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Investigation of dislocation movement by nuclear-spin-relaxation experiments
in the rotating frame
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Dislocations moving at various velocities in 'NaC1 and ' RbC1 single crystals were studied by means of the
spin-locking technique. The resulting spin-lattice relaxation time in the rotating frame T, p

is strongly
dependent on the plastic-deformation rate i and the quadrupole moments of the spins considered. The
experimental results are in accord with a theoretical expression for T, ~

based on an adaption of the relaxation
model of Rowland and Fradin for atomic diffusion. Application of this theory leads to a "mean free path" of
a moving dislocation which is determined by the distance between the forest dislocations; this agrees with the
value obtained for the strain-rate sensitivity. The range of validity of the adapted Rowland and Fradin model
&s discussed.

I. INTRODUCTION

During plastic deformation of crystalline solids
dislocation motions of various kinds may occur';
this depends for any material on external param-
eters such as strain rate and temperature. In
what follows thermally activated dislocation motion
is regarded as a glide process in which a disloca-
tion under stress can overcome obstacles with the
aid of thermal fluctuations of the lattice.

A long-standing problem in this field is the con-
nection between the macroscopic strain rate and
the density and average velocity of moving disloca-
tions. Orowan gave the following equation' linking
these properties:

i=Pbp v,

with p geometry factor (=-,'), b is the magnitude of
the Burgers vector, p is the mobile-dislocation
density, and v is the mean dislocation velocity.
For a given strain rate the product p v must be a
constant. Unknown, however, is the fraction of
the total dislocation density which is mobile and
the time scale factor of the atomic movements
caused by the dislocation motion. Application of
values for dislocation velocities near the free sur-
face as obtained from stress pulse-etchpit experi-
ments' to tests at constant strain rates of the bulk
material raises doubt because of the very different
experimental conditions.

Because the process of dislocation motion is
made up of atomic movements nuclear-magnetic-
resonance techniques should offer a possiblity to
determine the way in which the dislocation pro-
gresses through the crystal as a function of time
utilizing nuclear spin relaxation as a tool. Experi-

ments of this type cover very large time intervals:
from 10 ' sec(T,) via 10~ sec(T,) to 10' sec(T»),
which allows scanning the velocity region.

In doing this we found ' that the atomic move-
ments involved are in the ultraslow-motion region
where T, and T, are constant and where T» is
a function of these movements. The theory which
was originally given by Slichter and Ailion' and

by Rowland and Fradin' for self-diffusion, could
be adapted to dislocation movement; in what fol-
lows this modified theory will be referred under
the acronym SARF.

II. THEORY

A. Dynamic dislocation problem

The dislocation motion in alkalihalogenide single
crystals during compression in the (100) direction
is studied. In the stress-strain curve four re-
gions can be distinguished (Fig. 1): A region of
"pre-yield" up to a plastic strain of approximately
0.1/p. It is observed by Pratt, ' Mendelson, " and
Heidemann" that plastic deformation in this re-
gion is connected to slip on the four equivalent
(110/110)-slip systems with the same Schmidt
factor.

Stage I, a region of low constant work-hardening
rate. The deformation in stage I is dominated by
slip on only one of the four slip systems active
duringpre-yield (Davidge and pratt, "Hesse, "
Argon et al. ,"Hesse and Hobbs, "Hesse and Ma-
tucha, "and Heidemann"). In this region the in-
crease of the shear strain takes place by the
broadening of the slip planes into bands and by an
increase in the number of bands" ": the defor-
mation in stage I is due to the activation of dislo-
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FIG . 1 . Schematic stress-strain curve of a NaCL single
crystal. Our own measurements were confined to re-
gions I and II.

cations on new slip planes whereas a further dis-
location movement in the existing slip planes is
impeded by obstacles . Stage I is terminated when
the distance between the dislocations in the slip
planes approaches the distance —-1.2 p. m —between
the slip bands. Subsequently, polygonization sets
in 12, 13

Stage II, a region with a high constant work-
hardening rate. The deformation is doMinated by
slip on the same slip system active in stage
I,"'"'"although it is found that a small amount of
slip on secondary systems takes place as was
found by Matucha, "Heidemann, "and Davidge and
Pratt. "

