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Theory of the spin polarization of field-emitted electrons from nickel
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We calculate the spin polarization of field-emitted electrons from nickel in the framework of the Stoner-
Wohlfarth-Slater theory of band magnetism. As was first proposed by Hertz and Aoi for. the case of
tunneling, we find that the s-d hybridization plays an important role and we give a more quantitative
treatment of this effect. The crystal wave functions are described as linear combinations of plane woes and
tight-binding d wave functions. In a first approximation the contribution of the d states to the emitted current
is neglected; the problem of the matching of the wave functions at the crystal boundary can then be solved

exactly and, using the band parameters of Zornberg, very large positive spin polarizations are obtained. Next,
the contribution of the d electrons is included in a semiphenomenological way and reasonable agreement with

experiment is obtained without invoking any many-body effects. The dependence of the spin polarization on
crystallographic direction is investigated. This makes it necessary to consider the case of high-index directions
for which field emission may be dominated by surface scattering. The final results compare well with the
preliminary measurements of Campagna et at.

I. INTRODUCTION

The observation of positive (=majority} electron
spin polarizations in photoemission' and tunneling
experiments' from 3d ferromagnetic metals gen-
erated interest because the results seemed to
challenge the Stone r-Wohlfarth-Slater theory of
band magnetism. ' Many-body effects were invoked
to account for these positive spin polarizations. 4

Later, Hertz and Aoi' pointed out that in the case
of tunneling the simple one-electron 8-d hybridiza-
tion in the Bloch functions can also modify the theo-
retical result in the same direction as do many-
body effects. However, the first field-emission
measurements' had yielded spin, polarizations
which were very different from those obtained in
tunneling. These conflicting results were of little
encouragement for producing a real quantitative
theory. Recently, Campagna et al. ' started field-
emission studies on nickel using a new apparatus;
their preliminary results are compatible with those
of the tunneling experiments and show that those
of Ref. 6 cannot be reliable. These new measure-
ments, done for various known crystallographic
directions, are the motivation of the present theo-
retical investigation.

We deliberately remain in the framework of a
one-electron theory. Even so, we are faced with
the difficult problem of field emission from Bloch
states. We first take a simplified approach
(Secs. II and III), neglecting the contribution of d
states to the emitted current; this oversimplified
picture contains nonetheless the essential features
and provides a physical understanding of the effect:
In Sec. II the free-electron theory of field emission
is recalled, then extended to general band struc-
tures, and applied to a nearly-free-electron
model; the case of nickel is studied in Sec. III.

The consideration of various crystallographic di-
rections makes it necessary to take into account
surface scattering which can play an important
role for nonsimple orientations; this is considered
in Sec. Ip. In Sec. V the contribution of d states
is introduced in a semiphenomenological manner
and the results are discussed in connection with
experiment.

II. FIELD EMISSION THEORY

A. Free-electron field emission

We adopt the classical step-potential model for
the metal. ' 'The extra potential brought by the
electric field is given the simple form -eI'z
(E, e) 0). The image potential is neglected The.
starting point of the theory is the problem of an
electron striking the surface from inside the
metal; under the simplifying assumption of a
free-electron-like metal, the Hamiltonian is in-
variant for any translation parallel to the surface
plane, and the wave function in the stationary
state can be written

4 = e'""+fe' ' (crystal), (1)
4 = e '"~~'"g(z) (vacuum)

where k„and k, are, respectively, the parallel and
normal components of k relative to the surface;
and k' = k —2k . In the expression of 4', e~~' is the
incident wave, ge'" ' is a reflected wave inside the
metal, and g(e) is an evanescent wave in the
barrier region. When the evanescent wave reaches
the classical turning point A (see Fig. 1), it breaks
into two components: an evanescent wave in the

~ direction and Bn outgoing wave in the+~ di-
rection. If the electric field is weak g (e) can be
derived by using WEB approximation. The result
is
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with «'=2m(4+Er E)-/I'+k'„; z„ is the abscissa
of point A, i.e., z„=(C+E~ E+-hk'„/2m)/eE, and

$ is a dimensionless parameter. The electrical
current density carried by the outgoing wave is

