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Starting from Hebel and Slichter's single-spin-temperature theory, the comprehensive perturbation formalism

developed recently for the calculation of T,~ due to the motion-induced time dependence of nuclear dipole
interactions in both high and low rotating fields is extended to include quadrupolar effects in crystals. The
total relaxation rate T, p' is written in terms of dipolar and quadrupolar "lattice correlation functions"

associated with the internal motions, and "spin correlation functions" governed by processes of internal

equilibration of the Zeeman, dipolar, and quadrupolar Hamiltonians of the spin systein. While the lattice
correlation functions are found to determine the high-field T, minima in the motionally-narrowed re-

gions, low field T, minima occurringat temperatures between the weak- and strong-collision regionsare
found to be strongly influenced by the processes accounted for by the spin correlation functions. In the limiting
case of strong collisions (so-called Slichter-Ailion region) the results of Rowland and Fradin are confirmed. The
applicability of the present method to interpret rotating-frame relaxation studies of defect migration in cubic

crystals such as, e.g., self- or impurity diffusion via randomly migrating point defects, or dislocation dynamics

during plastic deformation, is discussed.

I. INTRODUCTION

In cubic crystals the interaction between the
electric quadrupole moments of the nuclei due
to their nonspherical charge distributions (I ~1)
and electric field gradients (EFG's) is determined
by lattice imperfections. ' While static quadrupolar
effects associated, e.g. , with point defects or
dislocations, are usually analyzed in terms of
width, shape, and intensity of the NMR absorp-
tion signal, "effects originating from implicitly
ti me -dependent quadrupolar interactions due,
e.g. , to lattice vibrations, ' the thermally activated
self-diffusion of free' ' or bound' vacancies, or
the long-range migration of dislocations during
plastic deformation, ' are studied through the
related spin-lattice relaxation rates T, ' in the
laboratory frame, ' or, if the internal motions
are rather slow, T, z in the rotating frame. "

The fundamental difference between dynamic
quadrupolar and dipolar effects associated with
lattice imperfections on the nuclear magnetic
relaxation processes is easily understood, e.g. ,
in the case of randomly migrating vacancies.
While their dipolar effects are only "seen" in-
directly in that they induce relative motions of
nuclear magnetic moments, quadrupolar effects
allow a closer and more direct "look" at vacan-
cies since they represent local distortions of
the cubic symmetry of the crystal. , hence creating
electric field gradients which interact directly
with the nuclear quadrupole moments. Therefore,
quadrupolar spin-lattice relaxation effects are
sensitive to the atomic concentration of field
gradients. In the case of randomly migrating

vacancies this allows one to determine both the
sum and the difference of formation and migration
energies, E~~ and E~, from measurements of the
temperature dependence of the relaxation rates. '
This is in contrast to the dipolar relaxation prop-
erties which are influenced by varying defect
concentrations only in that the nuclei jump more
or less frequently, but the total. dipolar energy
of the crystal remains unchanged, and the re-
laxation rates as a function of temperature are
governed by the activation energy, E~+E~, alone.
Also, the temperature or field ranges in which
the dipolar and the quadrupolar relaxation con-
tributions, respectively, are dominant are usually
well separated from each other owing to the dif-
ferent natures of the underlying relaxation mech-
anisms.

If, as is usual in cubic crystals, the quadrupolar
interactions are relatively weak and of the same
order of magnitude as the dipolar interactions
among the spins, static quadrupolar effects may
be observed, e.g. , via the additional broadening
of the central absorption line, combined with the
decrease of its peak intensity. "' Then, except
in the case where the occupation differences be-
tween individual energy levels may be character-
ized by a Zeeman sPin temPerature, the relax-
ation of longitudinal magnetization in the lab-
oratory frame is no longer simply exponential
with a single time constant T, .

Similarly, in the rotating frame a single re-
laxation time T, ~ may be defined only if during
the relaxation the spin system may be ascribed
a single spin temperature. If the amplitude H,
of the rotating field is comparable to the local
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field HI, &
in the rotating frame (H, &HI z), a com-

mon spin temperature between the Zeeman, di-
polar, and quadrupolar thermal reservoirs may
often be established, while, for H, »H~p, the
single spin temperature has to be of the Zeeman
type as in the laboratory frame. As illustrated
in the rest of this article, in both situations the
single-spin-temperature theory of Hebel and
Sliehter' "may be applied to predict the re-
laxation properties associated with simultaneously
time-dependent dipolar and quadrupolar inter-
actions.

A first comprehensive discussion of the com-
bined dipolar and quadrupolar effects on T, p

governed by diffusion was presented-by Rowland
and Fradin. " In the so-called Slichter-Ailion
("strong-collision" ) region'~ their relation for
T& p

or iginal ly derived for the s imultaneous d if-
fusion of host and impurity atoms in aluminum,
may be written as follows":

1 1

T, p H~+H„p+Hqp
1-p , 1 —q

dp d Hap a
TC TC

where H«and H, p
denote the dipolar and quad-

rupolar contributions to the local field in the ro-
tating frame. v", symbolizes the mean time be-
tween consecutive changes of the dipolar energy
between a pair of nuclei (in the case of uncor-
related self-diffusion 7', = —,'y, where ~ denotes
the mean time of stay of a nucleus at a given lat-
tice site), while r, is the correlation time as-
sociated with the time variation of the quadru-
polar Hamiltonian. The parameters P and q are
related to the microscopic features of the mech-
anisms causing internal motions. "'"

The main assumption underlying Eq. (1.1) is
that in the presence of the rf field H, strong enough
to saturate the NMR absorption a common spin
temperature is established among the Zeeman,
dipolar, and quadrupolar thermal reservoirs in
the rotating frame between consecutive changes
of both the dipolar and quadrupolar interactions.
This requires r, , r', »T, where, qualitatively,
T is a time constant associated with the proces-
ses of thermal mixing. (For H, =H~~ =H, ~, the
"mixing time" T is approximately equal to the
spin phase coherence time in a "rigid lattice, "
TRL )13ol4.