Stage III, at large strains, shows a decreas-
ing work-hardening rate. Cross slip of screw
dislocations can explain in this region the be-
havior of the stress- strain curve as a function
of strain rate and temperature. In our experi-
ments the strains did not go beyond stage II ~

During a deformation test the total dislocation
density increases: in general it is found (Matucha
et al."and Hesse and Hobbs") that in alkalihalo-
genide single crystals in stages I and II, just as
in fcc metals, the square root of the dislocation
density p is proportional to the shear stress cr that
has been reached:

o= aG~p,
where n is a constant of the material, G is the
shear modulus, and b is the Burgers vector. Typ-
ical values of p are 10' dislocations/cm' (before
deformation) and p = 10' dislocations/cm' (aft"r
about 10% plastic deformation).

Dislocations of the edge type prevail in the crys-
tals considered: Hesse" found in (100)-orientated
NaC1 crystals an edge-screw dislocation density
ratio of -3 in the stages I and II; Davidge and
Pratt" found for the same ratio the value -5 .
From the obstacle model of thermally activated
dislocation motion' which has been worked out in
detail by computer simulation (Foreman and
Makin"), it is probable that dislocation motion is
discontinuous. The waiting time w at an obstacle
of a dislocation under stress may be assumed to
be much longer than the time T~ it actually moves
to the next obstacle or stable position. The rapid
movement of a dislocation between obstacles is
called a jump. The mean velocity of a dislocation
is then determined by r and the swept- out distance
nb expressed as an integer n times the Burgers
vector b of the dislocation. The maximum value
of v~ is determined by the velocity of a shear wave
in the crystal.

((do) 1

oy 2', + ((o2D)+ ((o2q) r ' (4)

Here GD and G are the dipolar and quadrupolar
geometry factors, respectively, y is the gyro-
magnetic ratio of the spins considered, H, is the
strength of the locking field, (uPD) is the mean di-
polar energy, (ur2o) is the mean quadrupolar ener-
gy determined only by the lattice defects in the
cubic system, and v is the mean waiting time be-
tween jumps.

The validity of Eq. (4) is subject to the following
conditions:

(a) r»&uD', where arD is the dipolar line width.
In this case the nonsecular part of the dipolar
Hamiltonian will exchange energy by flip-flop
transitions between the nuclear spins in times
short compared to the waiting time 7 ~ The
cross relaxation within the spin system is very

B. Relaxation theory

If the rotating frame is exactly at resonance
(Abragam" and Farrar and Becker22), the govern-
ing truncated nuclear spin Hamiltonian is given by

H=H +Hq, (3)

where HD and Hz are the secular parts of the di-
polar and quadrupolar Hamiltonians, respectively.
From this and the spin temperature concept to-
gether with the law of energy conservation the
Slichter-Ailion-Rowland-Fradin formula'2 (SARF)
for the relaxation rate 1/T, =RD'2' for the resonant
spins of the specimen in the rotating frame due to
ultraslow atomic motions is obtained:

R( ) G
(~D)

D Dy2~+ (~2)+ (~2)
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rapid, consequently the spin system can be char-
acterized by a common spin temperature prior to
ea.ch dislocation jump (validity of the spin tem-
perature concept'},

(b) (&uo)' ' «(&o')'»' for nuclei with spin I&-2,
the requirement (a) of rapid transfer of energy be
tween the spina necessitates that (~2o)'~' «(~')'~'.
If so, the cross-relaxation process given by the
magnetic dipole-dipole interaction is unaffected
by the quadrupole effects. A quadrupole interac-
tion with (&u2o)'~'» (&uaD)'~', will change the spacings
of the nuclear spin levels markedly and thus elim-
inate many of the resonances between neighboring
spins which are needed for cross relaxation. Con-
dition (b) extends the uniform spin temperature
concept to nuclei with I&-,. In practice the condi-
tion is only valid for spins with a moderate quadru-
pole moment and for cubic lattices. '