-& /e

Now we are left with the matching of the wave
functions at the surface, which must determine the
value of $ and hence 5j(k). The continuity of 4
and S4/Sz is required; these conditions involve

g(0) and dg/dz(0), which generally depend on E
through z„. The calculation is greatly simplified
if we assume that the electric field is small; in
this case Kz„» 1 and the evanescent wave in the
—z direction generated at A is negligibly small at
0; the quantities g(0) and dg/dz(0) reduce to $

and —K$, respectively, which no longer depend on
the applied electric field. This point must be
stressed, since it allows to conside~ sepm. ately
the problem in the vacuum region, which depends
only on the electric field, and the problem of $,
which now depends only on the intrinsic properties
cf the metaL This parameter $ characterizes the
tailing of the metal &cave functions in the vacuum

region; it may depend critically on the nature of

these wave functions and its discussion is the
main subject of the following sections.

In the case of the free-electron wave functions,
the matching is straightforward and gives

$ = l + 5 = 2ikg/(ikg- &&) .

The emitted current contributed by electron
Ik) (k, & 0) is then

4S,2
(k)

~E -&4/3)kzg
m &+Kg

The total current is obtained by summing the
contributions from all the electrons inside the
crystal and with positive k,. We assume T = 0.
The summation may be written in a convenient
way as follows:

2

(2z)

(4)

Because of the exponential factor in 5j(k} and our
assumption of small electric field, the main con-
tribution to j arises from the Ik) states for which
t&'=k'„+2m(C+ Ez E)/h is mi-nimum, —=«,', that
is the electrons close to the Fermi energy and with
momentum nearly normal to the surface; a well-
known result indeed. This simplifies the calcula-
tion of the above integral since one can take K Kp.

@ Kp 2 (4/3)„po/, F kF
m (2«}' kzz+ tczo

METAL

EF+$

1t

$2 k2
E-

2m

Epotji

VACUUM
a/ -2&&0(E/, —E)

0 eE

Kp@ k'„271'k
meF

This gives the well-known Fowler-Nordheim re-
sult"

3~2
~ e F KpkF e-(4/3)K pc /eF

-4m2@C, k2+ K2'

i
SCHEMATIC

with

/&', = 2m/hC'.

A r
z

FIG. 1. Schematics of the potential energy and wave
function at the metal boundary.

B. Extension to the general case

Equation (6) holds only for a free-electron-like
metal. However, our formulation is readily ap-
plicable to a general band structure.

When the wave functions in the metal are Bloch-
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y(+)0) P( e(k(~+o) f'e K z (8)

like, the tail in the vacuum is no longer expected
to have the simple form $e'" '~e "'. Namely, in
the plane z = 0 one expects strong oscillations with
the surface -lattice periodicity;

y(g 0) ~ ( ei(k)f + 0) ~ 0
G

G

where the G's are vectors of the two-dimensional
reciprocal lattice of the surface. From this the
behavior of 4 for z &0 is determined by the
Schrodinger equation in vacuum

sional density of states is purely fortuitous. In
fact if $ were evaluated from the WEB approxima-
tion instead of the sharp-boundary model, one
would get

~
( ~,

'= kz/z, and the final j would no

longer depend on kF, a result which was pointed
out by Harrison. " The meaningful density of
states here is one dimensional, ' and corresponds
to the factor 1/

~
v, ~.

In conclusion and as is seen from Eq. (11), the
total current in the low-electric-field limit de-
pends on the band structure only through the fac-
tor Z„~ $'/v,

~

„and in the following we focus our
interest on this factor.

with

xd2= —,(c + z~ -z) + (k„+5)'.

If the surface is a low-index crystallographic
plane, 5 is typically of order 2n/a and at a dis-
tance of the surface much larger than a, only the
component with k' = k„+G =0 remains. This con-
dition is fulfilled at a finite number of points on the
Fermi surface, for example along the z axis
(5=0, k„= 0).