2 ~ /

In the motionally-narrowed (weak-collision)
region of the rotating frame, Rowland and Fradin"
used a Bloembergen-Purcell-Pound type of theory
for the ealcuhtion of T,p, extending arguments
of Abragam. ' The assumptions underlying their
approximate treatment of this region are not
quite clear, however (see Sec. IIB of Ref. 13).

In the present paper the basic problem of di-
polar and quadrupolar rotating-frame spin-lat-
tice relaxation is reconsidered. After the dis-
cussion of the basic Hamiltonians involved (see
Sec. II), Hebel and Slichter's theory will be used
to derive an expression for Tzp valid in the entire
temperature region (see Sec. III). In the absence
of quadrupolar interactions the present theory
becomes identical with the comprehensive per-
turbation formalism presented recently by Wolf
and Jung. " Therefore, as in Ref. 15, "strong"
and "weak" collisions are included as special
cases in a more general relation for T, q (see
Sec. IV), which, as discussed in Sec. V, is also
valid in the intermediate regions, where the
low-field dipolar and quadrupolar T, p minima
occur, respectively.

II. BASIC HAMILTONIANS AND DEFINITIONS

X -u I. +(u cos(ut I.

+co, sinet I,„+X t +X, t, (2 1)

where ~, =yH, and ~, =yH, denote the Larmor
precession frequencies associated with the fields
H, and H„respectivel. y.

A. Dipolar Hamiltonian

The total nuclear dipole Hamiltonian X„of the
crystal may be written as follows:

1
Xd Xd i j2

1 +
g(j)~(~)

2 P=-2

where the quantum-mechanical operators are
given by (in the notation of Abragam9)

(2.2)

AI, = 3n~[ —I;gI&g + g(I& I, +I; I,+)],

A„' = no (I,gI,'+I';Ip ~ ),

A;, = 2 n~ (I,'I p ),

with
3 2+d = —2y'~

and

~ (P) ~(P)+ g (P) ~ (P)ij y ij ji

(2.3a)

(2.3b)

(2.3c)

(2.4a)

(2.4b)

The laboratory-frame Hamiltonian of a system
of N identical interacting nuclear spins with quan-
tum number I and gyromagnetic ratio y in a con-
stant magnetic field Ho =H,z and an alternating
field H, =H, (x cosset +y sin~t) is given by (in units
of h)
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Through their spherical coordinates ~„, y, &, and

ri, with respect to the "magnetic" coordinate
system (with z~( H, ), the classical geometrical
"lattice" functions F,&

are implicitly time de-
pendent if the nuclei move relative to each other.
They are given by

the direction of the nuclear spin) the five inde-
pendent components of the traceless symmetric
quadrupole tensor may be expressed in terms
of a single number, the quadrupole moment eQ„
of nucl. eus n, and we have in this coordinate sys-
tem'

F(IO' =r, ,'(1 —3 cos'3, ,),

Fi& =r&& sin~i& cos

. sin , . ei3 if

(2.5a)

(2.5b)

(2.5c)

(Q„s)„=[&Q„/6I„(2I„-1)]

x[ —'(I I„s+I„BI„)—6„8I„(I„+1)].
(2.10)

and

p(-P) p(P) + p(P) p(P)if ii y ii 4i (2.6)

(2.7)

where V denotes the operator of the electric po-
tential. In bulk matter, V may be replaced by
its expectation value. Then, if the source of the
electric field gradients is a given spatial dis-
tribution of v,„different types of lattice defects
such as, e.g. , different kinds of dislocations or
point defects), with atomic concentrations
cz =Nz /N (v = 1, . . . , v „), the EFG at the center
of some nucleus n becomes

(2.8)

where (V'"z)-, denotes the nP component of the
EFG tensor at the center of atom n induced by
defect l „(=1to Nz) of type v. With Eq. (2.8) the
quadrupolar interaction Hamiltonian of the sys-
tem of N spins with their rigid surroundings may
be rewritten as follows:

B. Quadrupolar Hamiltonian in cubic crystals

The tensor coupling between the nonspherical
charge distribution inside a nucleus n (with spin
quantum number I ~1) and its noncubic surround-
ings may be written as the product of the Carte-
sian quadrupole tensor Q~8 and the EFG tensor
operator at the center r„of the nucleus (for de-
tails see Refs. 6, 16, and 17):

Similarly, the traceless symmetric EFG tensor
associated with a given defect of type v has five
independent components, three determining the
spatial orientation of the principal-axes system
X, Y, Z of the tensor ellipsoid of (V„8)-, (un-
ambiguously defined by the condition ) Vzg ~( V„r(
~

~ Vzz) and the following two':

eq, „=(V "), (2.11)

called the "magnitude" of the EFG, and

q(,.=[(VXX) „—(Vrr), „]/(Vzz).„, (2 12)

referred to as the "asymmetry parameter. " For
field gradients which are axially symmetric with
respect to the axis of greatest field gradient
(Z axis), q, „=0 at any nuclear site r„.

Let the orientation of the principal-axes system
associated with a field gradient l „of type v (X,
Y, Z system) and the principal-axes system of
the tensor (Q ())„(x,y, z system) be characterised
by the three Euler angles 8, „, fII), „, and g, „,
the latter being arbitrary for symmetric field
gradients, since only the relative orientations
of the z and Z axes are physically relevant.

