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A simple model is proposed to treat the quantum size effect in thin superconducting films so as to account for

screening of the surface charge, and to thereby provide consistency with the Friedel sum rule for metal

surfaces and the constancy of the Fermi level. The original Thompson and Blatt calculation is followed with

the additional feature that the overlap integrals for the electron-phonon interaction are only evaluated over the

geometrical thickness, which defines the extent of the ion cores even though the electron gas extends beyond

the cores. This procedure provides a factor which lowers T, that is of the order measured in experiments.

INTRODUCTION

Various calculations' ' have been made of
the effect of the boundary conditions and film
size on the superconducting transition temper-
ature T, for thin films, and of how shape reso-
nances might be observed under appropriate condi-
tions. Recently, the question of the validity of the
boundary conditions in films used in earlier calcu-
lations has been raised by Allen. ' It is the purpose
of this note to reconsider the previous calculations
in terms of more realistic boundary conditions. A
result of this calculation is that the envelope curve
for the gap with decreasing thickness shows a re-
duction in T, (as opposed to previous predictions
of an increase in T,), for the thinnest films, in
better agreement with experiment.

Some years ago, Sugiyama' showed that a con-
sistent solution of the charge distribution at the
surface of a semi-infinite metallic conductor could
be obtained if the geometrical boundary was moved
out a distance b„=3m/Skz„where kz, is the bulk

Fermi momentum, and an infinite wall was placed

—b~ 0

TREATMENT OF THE BOUNDARY

Inprevious calculations of the T, of superconducting
thin films, the boundary was treated by constructing
an infinite wall at the boundaries (x= 0, a, Fig. l) and

using sine functions to make the wave function zero
at the wall, "or by making the slopes of the wave
function vanish at the boundary, ' which implies co-
sine functions. Allen' points out that both choices
are not realistic since they viola, te the Friedel sum
rule for metal surfaces ~ With the wave function
g(x) written in the form

g(x)

eflux

e 2II1e Rx

ky

kz

n=l

a' = a+ 2b

the sum rule says that the avera. ge phase shift (q)
has to be &z. This result was obtained earlier by
Appelbaum and Blount' for a thin metallic slab.
They also showed that the Fermi momentum kF is
independent of thickness a of the slab to the order
of (1/kza)'. Here we are going to propose a sim-
ple model for size quantization which is consistent
with those boundary conditions.

(b)
FIG. 1. (a) To allow for the leakage of electron wave

functions out from the metal surface, the infinite walls
are now placed at .x' = A „and a +b „ instead of at geome-
tric boundaries x =O, a of the film. (b) Owing to quanti-
zation of the 4' vector in the x direction, the k sphere is
degenerated into circular disks in the k~, k~ plane as
shown. In our model, the separation of the disks is 7(/a',

where a' is the "physical" thickness a + 2b

14 996



CONSISTENT CALCULATION OF BOUNDARY EFFECTS IN. . .

in this new position. It should be noted that an im-
portant part of this calculation is that k~ is not
changed by the introduction of a surface. We ex-
tend this idea to very thin films and take into ac-
count the leakage of electronic wave function
across the slab geometric surfaces by placing the
infinite walls a distance t}„outside the slab, so
that the film has a '*physical thickness" a' =a+2b„.
The wave function is assumed to vanish at the
"physical" boundary as in Fig. 1(a}, and is givenby

constant to order of (1/kva}' is crucial to the argu-
ments that follow and provide results that are
completely different from previous ones.

For a spherical Fermi surface, the constancy of
k~ implies the constancy of the chemical potential

To demonstrate the physical origin of this con-
stancy, one can use the Thompson and Blatt (TB)'
expression for p, normalized to a larger box.
Their expression is

g - sin k (x +f )} e ' ~-~" (e '~ "—e 2(~ ('- e-'~n )

where k„=nv/a'. Hence by definition

n=l
k„= (f)„))/Sa')(2v+ 1),

n-

Conservation of charge requires that

EO y2 It
2

n=l
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which implies that

m'
~E ~Eo ~+
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yoO

where v is the highest occupied quantum number.
Then

(2)=—() «

which is the result given by Appelbaum and
Blount. ' In the following it is shown that k~ for the
quantized system is the same as for the bulk case
to order (1/k„a}' and similarly for the chemical
potential. The fact that the chemical potential does
not change, even though the box is expanded, is a
rather surprising consequence of the sum rule
when applied to this quantized case.

The number of electrons per unit area of the bulk
material normalized to geometric film thickness a
is given by kr,a/Sm'.

The sum over a, llowed wave vectors [see Fig.
1(b)] now gives the number of electrons per unit
area in the quantized physical film and is given as

with

k„m V, 8k~a 6w' 2k a

)V/V, = k,'/Sv',

i(, =—5'kr'/2m.