The summation over all the electrons in the
crystal can be performed with the same approxi-
mations as in Eq. (5), leading to the result

~ P -(4/3)xp4/ eF
m (2m)'

0&Zp- Z&/

n)

8 "p~ kfl2/meF2+y i dpi
ll ll

'

(10)
Where the index n refers to the various locations
on the Fermi surface where the conditions k„y5
=0, v, &0 are fulfilled, Z= Z(k„n), and—the sum-
mation over P, is over the corresponding region
where E ~ EF. This latter integral can be re-
written

C. Nearly-free-electron band structure

We consider field emission from a low-index
crystallographic face, in which case the points
of interest on the Fermi surface [referred to as
n in Eq. (11)]are its intersections with Oz. We
assume that the Fermi energy falls into the lowest
nearly-free-electron band, as shown in Fig. 2.
Then there are only two such intersections and we
are interested only in that with k, &0. The wave
function at this point of the Brillouin zone is of the
for m

u eik~+ u ei (kg 2k@)8
kz P 1

where k~ is the value of 0, at the zone boundary,
and u, and u, are functions of k,. The reflected
wave function is of the form $4 k . The problem-z
turns out to be pseudo-one-dimensional and the
matching at the crystal face can be performed with
an evanescent wave (8 "', just as in the free-elec-
tron model. If the origin is chosen on the last
plane of atoms, u, and u, can both be taken to be

E(k)li

e A(EF E) dy
1

/s

X
~

sZ/sk. ~„'

The final result for j is
3 K'2

F e A(EF -E)dE'
ll

/
V

A comparison with Eq. (6) shows the origin of the
factor pF in that expression. It arises from the
product of k„' [in

~
& ~,

'= 4k~/(a,'+ k~)] with I/~ v,
~

(o- I/kz). Its proportionality to the three-dimen-

kM kz

FEG. 2. Band structure along the k8 direction in our
nearly- free-electron model.
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real, for example, up cos+p Qy sing, and then
tan2q) = —V/E„where V is the component of the
pseudopotential at 2k„, and E, = 8'(k', —k„')/2m.
The sharp boundary is assumed to lie at a distance
d of the last atomic plane, and we define 0 = 2k~d.
Then performing the matching yields

$ = [2iks cos2q)+ 2i(k, -ks)(l+ sin2rp cos8)]

&&[(ik, —)() cosq)+ (ik, —a —2iks) sinq)e "] '.

'This expression can be simplified if the pseudo-
potential V is small. In this case, y is vanishing-
ly small unless k, = k„. In the regime k, o k„,
q) = 0, we recover the free-electron result [Eq.
(3)]. Near the zone boundary, q) can be appre-
ciable, but then we can let k, = ks in Eq. (12),
which gives

cu
Aafl

o 05

I

I

I

I

I

I

I

I

I

I

I

/'-
FREE ELECTRONS

~
NEARLY- FREE
El ECTRONS

kM

FIG. 3. Plot of Ift/v, I (in units of h(('0/@) the quantity
which governs the field emitted current vs the Fermi
wave vector. The dashed line is the free-electron case;
the solid line is for our nearly-free-electron model.

[4k',/ (k,'+ a')]cos'2q) . (14)

The quantity of interest for field emission is
~$'/v,

~

(see Fig. 3), which comes out straight-
forwardly by noting that v, = cos2q)@k,/m = v', cos2i(),
hence

4k', m
cos2q) =', (u,' -u', ) .

v, k', +I(," kk,

The rapid decrease of the current as k, approaches
the zone boundary is illustrated in Fig. 3.

III. FIELD EMISSION FROM NICKEL

The band structure of nickel has been calculated
and accurately fitted with the combined-interpola-
tion scheme. "'" This model approximates the
Bloch functions by linear combinations of tight-

k„'+ v' —sin2q)[ku2 cos 8 —z' cos 8+ 2((k„sin8]
'

(13)

The behavior of
~

$ ~' is dominated by the term
cos'2q) in the numerator of Eq. (13). This can be
rewritten cos'2q) = E,'/(E,'+ V'), where E,
= k '(k2 —ku2)/2m vanishes at the zone boundary.
'The essential effect of this term is therefore to
introduce a cutoff in

~
$ ~' as compared to the free-

electron result. 'The term in square brackets in
the denominator depends on the choice of the posi-
tion of the sharp boundary; this term does not af-
fect the qualitative behavior of