If a strong constant external field H, is applied
at angles 8 and Q relative to the main crystal
axes, the nuclear spins are quantized along the
direction of H„which coincides with the z axis
of the quadrupole-tensor ellipsoid, and the angles
6), „and Q, „characterize the orientation of the

V V

symmetry axis of the EFG tensor with respect
to this "magnetic" coordinate system. Then, in
order to exploit the relaxation properties of 3C,
more clearly, Eq. (2.9) is rewritten in a way
similar to the dipolar Hamiltonian (2.2)"":

with

N

q( ) V(- )

n=l V=1 l =1 q=-2
V

(2.13)

(2.9)

The nuclear charges precess very rapidly about
the nuclear spin direction. Therefore, in the
principal. -axes coordinate system of the tensor
ellipsoid of (Q„B)„(with its z axis parallel to T„,

Q'„" =o., (3I'„, -I'),

Q(+2) ~ (I & )2

and, for symmetric field gradients,

(2.14a)

(2.14b)

(2.14c)
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~ r ~= 2eqr, nsin~r ncoser„ne
y(") =-'eq si ~e e ~2~erv.

4 rvn rv

(2.15a)

(2.15b}

(2.15c)

In writing Eqs. (2.13)-(2.15), it was assumed that
all nuclei have the same magnetic dipolar and
electric quadrupolar moments, with

()(, =eQ/4I(2I —1). (2.16)

The meaning of the individual q terms in Eq.
(2.13)is obvious: Whilethetermfor (I=0is secular
[it commutes with the Zeeman Hamiltonian in

Eq. (2.1)], the terms for q =+I, +2 cause spin-lat-
tice relaxation if X, varies with time, i.e., if a
spin & and some defect l, change their relative
positions in the crystal lattice so that q, „, 8r „,
and Q, „and therefore VI )„ in Eq. (2.13), become
functions of time.

C. Comp1ete HamiItonian in the rotating frame

With X0 and X, given by Eqs. (2.2) and (2.13),
respectively, the laboratory-frame Hamiltonian
(2.1) may be transformed into the rotating ref-
erence frame to yield

Xp = &I, +0),I,+X,"'(t )+X("(t),
with the abbreviations

I, = Q I„„I„=g I,„, 6 = &d0 —0).

(2.IV)

(2.18)

+~ I +~(0)RI.+~(0)M. (2.21)

of the spin system isolated from the "lattice bath"
causing the motions. The deeper reason for in-
cluding the rigid-lattice Hamiltonians in the un-
perturbed Hamiltonian (2.21) lies in the fact that

In writing Eq. (2.17) the nonsecular terms of X,
and X, have been dropped in the usual. fashion,
thus restricting the following analysis to tem-
peratux es far below the dipolar or quadrupolar
Tj minimum.

To ensure the success of a perturbation treat-
ment even in rather low relaxation fields (H, %Hap,
H, p), the Hamiltonian (2.17) is rearranged by add-
ing and subtracting the rigid-lattice dipolar and
quadrupolar Hamiltonians, X~' ""and Xq' "".
Then, in analogy to the procedure described in

Ref. 15 (henceforth referred to as paper I}, we
write

Xp =X,p+X, p(t)

and consldel

(I ) X(0)(t ) X(0)RL+X(0)(t) X(0)RL (2 20)

as a small. perturbation on the time-independent
Hamiltonian

even without internal motions these texms are
inherent to the isolated spin system. Therefox e,
as indicated by Eq. (2.20), only the difference
between the rigid lattice and the actual dipolar
and quadrupolar Hamiltonian in the presence of
"lattice" motions should be considered as the
perturbation.

III. EFFECT OF TIME-DEPENDENT NUCLEAR DIPOLE AND

QUADRUPOLE INTERACTIONS ON SPIN-LATTICE

RELAXATION IN THE ROTATING FRAME

A. 81och-Manyness-Redfield theory and the

ademption

of a common spin temperature

In Abragam's formulatione of the Bloch-%ang-
sness-Redfield theory (see, e.g. , Refs. 11 and
18) the expectation value (X„)of the energy of
the spin system varies with time according to

d(X,p) dt' Tr [([X,p{t '), X,p]

x [x„,o*(t ') —o, ])),
where the brackets () symbolize an average over
a thermal. -equilibrium ensemble, and the inter-
action representation of X,p(t) was defined by

X (t) =eiscoptx (t)e (x0pt . (3.2)

As il.lustrated in I, the characterization of the
spin density matrix cr~ in Eq. (3.1) by a single
spin temperature ()e allows to reduce Eq. (3.1)
to the simple exponential-type relaxation equation"

(3 3)

where e~ denotes the "lattice" temperature, and
the spin-lattice relaxation rate T, z is governed
by the following expression:

dt'Tr X,X, t' X, , R

(3 4)

Equation (3.4) may alternately be derived from
the well-known Hebel-Slichter equation" "by
determining the usual "lattice"-induced transition
probabilities W„„between the eigenstates ( m)
and [n) of X,p in terms of a first-order pertur-
bati, on expansion. "

In addition to the assumption of a singl. e spin
tempexature, the main restriction underlying
Eq. (3.4) is that the correlation time 7, of X,p(t)
must be short compared to T, and T, (r,«T„T0)."
Contrary to common bel. ief, in a crystal lattice
this does got imply that 7, the mean time between
consecutive jumps of an atom, must be small
compared to T, and T,. The reason is obvious:
The dipolar and quadrupoiar interaction Ham-
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iltonian of a spin surrounded by other nuclei or
by defects undergoes many fluctuations before
each spin or defect has moved just once; there-
fore, in a crystal lattice r,«r. Hence Eq. (3.4)
holds even lf T&T~y T2~ and both weak and strong
collisions should be included properly. The situ-
ation is different, of course, if, as often in mo-
lecular liquids, the relaxation of a single PaA'
of nuclear spine (coupled, e.g. , via their intra-
molecular interaction) is observed, and, there-
fore, 7', = 7 in that case.