It should be noted that the decrease in density be-
cause of the extended "box" is compensated to
first order by the increase due to the quantization
conditions.

CALCULATION OF THE ENERGY GAP

Our procedure is essentially to follow the TB
calculation but using a larger box that takes into
account the leakage of the electrons beyond the
geometric surface as shown in Fig. 1. Essential-
ly, the charge leaks out beyond the ion cores an
inverse Fermi wave vector, as one might expect
from Thomas- Fermi screening arguments. Be-
sides doing the calculation in a larger box, it is
also assumed that in the region beyond the ion
cores the electron-phonon interaction falls off
rapidly (in the spirit of taking 1/kr to be the decay
length of the interaction).

Following TB we assume a 5-function potential
of the form

It should be noted that in this expression the
first term is a consequence of the electron density
and the second term involves the quantization con-
dition. This second term causes a dramatic in-
crease in p, with decreasing thickness a. In our
case we let a' replace a, and v=a'kr/w (at thick-
nesses where shape resonances occur) with kr, the
bulk value as shown previously,

ma'O' Na m

,. ( + l)( ()}.
vm Voa' 6a"

The "physical" volume V is now a'/a times the
geometric volume Vo. Making appropriate expan-
sions and keeping terms to order 1/kza we obtain

0

For usual metals, b„=k~'=1 A. Our model is
consistent to high accuracy with the sum rule and
constancy of k~ for films over 5 A. That k~ is

(12)

and where J is the interaction constant. Using
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periodic boundary conditions in the y and z direc-
tions with periodicity distance I,

d„=}I(u~(sinhA„) '

(t, —l
]

]l', - X')=f, ]x„(x)x„.(x)]'A*

where

2 "' . nw(x+5„)0 x = — sintl at at

(13)
Note that for large a'

v=kF a'/n

and writing

K=kF/wp,

(21}

(22)

and (dD is the Dehye frequency. Expression (13)
assumes that the interaction from —b to 0 and
from a to a' (see Fig. 1) is reduced owing to the
electron gas extending beyond the ion cores, as
mentioned previously. Note that now the wave
function is periodic in a' whereas in the original
calculation the distance was the film thickness a.
The overlap integral which in the original work
was

(15)

now becomes

—2 ux „,x dx

16„=25(d exp (23)

T, is given by the usual BCS relation between gap
and transition temperature.

COMPARISON OF RESULTS KITH TB

where a„ is given by

The present result differs from the TB result in
several important ways.

(i) In the TB calculation kF and p, vary with
thickness. In the present calculation k~ is essen-
tially eoqgtant and p, is also constant with thick-
ness.

(ii) In the TB calculation the envelope for the
peaks at shape resonances

T,~ = 1.148~ exp
a„K

a'„= (w V/2N) [v' ——,
' v(v+ —,')(v+ 1)] (25)

tilt (16)a' +
2 a'

The constants is of order unity, and we shall use
b =—2Bb„. %e have approximated the integral in the
above form since the normalization over a' makes
the integral from zero to the geometrical thick-
ness a function of n and n' and the gap equation for
the energy gap function 4„cannot be solved analyt-
ically. In the above form we write

T,„=1.148D exp
a„K

2

and the intermediate value defined by letting v

change by —,
' is

T„=1.148~ exp(- a.„K/v).

(26)

(27}

and e~ is the Debye temperature. The valley en-
velope is

rx„=tt- QA„A.f [ „(*) „(x)]*Ax,
n 0

where

A„= sinh '()I(dD/4„), (18)

Note these curves give an "average" rise in T, as
thickness decreases.

In the present calculation, for the purposes of
comparison we unrealistically let b = 0, now the
envelope curves become

and K=2m@'/mJ', following Thompson and Blatt.
Using Eq. (16),

In this form 4„and A„are independent of n. Hence

A„1 b
1 — ",=, 1-—, vAA„.

Using the definition of A„

Ka'
T,~ = 1.148~ exp

kp-a //K+ p

Ka'
T,„=1.148D exp kFa' v ——,

'

Ka'
T„.= 1.140D exp

kF a'/w

= 1.140~ exp(- 1/p)

T b~x

(28)
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Owing to the constancy of kF, T„. is now the bulk

T,. Hence even in this case there is no increase
in the average T,. This is because in TB, p. in-
creases with decreasing thickness and in our cal-
culation p. is constant with thickness. This ac-
counts for the major difference between these cal-
culations besides the consideration of loss in elec-
tron-phonon interaction at the boundaries, which
is discussed below.