~
$ ~', but may intro-

duce some change in the absolute magnitude near
the zone boundary. " We ignore it in the following
for simplicity: the errors involved in the case of
nickel are thought to be small and anyway they are
confined to very few regions in k space where the
Fermi surface approaches the zone boundary. With
this approximation, we get the very simple result

binding 3d wave functions and orthogonalized plane
waves. " Such a description is directly usable in
our simple theory of field emission. In this sec-
tion, we assume that the 3d wave functions are
very localized and play no role in field emission.
Some support for this assumption is given by the
estimates of Politzer and Cutler, and of Qadzuk,
which give a tunneling probability for the d states
about 10 ' to 10 ' times that for free electrons. "
This is in agreement with experimental observa, -
tions. " See also the simplified argument given in
the Appendix. Nevertheless, neglecting complete-
ly the d-tunneling contribution is a poor approxi-
mation because of the large d density of states at
the Fermi level: This will be discussed in Sec. V.

The wave functions as taken by Zornberg" are
of the form

3

u-, =p, y."'(r)+Eg,d( -R)e"'"
f= p j=g

where the d~'s are the nickel 3d atomic wave func-
tions, the R„'s are the positions of the lattice
sites, and y»„" is obtained from the plane wave
exp [i(k+ g,.) ~ r] by orthogonalization to the d wave
functions. Here g, is a vector of the reciprocal
lattice (including 0 = g,). Four such orthogonalized
plane waves (OPW) are sufficient for a good rep-
resentation of the wave functions in the reduced
Brillouin zone (—„th of the initial Brillouin zone).

If the d functions are assumed very localized,
the matching at the crystal surface is governed
by the QPW part of 4-„; this fits directly into our
nearly-f ree-electron model. The value of the
tailing parameter $ is, from Eq. (14),
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4u2

uo — Q~ + Q2 + Q~ gg
i

xg Iu, l'. (17)

but only the OPW part is assumed to contribute to
the emitted current.

At this point a look at the band structure (see
Fig. 4) shows the kinds of effect that we can ex-
pect. 'The narrow d bands and the free-electron
paraboloid do not cross but are strongly hybrid-
ized, especially in the vicinity of the Fermi ener-
gy. As is seen from Eq. (17), this hybridization

0=EF

The second factor in Eq. (17}is the same as the
cutoff factor in Eq. (14). Far from the zone edge,
u, is much larger than the other u s, and this re-
duces to unity; near a face of t'he zone, two among
the four OPW's become equivalent, and the factor
vanishes. The last factor Z, lu, I'=u' has been in-
troduced into Eq. (17) to take care of the hybrid-
ized nature of the wave functions: the wave func-
tions are normalized

is expected to modify
I
$'/v, l, which is the rele-

vant quantity for field emission. Since the spin-up
and spin-down 3d subbands lie at different ener-
gies in ferromagnetic nickel, the hybridization at
the Fermi level is different for up- and down-spin
electrons, and even if only the OPW part is con-
sidered, the field-emitted current will be differ-
ent for the two. Such an idea was first proposed
by Hertz and Aoi. ' The present treatment is how-
ever essentially different from theirs: Their ap-
proach is a tight-binding calculation of the tunnel-
ing through an oxide layer and the "s" and d states
are treated on equal grounds as tight-binding wave
functions, which may be bad for the "s"states.
Here the plane-wave part (instead of ' s") is
treated as in the Fowler-Nordheim theory, which,
we believe, is a more appropriate way at least
for field emission. 'This is realized at the cost
of a worse approximation for the d contribution
(to be discussed in Sec. V).

The hybridization affects the ratio
I
$ /v,

I
in

different ways: the hybridized form of the wave
function enters directly

I
$

I

' via. the factor n', and
the shape of the energy bands introduces changes
in Iv, I

and in
I

g I' via, the factor k', /(jP+ ~'). This
last factor has no analogy in the treatment of Ref.
5.