B. Dipolar, quadrupolar, and mixed re1axation contributions

Inserting Eq. (2.20) and using the explicit forms
of 3cd(') and 3c(0), the form (3.2) becomes

R„(t) —, g=I;[t t t(t) -t ] t"] d ](tt)

g Ã

[ y{0)(f) y(0)RL ]q(0)RL(f )
n=1

(3.5)

where, for the sake of simplicity of our notation,
only one type of field gradient was assumed to
contribute to relaxation ()),„=1); hence, ¹,may
be replaced by Nd . In analogy to (3.2) the intel-
action representations of the spin-operator terms

A~~o and Q"' were defined as follows:

g(o)(f) ei)cop(+(0)e (zoptiJ t J'

q{0)(]t) e(Kopi q(0) e tZ opt

(3.8)

(3 'I)

Substituting Eqs. (3.5) and (2.21) into Eq. (3.4),
and defining the "lattice correlation functions"

lcd ({) ([ft (o)(]tt ~ i) ft (0)RL] [ ft(0)(f t) ft (0)RL])

(3.8a)

If tt (f ) ([y(0)(f t + f ) y(o)RL) [ It(o)(f t) y(o)RL])

(3.8b)

If dtt (I) ([y (o)(f ~tf) P(0)RL] [ It'(o)(f t) It'(0)RL])

(3.8c)
lett@ (f ) ([ y(o)(f t + ]t ) It(o)RL] [y(o)(f t) P(o) RL])

(3.8d)

the total relaxation rate T, z is found to consist
of four partial ralaxation rates, according to

T T X 2 f J'
lid„(f )Tr[[3C„,W«)(f')][~(;),X„]]df' (3.10)

is formally identical with the dipolar spin-lattice relaxation rate obtained in I, with a slightly different
meaning of X«, however. The quadrupolar relaxation rate is given by

(3.11)

while the mixed rates have the following forms:

( h', ;,({')Tr/[X. „~{0)(f')][q(»,3C„])df',
lp dd r op ~ttp

(3.12)

( «, ,(t')Tt(fz„, t)]'t(t')](w, tt„]]dt t . t

TL p dd Tr 3Cop 2 0

In writing Eqs. (3.10)-(3.13), higher than pair correlation functions have been neglected (see also I), thus
reducing quadruple to double sums. By their very nature, the mixed relaxation rates (3.12) and (3.13)
involve correlations between the motions of two nuclear spine and some arbitrary defect (see Fig. 1).

Using the equations of motion of A{&0)(t) and q( )(t ) [see Eqs. (3.6) and (3.7)]

(3.14)

(3.15)

the commutators in Eqs. (3.10)-(3.13) may be rewritten, and the resulting expressions may be integrated
by parts. Applying this procedure twice and noting the invariance of traces under cyclic permutation of



ROTATING-FRAME NUCLEAR SPIN-LATTICE RELAXATION. . .

(0
t +t} t+t)

i(t'+ t)

FIG. 1. Schematical illustration of the types of correlation functions defined by Eqs. (3.8a)-(3.8d). Solid circles sym-
bolize nuclear spins, squares represent field gradients (e.g. , vacancies). Both are assumed to move in a plane crystal
lattice from their sites at time t' to their sites at a later time t'+t. Figures (a) and (b) show the terms governing the
pair correlation functions (3.8a) and (3.8b), while figure (c) illustrates the character of the correlation functions (3.8c)
and (3.8d) involving both dipolar and quadrupolar interactions.

the operators involved, after a few steps Eqs. (3.10)-(3.13) become (see also paper I)

Tr[(A„")']— g'2) Tr[A, ", (h)A,';. '] dh,T, p ~ Tr(X' p}o2, dh, =, "
o

dh'

4 )o( } Tr[(q(o)}o] ~. gin( ) Tr[q(o)(h)q(o)] dh

(
4 iii( } Tr(A(o)q(o)) xiii( ) Tr[A(o)(h)q(o)] dh

Tip ao Tr(36op) 2 i i - dh i=o "o dh

(
4 ~iii( } Tr(q(o)A (0)) g i~i)( ) Tr[ Q(o)(h)A (o)] dh

(3.16)

(3.IV}

(3.18)

(3.19)

gi)(h)=(+I (h'+h)&g (h')}i ~ ',

g4o (h) ( y'(0)(h& + h)V(o)(h &))

g" (h) =«"'(h' h)&")(h')) ~

(3.20)

Inderiving Eqs. (3.16)-(3.19) the disappearance of
the above correlation functions and theix' first
time derivatives for t -~ has been postulated.

