display certain ramifications of two
ABC's as exhibited by their respective surface-
exciton dispersion curves.

Previous theoretical work has suggested that the
material polarization field P determines the ABC
placed on the macroscopic Maxwell's equations for
bounded media. In semi-infinite media these have
usually taken a form where either P or its com-
ponents vanish" (exciton ABC) at the surface or
alternatively the derivatives of P, have been the
vanishing quantities' (plasmon ABC). In principle
these two extreme cases can be generalized into a
linear combination'"'", e.g. , P(0'}+X[dP(0')/
dz] =0 often interpreted as a. Wannier exciton ABC.
A, is a model-dependent parameter sometimes as-
sociated with the so-called dead layer or diffuse
scattering. The nonlocal problem has also been
solved for the half space and thin films utilizing
certain symmetry conditions placed on the elec-

tric and magnetic fields. In the case of P-polar-
ized light, Fuchs and Kliewer" (FK) initially pro-
posed the symmetry conditions Z, (z}=E,(-z) and
H„(z) = H, (-z-), whereas Rtmbey and Mahan"
(IIM) determined an alternative set given by E„(z)
= -Z„(-z) and H, (z) =H„(-z). Subsequently these
specular scattering symmetry conditions were
demonstrated to be tantamount to the ABC's
BP„(0+)/Bz = 0 and P„(0') =0, respectively. "'6 "
The first has been extensively applied to metallic
systems whereas the second was originally justi-
fied in terms of Frenkel excitons in molecular
crystals. " A specular symmetry condition yield-
ing a linear combination has not been derived al-
though existence criteria have been investigated. "'"

Fischer and Quiesser' applied the Fuchs-Kliewer
symmetry condition to a calculation of the surface
%'annier exciton dispersion, however, a misprint
is given in their Eq. (6) which would be important
near the light line. Nonetheless, their dispersion
curves were calculated with the proper dispersion
relations and are correct. Qn the other hand,
Bimbey's' calculation for the surface mode disper-
sion neglected retardation and no information was
given about the small-q vector regime, again in
the neighborhood of the light line. This is precise-
ly the region where, to date, all experimental ob-
servations have been made. We wish to correct
this discrepancy, in the approximation that a sim-
ple hydrodynamic (oscillator) dielectric function
can be incorporated to describe a solid.

The procedure is to match the P-polarized sur-
face impedances at the vacuum-solid interface and
solve the nonlinear algebraic equations for the &
versus complex q dispersion curve. For the two
mentioned symmetry conditions we have, respec-
tively, the following:

Fuc hs-Kliewer:

(la)
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Bimbey-Mahan:

(u' '~' 2 " e, (q, (o)' (u)'/c')e, (q, ~) —q'

In the relaxation-time approximation the dielectric functions are given by

4WQp(dp
2

Cg =6p+ 2
co& —

P& q

with

8=v+i/w, j=i, l .
Here the p, coefficients differ essentially as to variation in the longitudinal and transverse effective
masses. Substituting Eq. (2) into Eqs. (l) and integrating yields the following dispersion relations:
Fuchs-Kliewer:

(2)

2
2 2) 1/2 q„

I:q: —(Pt/8 i~.)q,'q '/qg "' q,'q' +eq (2q,' —q,' —q')
2 2

Epq+q

Bimbey-Mahan:

'

q2(q2 q2) (qo&o —q ) —iq
( )

(q & —q ) =0; (3a)

2 2) -1/2 q' (q.'e. —q',),. q!(q.'e. —q')
( x Ol (q2 q2)q2 (q2 q2)1/2 (q2 q2)1/2 i (3b)

2 Q'»

q%, (q, ~) '

Bimbey-Mahan:

(4a)

2q, "
e~(q, ~)

(4b)

where q, =&a/c. q', and q' are the usual bulk
transverse mode dispersion curves given from so-
lutions to e, (q, ~) =c'q'/ru'.

In the limit that retardation can be neglected the
two integrals reduce to the following:
Fuchs-Kliew er:

ever, the Longitudinal fields of the FK formalism
distributes this charge density totally into the
solid and the surface charge density is zero. This
fundamental difference in the two ABC's is dra-
matically illustrated in the above dispersion rela-
tions. It is the large-q behavior which determines
the fields near the surface and the associated
charge densities; therefore the fact that in the q

~ limit the local and the RM dispersions are
identical is a consequence of transversality of the
ABC in that it does not allow coupling to longitudi-