Elementary mechanism: An idealized model

Before going into a numerical calculation of
these effects for nickel, it is helpful for the physi-
cal understanding to consider a simplified model
of the s-d hybridization. The d bands are as-
sumed to be flat and the s band rectilinear (E,
= ak, in the z direction) which is always possible
in a small energy interval and with a suitable ori-
gin. We allow hybridization between the s and d,
bands by introducing a nondiagonal matrix element
II,„=V in the crystal Hamiltonian. The resulting'"8
hybridized bands are of the form (see Fig. 5)

K
O
I-

LLI

E, = '(E, + E„)+—[(E,—-E„)'+4V']'~',

E, = , (E,+ E„)—2 [(E,—E~)'+4V']'~-',
(18)

-10
K I

k [lto] = — = k t'oo&]

ELECTRON WAVE VECTOR

and the hybridization factor u' in Eq. (17}is u'
= (E-E„)'/[V'+ (E-E„)'], where E =E, or E„ac
cording to the band under consideration. Let us
assume for instance that the Fermi level falls in-
to the upper band E,. The velocity v, then follows
directly from Eqs. (18),

1 Es Ed dEs
'[(E.-E )'+4V2]'&' du,

FIG. 4. Simplified band structure of nickel along [100]
and [110]directions. The dashed lines would correspond
to the bands in the absence of hybridization. The eight
unhybridized d bands have been omitted for clarity.

a (E-E,)'
8 V'+(E —E~)'

The effect of hybridization on u' and on v, cancels
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out in the ratio $'/v, ~. The only term left is the
modification of $

~

via the change in h, . This
change is &h, = —V'/[a(E-E~)j &0. Now if we con-
sider separately the up-spin and down-spin elec-
trons, in a ferromagnetic metal E~& &8„& and
therefore in our model 0, is smaller for minority
electrons. This results in a different value of the
ratio

j P/v,
~

for up- and down-spin electrons, and
therefore leads to a spin polarization of the emitted
current, although the tunneHng from d states has
been cornplefely neglected. Inspection of the ex-
pression of

~
5 ~' [Eq. (17)] shows that this polar-

ization is expected io be positive (i.e., of the same
direction as in the metal).

E)i

Numerical calculation: Results

The numerical calculation of
~

$'/v,
~

for up- and
down-spin electrons has been done for nickel,
starting from the band structure and the param-
eters of Zornberg ' and taking 4 = 5 eV. This
calculation was done for various crystallographic
directions, although the use of Eq. (17) should be
restricted to low-index crystallographic faces
(see Sec. IV 8). The results are plotted in Fig. 6
and are in qualitative agreement with the predic-
tions of our idealized model.

In the [001] direction, the amount of hybridiza-
tion at the Fexmi level is small, and the polariza-
tion is, as expected, of the order of (h, ~ -h, ~)/h,
-10 '. When one gets slightly off the [001] direc-

0

FIG. 5. Our idealized Inodel for g-d hybridization".
flat d band and rectilinear s band (see text).

tion, the s band becomes hybridized with the high-
est d band (such an hybridization is symmetry for-
bidden along [001]). The latter is known to be re-
sponsible for the down-spin ellipsoidal hole pocket
near X. As a result of the hybridization, the s
character at the Fermi level for down spins is
shared between this hole pocket and the main sheet
of the Fermi surface. This does not affect drastic-

Ch
LLl

I~

lU IWI

5

FIG. 6. Results of the
numerical calculation for
nickel. The plotted dimen-
sionless quantity is dir-
ectly proportional to the
(up-spin or down-spin}
emitted current. For free
electrons, it would be
m~~, /(@~2+ ~,'}= j. (see Fig.
3}, The solid lines are
the result of the calcula-
tion at the Fermi level.
The dashed lines are the
result at Ez- 0.2 eV (see
Sec. IVA}.

I'00&j
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FIG. 7. Plot of the spin
polarization as a function
of crystallographic direc-
tion along [x01] and [llx].
The solid line is the main .

result. The dashed line
corresponds to the case of
extreme surface scatter-
ing (see Sec. IVB). The
bell-shaped curve in the
lower left-hand corner
gives the scale of the
averaging which would be
involved for the case of a
typical electric field (see
Sec. 1VA).