C. Interaction representation and doubly-rotating frame

As shorn in I, the time-independent rigid-lattice
contributions to the correlation functions (3.8) do
not effect the relaxation process and may there-
fore be dropped, thus defining the new correlation
functions

not commute, X0~ may be replaced by E+6, and
the interaction representation (3.6) becomes

g (0)/g5 &iFt ei jF,C jt/2 eight~ (0) 8-iQt 8-i l F,Q]t/2 e -iFt

(3.22)

where I' and 6 were assumed to commute with
[I', G], and a procedure for the evaluation of
exponential, operators described by 8lichter"
has been applied. The txansformation of A. (0) in-
volving the operator G in Eq. (3.22) may be in-
terpreted as a transformation into the doubly-
rotating frame (also see I) with its z' axis de-
fined by the direction of the effective field

H = H ——z+~xoff 0
y

~(0)RL +iK)(0)RL (3.21}

The main problem in evaluating Eqs. (3.16)-
(3.19) is the determination of the explicit time
dependence of the traces under the integrals. De-
fining operators F and 6 by

Hence

o)eii "I (i +o)i)
g

'y y

+igt~ (0)+ -ig t @(P)ei tu tg (P) '. (~)
i4

P- -2

(3.23)

and noting that, due to the term ~,I„, I" and 6 do where the prime symbolizes the representation
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of A „P in the doubly-rotating frame. Denoting
the angle between the z direction (parallel to
H, ) and the z' axis (parallel to 8,«) by 8, the
geometrical factors a ( P ) become"" e &at ~(o) e-&C t ~(P) e& ~(»t ~(P)'

Wn Q {3.2'?)

quadrupolar operators may be transformed into
the doubly-rotating frame, according to

a ~" =-,'(1 —3 cos'6);
a(*')= --,' sin~ cos~; (3.25)

where, with the definitions (2.14),

a( )= ——sin ~

while the frequencies {d are given by ~ '=P~, ff.
At f =0 Eels. (3.24) and (3.22) yield

fi i = 2 (3 cos'3 —1).

5(")= ——,
' sin3 cos~;

b("' = -'sin'a

(3.28}

+2
g(0)(0) A io) g +(D)g iP)'

P- -2
(3.26)

In complete analogy to the above discussion, the

Substituting Eils. (3.22), (3.24), (3.26), and (3.27)
into the partial relaxation rates (3.16)-(3.19), we
obtain

da. ". .

(
~ii Tr[(A(o))2] s&t)o(r) gii Tr[~(s)'(f)~(e)']eiw ~ idf

T, p ~ Tr{36',p) 2 , ; dt dt

(3.29)

1 g in Tr[(q(0))2] h(P) hrl) 8 in Tr[ q(P!'(f )q(el']ei tu i df
d ' "d

T, p , Tr(X', p) i dt

(3.30)

Tr A.
& Q

~~" d' ".' (P)(P)6(r)
J~

xiii Tr[~ (Pl'(t)q(r)']cite i dfdt2r 0
(3.31)

Tr Q(o)A (o)

d2 |r4
CP)'"'] '

J dg2 ti (3.32)

where the operators AIi~ (f) and q„y(t) in the
doubly-rotating frame were defined as follows
[see Eels. (3.22) and (3.24)]:

A (P)'(] ) e )Et e i[E,G]t/2A (P)'e-i[E,O]t/2 e tFtjj % I

(3.33a)
~(P)'(t ) e tEt ei [E,G]t/2~(P)' e-f[E,C ]t/2 e-3Et~ 11

(3.33b}

D. Spin dynamics and spin correlation functions

As discussed in I, the time-dependent "sPin
correlation functions" under the integrals in Eqs.
{3.29)-(3.32) are closely related to motion-in-
dependent processes allowing the establishment
of internal equilibrium inside the spin system in
the rotating frame. Qualitatively, such processes
may be represented by the establishment of a
dipolar, quadrupolar, and Zeeman spin temper-
ature, respectively, as well as the thermal mixing

Tr[Aili~ (f )A„' ]=Tr(AIi~ A '~)kl~'"~(t }

Tr[ q(P)(f )qtr)] Tr(q(P)q(~))}tiP P )(f )

Tr[A (P)(f )q(r j] Tr(A (P)q(r))y(i, r)(f )

Tr[ q(P)(f )A (r)] Tr(q(P)A (r))y(P r)(f )

(3.34)

(3.36}

(3.36)

(3.37)

Owing to the qualitatively different effects eventu-,
ally arising from secular and nonsecular terms

between them during the establishment of a com-
mon spin temperature in the rotating frame. In
spite of the fact that the analysis of the processes
described by these correlation functions associated
with the spin system is very difficult, it seems
reasonable to assume that some kind of internal
equilibrium is achieved while the spin correlation
functions decay to zero. Therefore, using the
independence of the trace operation of represen-
tation, on phenomenological grounds the following
general forms of the spin correlation functions
are assQmed:
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in the dipolar and quadrupolar Hamiltonian, in
writing Eqs. (3.34)-(3.37) qualitatively different
decay properties for different combinations of

P and r have been taken into account in the "re-
duced" dipolar, quadrupolar, and mixed spin cor-
relation functions k(«'")(t).

Comparing Eqs. (3.6), (3.7), (3.22), and (3.24)
with Eqs. (3.34)-(3.37), we readily find that, in-
dependent of any of the above approximations,

Tr [(36(o))«g
y' Tr(I', )

,'y'h-'I(I+1)Q ~F(.,0)~' (3.43)

and a quadrupolar term. In the general case
of v,„different types of defects

Tr[(X( )}']
y'Tr(I')

k,'« ' (0) = k « "(0)= k„« "(0)= k «« "(0)= 1.