(fit) Because of the spread of the electrons past
the ion cores the result for T, in the present case
actually contains a further difference from TB.
The envelope curves are given by

Ka'
(& w 'n bS ') -')'

and

N,a
jeff s s s~+ Wn

T, (&u-) exp[(-I/N, V,)(1+NP„/N, a))

or

T, = T~ exp(- NP„/N, 'V,a). (31)

7
(a)

If we identify NP„/N, with b and N, V, is taken to be

p, then Eq. (31) is very similar to Eq. (23). Now

the factor 1+b/a is in the numerator, which is the
expansion 1/(1 —b/a') for small b/a' No.te a,iso
that the thickness appearing is a, whereas a' in-

Ka'
[(k~/v)a' —IJ(1 —b/a') +-'

Ka'
u» ) -n~ bi'~ -)

In Fig. 2(b) we show the various envelope curves
for b =1 A, which is a physically reasonable case.
In this case it can be seen that the average T, de-
creases as thickness is reduced.
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DISCUSSION (b)

There are two aspects to the present calculation;
one is the effect of the thinness of the films on the
usual electronics parameters such as kF and p. ,
and the other is the effect on the superconducting
transition. It is interesting that the self-consis-
tent extension of the geometric boundary as given
by Sugiyama' leads to the constancy of kF and p,

even in the quantized case. It appears that the
theory of the transport properties in Bi thin films
should be looked at again in this regard. Turning
to superconductivity the constancy of kF and p.

eliminates any quantum enhancement of T,. Fur-
thermore, consideration of the overlap integral in
the extended "box" actually causes T, to go down.

If we examine the equation for the reduction of
T, in the ca.se where b/a is small, it can be put in
the form for the decrease in T, owing to the prox-
imity effect in the Cooper limit. In this Cooper-
limit case T, -(u)e ' ', where p is given by

T (K)
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(30)

where N, V, d are the density of states, the net
electron-phonon interaction, and the thicknesses of
the respective normal (n) and superconducting (s)
films. If we take N„and d„as the density of states
in the fall-off region outside the ion cores' and
take V„=O, then

I

IQ

I I I I I

20 30 40
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I

50

FIG. 2. This set of curves shows the variation of T~

with physical thickness a' at various values of b. Here
for convenience, we takeK =kF =1 A ' and 1.148D=100.
T, takes a jump at shape resonances. The peak, valley,
and intermediate T~ values are given by Eq. (29).
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Fig. 3, curve a] show a smaller depression than
for the Cooper limit. In Fig. 3 we show the as-
ymptotic agreement, and the deviation at the
smallest thickness. This deviation is due to the
quantized nature of the present calculation.

As far as numerical analysis of various data
goes, it appears that the present calculation with
b = 1 provides a change in T, of the order of a cou-
ple of K in Pb at 10 A which does not quite de-
scribe the larger depression in T, observed ex-
perimentally. In films with high resistance per
square R~ fluctuations can depress T, of the order
of 1 K in 10 A films" and activated conduction can
also be expected to lower T, of the order of 1 K."
It is possible that the present model can be modi-
fied to provide a greater lowering of T, for the
thinnest films in the following way. In the thinnest
films one might expect the film to break up as
evidenced by the large increase in R and hence a
shorter mean free path. If we now assume a first-
order correction for the further loss of electron-
pgonon interaction due to film breakup, then we
write

O, I

0.05
Isa (A )

O. I O, I5

FIG. 3. Graph shows the comparison of our calcula-
tions for T«with experimental results. All curves are
theoretical curves with b =1. Granular correction pa-
rameter c =0, 10, 20 for curves a, c, d, respectively.
Curve b shows the Cooper limit. The experimental. re-
sults in Ref. 10 lie in the shaded area.

eludes the electron-tail region.
Finally Eq. (31) can be put in the form In(T~/T, )

=b/pa Curve b in Fig.. 3 shows this linear de-
pendence with 1/a. Thus the surface with its re-
duced electron density tends to depress T, for the
adjoining bulk. However, we mention that for
films of the order of 10 A these results [Eti. (29),

b =b, +c/a,

then

b/a = bo/a+ c/a'.

It can be seen tha. t the c/a' term provides an ad-
ditional factor to the previous result. In Fig. 3 we
plot In(T~/T) against a ' for bo= 1 A and different
values of c. It can be seen that this expansion can
be used to phenomenologically account for the film
breaking up with additional loss of electrons and
decreases of T, in the very thinnest films. The
connection to R is clear if we take a approximate-
ly equal to the mean free path l, then

b/a b, /a+c-/al b, /a+c-'R, .
Of course, this analysis is just meant to sketch

how better quantitative agreement can be obtained
with actual data. Clearly, the actual structure and
model to describe real films is not known at this
time and further analysis is unwarranted. How-

ever, in general, the present calculation from
first principles does suggest that a decrease of
T„not very different from that observed, can be
expected.

*Work performed under the auspices of the U.S. Energy
Research and Development Administration.
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