—0.1
[1013

45

E001j

00 300

C RYSTALLOGRAPHIC DIRECTION

E111j

60
E110j

9'0

ally the down-spin current up to a critical angle
8, =5.5' off the [001] direction. Beyond this value,
the 0, radius vector no longer intersects the ellip-
soidal hole pocket. In other words, the lower
hybridized band sinks below the Fermi level.
Since about half of the s character is carried by
this band, there results a sudden decrease of the
down-spin current (see Fig. 8). No such change
occurs for the up-spin electrons, because the d
bands are deeper and the Fermi surface has a
single sheet.

In the [110]direction, the calculated spin polar-
ization is 0.5. This is still larger than the ex-
pected value from the idealized model p =(k,

&
-k, &)

jk, = 0.2; this deviation comes from the curvature
of the bands and the strong dependence of V upon
k,." In the [111]direction, both the up-spin and
down-spin currents vanish identically, because
the 4, radius vector has no intersection with the
~p-spin Fermi surface, and the intersection with
the down-spin Fermi surface is purely d charac-
ter.

[001j

oooo

[110]

10j

tion along the directions between [001] and [111],
this is in qualitative agreement with experiment,
since negative spin polarizations have been ob-
served in this region. From a quantitative point

IV. SPIN-POLARIZATION: DISCUSSION OF RESULTS

The spin polarization p = (j 0 —j 0)/( j 0+j 0) is
plotted as the solid line in Fig. 7 for the [x01] and
[llx] directions. Figure 8 maps p for all the
crystallographic directions. A most interesting
feature of Fig. 8 is the lower value of the polariza-

FIG. 8. Spin polarization as a function of crystallo-
graphic orientation. This is a stereographic projection
around [ill]. The lines correspond to constant polari-
zations from 20/p to 55/0 by increments of 5%. The
hatched areas correspond to p & 20%. Note the valleys
between [001] and [111]. Most of the sharp features like
the wells near [001] and fill], would be smeared out by
the effect of a finite electric field and surface scattering.
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of view, the calculated polarizations differ from
the experimental ones in two respects: first the
ve&y large values (typically 20% to 60%%uz, as com-
pared with the experimental -2%%uo to + 10%)"";
this is an obvious consequence of our neglect of
d tunneling and will be discussed in Sec. V; sec-
ond the sharp variations and discontinuities of P
in the vicinity of [001] and [111]; these unphysical
features are removed, in practice, by two effects,
which we discuss briefly: the effect of a finite
electric field and surface scattering.

A. Effect of a finite electric field

The above calculation was based on Eq. (11),
which is valid only for vanishingly small electric
field. It can be shown from Eq. (10) that the es-
sential effect of a non-null electric field is to re-
place

~
8/v,

~ „ in Eq. (11)by its average value in
a small volume of the Brillouin zone, defined by
Ez-E ( eF/2eo and k2 (meF/K, h '. For a typical
electric field E = 5 x 10' V/cm this gives E~ E-
(0.2 eV and 0, ~0.2 A '. The effect of the aver-
aging over E has been estimated by calculating
Z„~ P/v, ~„at the energy E~-0.2 eV. The result-
ing currents, shown as the dashed lines in Fig. 6,
are rather similar to the results at E~, and there-
fore the averaging over E should play no essential
role. In contrast, the averaging over Q„would
yield a smoothing of the curves in Fig. 6; this
would spread out the discontinuities over a typical
angle AkI/k, -0.2 A '/1 A ' = 10'. This is quite an
appreciable angle (see the bell-shaped curve in
Fig. I) and therefore most of the sharp features in
Figs. 6-8 should not be observed experimentally.

B. Effect of surface scattering

Equation (11) has been derived for simple crys-
tallographic directions, such that the condition
k„+5=0 is fulfilled only for k„=5=0. Using Eq.
(11) for every direction, as we have done, is
therefore somewhat unjustified. It is shown else-
where" that field emission from high-index planes
can be treated with a scattering formalism; the
essential result is the addition of a "scattered"
current j' to the "specular" current j of Eq. (11).
For the directions [llxj and [@01]in nickel, the
scattering potentials are due to atomic steps par-
allel to [110]and [010] respectively. As shown
in Ref. 11, the scattered current j' in this case
is given by