(3.38)

3 e Q (2I+3) 1

V

As discussed above, for long times the spin cor-
relation functions are assumed to decay to zero.
Hence, we postulate that

k(«, r)(~) k(«, r)(~) k(«, r)(~) k( «r)(~) P

(3.44)

For given concentrations and geometrical ar-
rangements of lattice defects, an average EFG
q at the center of a "representative" nucleus j
may be defined by"

E. Evaluation of the traces involved

(3.39)

eq' =e
vma Nd"

g q, «(3cos'8» —1)', (3.45)
V=I l =1

V k

Most of the dipolar traces in Eq. (3.34) have
been calculated in I, and the remaining traces
involving dipolar and quadrupolar spin operators
are given by

Tr[(Q'„")']= —', («', 1(I +1)(2I+3)(2I—1)(2I+1)",

Tr[(Q('»)&] = Tr[(Q( '»}«]= p

(S.4Oa}

(s.4ob)

Tr(Q „"Q „"))= —„n', I(1+1)(2I+3)(2I—1)(2I+1)",

(3.40c)

Tr(Q „"Q „' ) = —,', o.,I (1+ 1)(2I+3)(2I—1)(2I+1)",

(3.40d)

where the explicit form (2.15a) of YIo„'; has been
inserted into Eq. (3.44), and the angular brackets
symbolize an average over all nuclei k. With Eq.
(3.45) the quadrupolar local field (3.44} may be
simplified as follows:

3 e'Q'(2I+ 3)
S2O I'(2I-1)y'q ' (3.46}

(3.47)

F. Dipolar and quadrupolar relaxation rates

Substituting the spin correlation functions (3.34)-
(3.3'l} into Eqs. (3.29)-(3.32} and using the traces
listed above and in I, we readily see that the mixed
relaxation rates (3.31) and (3.32) vanish, i.e. ,

T r(Q'."Q' "')= »(Q(."Q' "))= 0

Tr(A "A "
) =y'O'I'(I+1)'(2I+1)"

and all the mixed traces vanish, i.e.,

Tr(A, , Q," ) =0 (P, r =0, +1,+2).

(3.40e)

(3.40f)

(3.40g)

Tr(R«~&) = ', Ny'I(I+1)(2 I+1) (—A'+(LP+y'H z z).

(3.41)

The total local field, introduced by the relation

Using these results, the trace involving the un-
perturbed Hamiltonian is readily evaluated:

This result might also have been predicted in-
tuitively by assuming that the quadruPolax inter-
action between some spin j and some field gradi-
ent l [see Fig. 1(c)] is independent of the time
variation of the dipolar interaction between spin j
and some other spin, thus assuming that at all
times the mixed "lattice" correlation functions
K...(t) are negligible compared to the dipolar and
quadrupolar pair correlation functions K«U(t)
and K;„(t) defined by Eqs. (3.8).

Therefore, the total relaxation rate

(3.48)

H~ p
—Hd p+0 p,

is determined by a dipolar contribution

(3.42) contains the dipolar and quadrupolar contributions.
For arbitrary distance h =(&u, —&u)/y of the field
H, off resonance they become
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(
oo

——,
' sin'SRe ' k" "(t)e" «f'dt

0

" d'G'(t—3sin icos'9Re ' k"' "(t)e'"«f'dt
dt2 4 I

0
(3.49)

1 3 2I +3

" d'G'(t)——,sin'BRe ' k' ' "(t)e" «f'dtdt'
0

" d'G' t)—3sin'icos'BRe k"' "(t)e' «f'dt
dt2

0
(3.50}

G'(t)= ~ Q Qg(, (t) (3.51)

and, in the general case of v different types of
lattice defects,

N pmax N"

G'(t) = —Q Q g', J(t),
j=l II=1 & II=1

(3.52)

where g, ~(t) and g', ~(t) are given by Eqs. (3.20).
In deriving Eqs. (3.49) and (3.50) it was assumed
that

k' ' ~'(t) =k' ~ ~'(t); k'~' "(t)=k,' '~'(t).

(3.53)

It is interesting to note that in spite of the dis-
appearance of the mixed relaxation rates [see Eq.
(3.47)] the dipolar and quadrupolar partial relaxa-
tion rates (3.49) and (3.50) may be coupled in as
many as three physically different ways:

(i}via the total local field (3.42} containing di-
polar and quadrupolar terms;

(ii}via the dipolar and quadrupolar spin corre-

Here the complete dipolar and quadrupolar lattice
correlation functions G (t) and G'(t) were defined

by

lation functions k~
' '(t) and k,' ' '(t), which ac-

count for processes of internal equilibration of the
different parts of the spin energy reservoir;

(iii) via the "lattice" correlation functions G4(t)
and G'(t} which are coupled if the motion of some
defect is correlated with the motion of magnetic
moments, such as, e.g. , the diffusion of impurity
atoms carrying nuclear magnetic moments, or
the motion of dislocations, which involves jumps
of spins in their surroundings.

IV. STRONG VERSUS WEAK COLLISIONS (REF. 22}

As illustrated in this section, the relative quick-
ness of the decays of "lattice" and "spin correla-
tion functions" in Eqs. (3.49}and (3.50) determines
whether we are dealing with "strong" or "weak"
collisions (see also I).