The analytic expressions for these dispersion re-
lations have been given elsewhere"'; we briefly
remark on the obvious differences. It is evident
that the first dispersion enters the bulk longitudi-
nal dispersion curve e, (q, &u) =0 in the asymptotic
limit. However, the second dispersion Eq. (3b)
curve has a peculiar behavior in that it rises to a
maximum, then in the q ~ limit falls back to the
local surface polariton dispersion e(~) = -l.'
Parenthetically, we note that for a Lindhard
transverse dielectric function eL&" (q, &u) - e (&u) as
q -~, the local dielectric function. " Hence for
large q„Eq. (4b) yields e(~) =-1 identica, lly, and
the above statement is apparently not restricted
to the simple hydrodynamic response. It is nec-
essary to emphasize the origin of this behavior.
Analysis of the fields for the two ABC's has shown
that the BM ABC leads to a surface 6-function
charge density exactly as in the local case." How-
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FIG. 1. Surface-exciton dispersion relations (solid
lines) in ZnO (Ref. 20) for Fuchs-Klierver {or~ ) and
Himbey-Mahan (cu ) symmetry conditions; dotted line
is the local (co, ) surface dispersion, the dot-dash
curves are the bulk polariton dispersions.
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TABLE I. Complex-q solutions to surface-exciton dispersion with real ~ for two ABC' s
and selected damping in ZnO(a+=3. 4215).

~ (eV)

FK
qc
(d y (meV)

3.4250 1.035+ 0.96i x 10
1.036+ 0.5i x 10
1.032+ 0.2i x10

1.036+ 0.26ix 10 &

1.035+ 0.3i x1P
1.025+0.43gx lp &

0
0.5
2.45

nal modes "'""
The two dispersion curves are mapped over a

limited range of wave vectors in Fig. 1. The pa-
rameters associated with the Q1 exciton of Zno
have been utilized and the approximations p, =P,
and z ~ have been made in the numerical evalua-
tion. A much more drastic assumption is implicit
in using ZnO (or any uniaxial crystal) in the above
formalism. The fields yielding the respecitve
surface impedances are rigorously true only for
isotropic-homogeneous semi-infinite media. The
dielectric functions for these uniaxial crystals are
anisotropic; nevertheless, Lagois and Fischer"
have demonstrated that the numerical errors are
insignificant for calculations on ZnO and the theory
need not be modified to include the anisotropy.

The explicit effect of spatial dispersion on the
damping of the surface modes is given by the
imaginary part of the complex wave vector or al-
ternatively the complex frequency. This is also
indicative of the longitudinal (FK) versus trans-
verse (RM) nature of the coupling to the bulk
modes. In Tables I and II, we list several values
for complex q and &, respectively, for various
damping frequencies which are determined from
attenuated-total-reflection spectra. " The first

observation is that the value of v does not sub-
stantially alter the real value of + nor the splitting
between the two dispersion curves. Damping de-
termines the width and shape of the ref lectivity
curves and has a secondary effect on peak shifts.
It must be kept in mind that a major problem in
elucidating spatial dispersion effects in the past
has been the ability to fit ref lectivity spectra to
numerous ABC's through a suitable choice of
damping parameter. "'"'" To the contrary, sur-
face exciton dispersion curves should be more
definitive in this respect.

A second observation is that the P„(0') =0 ABC
intrinsically yields a more strongly spatially and
temporarily damped surface mode than does the
(BP„jsz)(0') =0 ABC. This is immediately seen
from the z=~ values for Imp' or Im+, which in-
dicates the strength of the coupling to the bulk
mode and the a.ssociated attenuation (either spatial
or temporal) do to spatial dispersion alone. The
FK ABC is particularly sensitive to values of the
damping parameter as is witnessed by the orders
of magnitude increase in Im+ on incorporating
a finite v, whereas Imcu~ is not. Indeed, a finite
w brings the two imaginary parts (q or +) to within
comparable values corroborating the above com-

TABLE H. Complex-u solutions to surface exciton dispersion with real q for two ABC' s
and selected damping in ZnO(&z =3.4215).

qc/hip

FK

v~ (eV) 1/& (meV)

2.0

10.27

3.4310 —0.36i x 10
3.4310 —0.25ix 10 3

3.4310 —0.12ix 10 2

3.4333-0.15' x 10 '
3.4333 —0.25i x 10
3.4333 —0.12i x 10

3.4307 —0.9i x10 3

3.4307 —0.129& 10 '
3.4307-0.21zx 10 '

3.4318 —0.36i x 10
3.43176—0.38 i x 10
3.4317 —0.48 i x 10

0
0.5
2.45

0
0.5
2.45
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ments on the ref lectivity.
Finally in a strict sense the Rimbey-Mahan for-

malism was originally constructed for Frenkel-
exciton systems such as those found in molecular
crystals. "'" The above dielectric function is not
appropriate for such a discussion. A transverse
dielectric function developed by Philpott" has
yielded in our opinion a more realistic dispersion

relation. These results will be reported else-
where.
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