e3I' m ' d'I 8
87t2@2g

p p

where 8 is the polar angle of the k vector in the
plane perpendicular to the direction of the steps
and summation is limited to the regions where
v, & 0, vz(8) is the radial component of the Fermi
velocity, d, is the density of steps for unit length,
k, is the Fermi wave vector normal to the surface,
and V~,g„«) is the matrix element of the two-di-
mensional scattering potential (the potential pro-
duced by an atomic step is translation invariant
along the third dimension, i.e., the step direction).
The scattered current j' is expected to be of the
same order of magnitude as j, except when d, is
accidentally small (i.e., near [100], [111], or
[110]). It is less sensitive than j to the local
properties of the Fermi surface, because the in-
tegral in Eq. (20) involves an angular averaging on
k. As an example, we have chosen a localized po-
tential (i.e., range much shorter than I/kz and
I/v, ). Then an appropriate expression for the
matrix element is'a

V~k v (8&
= ~(ko)& [kP(8)] V'(r)d r (21)

The strong dependence of ( upon 8 is averaged out
by the integral in Eq. (20). The only memory of
the local properties of the Fermi surface comes
from the dependence of Vk -, ,e& on k, [the first
factor in Eq. (21)]. This is a fairly weak depen-
dence [C(k,) = 2v, /(a, —ik, ) for free electrons], "
although it can be less simple in the case of an
arbitrary Fermi surface. If one neglects this fac-
tor, one can get an estimate of the maximum pos-
sible averaging via the surface-scattering mech-
anism. The corresponding spin polarization (j&
-j'~)/(j&+ j&) is plotted as the dashed line in Fig.
7. All the sharp features have disappeared, but
the general behavior is unchanged; namely, the
pola, rization is still minimum between [001] and
[111].

In conclusion, both the finiteness of the electric
field and the surface scattering are likely to smear
out the discontinuities of the polarization as a
function of crystallographic direction, but neither
of them are too strong and the essential features
seem to be conserved. Our simplified approach of
neglecting d tunneling appears therefore success-
ful in that it gives correctly the qualitative be-
havior of spin polarization as a function of direc-
tion. Furthermore, it shows that hybridization
can give very la& ge effects and explain positive
spin polarizations. As a consequence, no com-
parison of many-body theories with experiment
seems possible before d tunneling is accurately
understood.

)( 8 (4 / 3 )@pc&/ eI"

, k&, (8) 1 d8

iv (8)i 2»

(20).

V. CONTRIBUTION OF d TUNNELING

The contribution of d tunneling is expected to
play a crucial role in view of the large density of
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d states at the Fermi level. This should decrease
the very large values of the polarization which
were obtained above.

The problem of field emission from tight-bind-
ing d states has been considered in detail by Gad-
zuk and by Politzer and Cutler. " A simplified
argument is given in the Appendix. The conclu-
sion is that their contribution to the field-emitted
current (i.e., the

~
& ~. factor), is 10 to 10 times

smaller than for free electrons. 'The densities of
states at the Fermi level for nickel are in the
ratios p„II

-
IG, ~ + p, &-10 ' p«and therefore the con-

tribution of dk states should not be neglected as
compared to s states. A serious (numerical)
treatment of field emission from hybridized Bloch
functions is beyond the scope of this work and we
will content ourselves with a semiphenomenologi-
cal argument: We assume that the effect of d
states is mainly to add a constant down-spin cur-
rent J« independent of the crystallographic orien-
tation. The neglect of the analogous J„& is prob-
ably justified, but the assumed isotropy and the
supposed additivity may be somewhat unrealistic.
However, taking J«as an adjustable para, meter,
ihe results of Sec. IV can be brought into reason-
able agreement with experiment. Writing

Z, ) = —e'F'/(16){'ff & E) exp(- —,
' ){,C /eE)

by analogy with Eq. (6) and taking &E = C /0. 185
(4/&E is to be compared with the quantity plotted
in Fig. 6 for the s part), we get p([112]—[113])
= —5.1/o and p([102]-[103])=+ 'l 2/p in t.ypical
agreement with the experimental values -2.9%%uo

and+3. 6%, respectively. ' The smaller contrast
observed experimentally may be a consequence of
surface scattering (starting from the scattered
currents j,'„,discussed in Sec. IVB would yield
polarizations of -1.0/z and + 2.5%, respectively).
The obtained value of J'k& is.roughly —,(j&+j&). In
view of the ratio of the densities of states p«
-:i0(p, &+ p, &), this implies a,

~
$ ~' factor about 30

times smaller for the d states than for free elec-
trons. This order of magnitude is very much as
expected.