A. Spin-lattice relaxation in the strong-collision

(Slichter-Ailion }region

If both dipolar and quadrupolar spin correlation
functions decay before the "lattice" correlation
func tions change cons iderably, those terms in Eqs.
(3.49) and (3.50) involving G (t) and G'(t) may be
considered as constants under the integrals. Thus,
Eq. (3.49) reveals

1 1 y'O'I(I +1) dG (t)

d2G~ (t)
—,'(I -3cos28}' k+'0'(t)dt+ —,'sin~BRe k'2' "(t)e" 'ff'dt

4=0 0 0

+3sin'icos'BRe &"' " t e' '"'dt
0

(4.1)

Similarly, the quadrupolar spin-lattice relaxation rate (3.50}becomes
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1 3 2I +3 e Qo dG'(t)
T,p, 80 y Io(2I —1} /to+H, +Hop+H, p

dt

d'G' t
~(l —3cosoe}' 0 ' '(t)dtdto ~=o 0

+~san'3Re ~"' " t e" «'d&
0

+3 san'icos'sac k"' " I' e' ff'dt

According to Eqs. (4.1) and (4.2), 'the strong-
collision relaxation rates are affected by the spec-
tral densities of the spin correlation functions
O'P' P'(t} for P =1 and P =2 as well as the integral
decay properties of &'o'o'(t). Owing to the small-
ness of the motion-dependent prefactors (d'G/
dt'), o multiplying the related integrals, and the
postulated rapidness of the decays of the spin cor-
relation functions, i.e., the shortness of the "mix-
ing" constants defined somewhat arbitrarily by the
relations

where the mean times ~~ and 7', between succes-
sive changes of the dipolar interaction of the spin
pair i -) and the quadrupolar interaction of some
spin i with a defect l„of type ~, respectively,
were assumed to be independent of the particular
pair considered. If this is not true, i.e., if

(4.9)

as, e.g. , for dipolar spin-lattice relaxation asso-
ciated with a point-defect mechanism of self-
diffusion. in crystals, " "in a more general way we
have to write (see also I)

(4.3}

the first term on the right-hand side of Eqs. (4.1)
and (4.2), respectively, dominates over all terms
involving spin correlation functions. Therefore,
introducing the local fields defined by Eqs. (3.43)
and (3.44) and using the definitions (3.51) and
(3.52), the partial relaxation rates (4.1}and (4.2)
simplify as follows:

and

(
do o))'

(4.9)

(4.10}

1 H'p 1 dG'(t)
T,p, iP+H, +Hop+Hop G'(0) dt

(4.5)

To illustrate the relation of these results with the
usual forms of relaxation rates in the strong-
collision region, the first time derivatives enter-
ing Eqs. (4.4) and (4.5) are approximated by (see
also I)

Insert:ing Eqs. (4.9) and (4.10) into (4.4) and (4.5),
denoting the dipolar energy of a spin pair ti —j
before a collision by Eoo(i, j) and by E;(i, j) after
a collision, and defining similar quantities for the
quadrupolar energy contributiohs, we obtain

(4.11)

(
dG" (t) Go(0) —G'(r', )

dt q 0 7c
(4.5)
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H', p & -q
(4.13)

where E~ and E, proportional to G (0) and G'(0),
respectively, symbolize the average dipolar and

quadrupolar energy per spin before a collision.
If different spins or field gradients move ran-

dom()y, "the simpler relations (4.6) and (4.V) may be

inserted into Eqs. (3.48), (4.4), and (4.5}, yielding

1 H)p 1 —P

rates are affected by the off-resonance field
k = (~, —&u}/y: (i) via the effective field deter-
mined by H,'« =H', +k' [see Eq. (3.23}]; (ii}via the
spectral density functions at the frequencies co,ff

=yH, «and 2&(),«, respectively, and; (iii) via the
angle 8, decreasing from ~ v (at exact resonance)
towards zero for increasing distance off reso-
nance, in accordance with its definition by cos3
= k/H~«, At 8xgcf 'Pesos&&see (k = 0, 8 = 2 1T) Eqs.
(4.15) and (4.16) become

with

P = E'/~E ~ q = E,'/ E, (4.14)

xp d

where X~ and F.,' denote the average dipolar and
quadrupolar energies per spin after a collision.

If the field H, is applied at exact resonance
(k =0), Eq. (4.13) becomes identical with Eq. (1.1)
derived by Rowland and Fradin" from a modified
Slichter-Ailion'4 approach. Consequently, their
result holds only for uncorrelated motions of nu-
clear spins relative to each other and with respect
to electric field gradients.

B. Spin-lattice relaxation in the weakwollision

(motionally-narrowed) region

(
9 (2I +3)e'q' H,'

T&p, 160 P(2I —1) IP+H&2+H~ p
+H~

p

&& [sin~80)(0) (2«),«) + sin 8 cos~88,' )
(&(),«)],
(4.16)

where the dipolar and quadrupolar spectral density
functions were defined by

(()"( )=f G'(()e' '1&,

()'"( )=j G'(')~'"'e

(4.17}

(4.18)

According to Eqs. (4.15) and (4.16), in three
different ways dipolar and quadrupolar relaxation

If both lattice correlation functions G~(t) and

G'(t) decay before the spin correlation functions
change considerably, k~&~' ~)(t) and k& '(t) tn Eqs
(3.49) and (3.50) may be replaced by their initial
values governed by Eq. (3.38). Then, integrating
by parts, for arbitrary distance off resonance we

obtain

(
1 3 y'll'I (I +1)H,'«

T1 p 4 8 h2+HRl+H2up+HRqp

x [sin'8g,"'(2(d,«) + sin'8 cos'8gp) (~,«)]

(4.15)

(
1 9 (2l + 3)e'Q' H2

T„, 160 I(2I-1) H, ,H„,.H„' " '
(4.20)

Similar to the relaxation rates in the strong-
collision region (see Sec. 1VA), via the local field
the dipolar and quadrupolar relaxation contribu-
tions are coupled. With increasing amplitude of
H, this coupling becomes less effective, and in the
high-field limit (H&2»H~~) the individual rates are
completely decoupled, according to

= 8 y'O'I (I + 1)8,")(2(u, )

9 (2I + 3)e'q' (,)
160 I (2I -1) (4 21)

For a given set of correlation functions G'(t)
and G'(I), Eqs. (4.15)-(4.21) predict a dipolar and
a quadrupolar 1'ip minimum as a function of the

lt t', d ' f p'-p
defect-spin paly, respectively. If the underlying
microscopic mechanisms causing internal mo-
tions are thermally activated, such as, e.g. , for
self- or impurity diffusion, 4" the shape and
width of these minima may be investigated as
a function of temperature. If the quadrupolar re-
laxation effects are due to the stress-induced mo-
tion of dislocations during plastic deformation, '
the related (T, ~), minimum is studied in terms of
the rate at which the crystal is deformed. Accord-
ing to Eqs. (4.15) and (4.16}the shape and width
of these minima should not only depend upon the
mieroseopic mechanisms of motion, but also on
the distance off resonance characterized by the
angle 3 and the quantity k. For 3+-,'n the appro-
priate spectral density functions both at frequency
~,ff and 2~,gg contribute to the relaxation process.

In analogy to the dipolar results of I, on the
weak-collision side of the low-field dipolar and
quadrupolar T&z minimum Eqs. (4.15}, (4.16),
(4.19), and (4.20) predict a field (H, ) dependence
of (T&q)z and (T&z) . Since, so far, there is no
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experimental evidence for such an effect, the ap-
plicability of the above results under low-field
weak-collision conditions is not quite clear. Tmo
of the reasons for the possible failure of the pres-
ent theory in this region might be the following:

(i}If r, and 7', are shorter than the inverse
dipolar or quadrupolar linemidth contributions
(A&a," ) ' and (b, sf~) ' in a rigid lattice, in a low

H, field (H, =H, ~, H, p) the assumption of a single
(common) spin temperature might break down due
to the speed of the motions. In a bigwig II, field the
spins are preferentially aligned along H, and the
single-spin-temperature theory should neverthe-
less hold owing to the establishment of a geeman
spin temperature in the rotating frame. Thermal
mixing is then irrelevant due to the small heat
capacities of the dipolar and quadrupolar thermal
reservoirs.

(ii} By its very nature the entire spin-tempera-
ture concept is meaningful only if the establish-
ment of any type of spin temperature is a fast
process compared to spin-lattice relaxation. For
Hx + Hap, H, p, at the dipolar and quadrupolar mini-
mum (T, ~}, and (T, ~), are very short and of the
same order of magnitude as (b u&p) ' and (n &ua~) '
respectively. Since, on the other hand, in low fields,
(h&o~) ' and (b,~,"~) ' represent rough measures
for the time required for the establishment of di-
polar and quadrupolar spin temperatures as mell
as their thermal mixing, in the questionable lom-
field weak-collision region the entire spin-temper-
ature concept becomes questionable.

C. Combined dipolar and quadrupolar weak- and

strong-collision effects

During the discussion of Secs. IVA and IVB,
dipolar and quadrupolar contributions to T, p mere
assumed to be both simultaneously of a strong-
or meak-collision type. In reality, however, owing
to the different physical natures of dipolar and

quadrupolar relaxation effects, on a v~ or a T',

scale the related T, p
minima are often mell sepa-

rated.
Thus, dipolar and quaJrupolar effects associated

with randomly migrating vacancies give rise to
tmo T» minima as a function of temperature:
(i) the quadrupolar minimum"" appearing at
temperatures for which co,T„=I, where T„denotes
the mean time between successive jumps of a
vacancy, and (ii) the dipolar minimum" ""oc-
curring at temperatures for which cv, v =1, where
7' symbolizes the mean time between successive
jumps of an atom. Noting that r„/v =c„, the ther-
ma1. ly created concentration of vacant lattice sites,
the quadrupolar Ty p

minimum due to the random
jumps of vacancies, if found at all, appears at

much lower temperatures than the dipolar mini-
mum associated with the correlated jumps of
atoms. "

Therefore, in reality any combination of the di-
polar and quadrupolar weak- and strong-collision
relaxation rates derived in Secs. IVA and IVB
may be encountered. However, if the dipolar and
the quadrupolar minimum are mell separated,
experiments may often be confined to regions
where one of the two relaxation contributions
dominates over the other, thus simplifying their
interpretation considerably in that only one type
of "lattice" correlation functions has to be known.

V. SPIN-LATTICE RELAXATION IN THE INTERMEDIATE
REGIONS

In the regions where the dipolar and quadrupolar
T& p

minima appear, the re lated "1att ice" and "spin
correlation functions" decay about equally fast,
and the evaluation of Eqs. (3.49) and (3.50) is com-
plicated by our lack of understanding of the inter-
nal equilibration processes governing the spin
correlation functions.

Qualitatively, however, it is clear that according
to Eqs. (3.49) and (3.50) low-field T, z minima are
determined by both atomic or defect motions in
the crystal and by certain internal processes in-
side the spin system itself. These properties are
in contrast to high-field T» minima in the meak-
collision region or the relaxation behavior in the
strong-collision region (see Sec. IV), which are
both governed exclusively by motions in the crys-
tal.

It is therefore concluded that in order to use the
nuclear spin system as a probe for the study of
microscopic mechanisms causing the motions
of atoms or molecules, point defects, disloca-
tions, etc. , the relaxation properties (such as the
shape and width of dipolar and quadrupolar T, p

minimum, anisotropies of the relaxation times
with respect to the crystallographie orientation
of the constant external magnetic field H„etc.)
should be investigated in field and temperature
regions where they are governed by internal mo-
tions alone. This suggests experiments to be
carried out in the weak- or strong-collision re-
gion for the dipolar or quadrupolar relaxation
contributions, thus avoiding the difficulties in
extracting information on internal motions from
lom-field Tz p

minima.
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