VI. CONCLUSION

We have shown that the hybridization in the
Bloch functions has an important effect on the spin
polarization of the emitted current. By neglecting
d tunneling and using a nearly-free-electron model
modified to include hybridization, we have obtained
very large positive polarizations. The semiphe-
nomenological inclusion of the d contribution as an
additive constant down-spin current permits to get
agreement with experiment. Although this is not
conclusive in regard ta the magnitude of the many-

body effects, it shows that the right order of mag-
nitude and angular dependence of the spin polar-
ization can be obtained in the framework of a one-
electxon tkeoxy. We believe that this simple cal-
culation should stimulate more systematic investi-
gations of this problem by the use of numerical
methods.
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We consider a simple cubic lattice, with nearest-
neighbor tight-binding wave functions. We further
assume that the basic atomic functions y have s
symmetry. An incident wave can be written

= W eikkkk ~ e~'k k+"k' p)k(rk—R )inc Pan
n Pke

where R„„is the lattice point with coordinates
(pa, {fa,na). If we superpose a wave

e, ik o g e ikkka g e-i{kxk+ krak)a{p(r R )Pqn
Pka

then the sum vanishes identically on the sites n = 1,
that is on the a,tomic plane z = a. We now cut the
crystal between z = 0 and z = a, throwing away the
part z ~ a; this creates a [001]face and one can
check tha, t an eigenfunction of the new system is

fl «0
e f kzna e2i &zae- i kzna

){g e{ik&k+k& k)kp(r R )Pqn
Pke

(A 1)

And so the matching is performed (this trick
works only in the nearest-neighbors approxirna-
tion). For k„=0, the tailing parameter $ can be
obtained by summing the tails of each atomic wave
function in the crystal. We take the asymptotic
behavior {p) (r)-)IY) (8, {p)e ""/{{r,where y, can
be now any type of wave function (we forget the
problem of hybridization between different d states)
and includes a factor such that {Z,j

{p(r —R,.)
~

') = 1
[i.e., {p(r) and r) are dimensionless]. Far from the
surface into vacuum, the tail is

APPENDIX: FIELD EMISSION FROM TIGHT-BINDING STATES:

A SIMPLIFIED ARGUMENT
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0
2ze' ~'z) Q s&n[k, (n-l)a]QI', (8, p) ===-=' —= —ze'"-'zi

h
' —,—,Fzo(8=0)5,e '*.

n=-~ P~ zf Pqn

This has to be identified with $e ""'0', where z,
is the abscissa of the plane where the electric
field Hamiltonian vanishes (in other words, the
"electric surface" of the crystal). It gives

(2I+ 1)zzz)', „, e"' sink, a
(«)' ' cosh« —cosk,a

The last factor is nearly equal to 4 sin'k, a be-
cause, in practice, cosh«»1 (only the last
atomic plane contributes to the tail) and is com-
parable to the

~
$ ~' factor for free electrons. The

Kronecker 5, shows that several atomic functions
do not contribute to field emission, due to sym-
metry considerations. Finally, we can get an
estimate of the ratios of d to free-electron tunnel-
ing [we replace 5, by 1/(2I+ 1)]

%e have evaluated q for nickel by matching the
radial part of the atomic function to the asymp-
totic form zie ""/n, at a, distance from the center
equal to the signer-Seitz radius 1.37 A; this gives
zI =1.2. For a in the denominator of Eq. (32) we
have rather taken a/v 2 = 2.48 A, because for the
[100] face of a fcc crystal, the density of atoms
per unit area is 2/a' instead of 1/a'. From the
work function of 5 ep one gets I(. = 1.15 A '. This

z, lies probably in the range 0 to —,a, hence the
f inal estimation

is in order-of-magnitude agreement with other
estimates. "
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