(c) ra«&o, ', where &o, is the Larmor frequency
of the spins considered. The time the dislocation
spends in the actual process of jumping is then
short compared to the precession period of the
nuclei involved with the jump so that the spin ori-
entation is the same immediately after the jump
as it was immediately before the jump. In the den-
sity-matrix approach, the assumption is equiv-
alent to stating that the spin density matrix does
not change during the actual jumping process, or
that the "sudden" approximation of quantum me-
chanics can be applied to the jumping process. '

Analogous to the way in which G and GD of Eq.
(4) were derived for self-diffusion it is possible
to do this for a spin system of which the positions
of the spins are influenced by moving dislocations.
Consider a specimen of volume V containing R
resonant nuclei. At the moment t =0 the total dis-
location density is p dislocations/cm . At the mo-
ment t=v' a mobile fraction p has moved. A ses-
sile fraction p~, mainly forest dislocations with
unaltered positions, is given by

~= ~a+ ~m.

In order to calculate Gz one has to determine
the quadrupole Hamiltonian of all spins before and
after the motion of the dislocations. Suppose a nu-
cleus i experiences an electric field gradient B,.k
from a surrounding nucleus k. The total electric
field gradient B,. at site i due to all nuclei of the
specimen is then

and the quadrupole Hamiltonian of the system at
t =0 is then equal to

i =1 k-"1

with Q(I;) = 3I'„I',-I being the spin operator.
Let H be the quadrupole Hamiltonian at the

time 7', G@ is then defined' as

Go ——(Ho —H+q')/Ho.

Using condition (b) of Eq. (4), i.e., the "sudden"
approximation, in which the spin-dependent part
of (7) remains a constant, Eq. (8) becomes

As not all the nuclei contribute to the field gra-
dient, the summation can be restricted to the n
surl oundlng nuclei wh1ch do contribute:

i=1 k=1

(10)

g n tf Hp

8;k = N-Ep Bk +
i=1 k=1

i=1 k=1

If n, is the number of nuclei per cm dislocation
length in a cylinder within a certain radius, co-
axial to the dislocation line and V is the volume
of the sample, then the expression

Np = PVnp (12)

is valid. Combination of Eqs. (10)-(12) results in

np

i =1 k=1

The numerator of Eq. (9) can be treated in a
similar manner: The summation is again split up
in one over perturbed and one over unperturbed
nuclei which results in

Supposing that Xp nuclei are perturbed by disloca-
tions and remembering that B,- =0 in the ease of an
ideal cubic lattice, the denominator of Eq. (9) can
be written
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Dividing the number of perturbed nuclei in a fraction perturbed by sessile and a fraction pexturbed by
mobile dislocations at the time / =7' according to

&p =pm«p (16)

(n, is the number of nuclei per cm dislocation length involved in a dislocation jump of length nb), Eq. (14)
can be developed Rs

Np np pm n

g ga,.P,„=p,vg gs„'+p.vg ga, P, , (17)
A=j. i=I )=I i& k=1

Combining Egs. (5), (10), (13), and (17) yields

np np n pm np n

=1 — pV 8, ' pV 8,. '-p V 8, ,,' — B, ' pV 8,,'

GD can be calculated in an analogous way: start-
ing from the dipolar Hamiltonian of the spinsystem
at t=0:

~.=Z Z~,~(l„),
where D(I,») = 3I

„

I,» I; I» and 2-;» is the geomet-
rical pRx't of the dipolar HRIDlltonian. HD being
the dipolar Hamiltonian at time t=~, (t ~ is then

efoned Rs

G, =(II', II,II,')/II', .
Using again the sudden approximation Eq. (20)

can be vrritten

~1&» ~»~ i» ~1&» ~»=x i»+1» (21)

The further calculation is quite similar to that
of (t z, there is how&ever one important difference:
ThedlpolRr Hamiltonlan does Qot vanish fax' fx'0ID

R dislocation like the quadrupole HamQtonI. RD.

Therefore the summation should be over all atoms.
The x'esulting expx'ession is

with n the Dumber of spins per cms, pg, the number
of spins contributing to A,„,g~ the dipolar geome-
try factor for 1-cm dislocation length. Assummg

that g~ is of the same order as@+, a. rough estimate
gives then G~/Go= (n, /n, )p. On the basis of some
realistic values, e.g., np=109 cm ', p=10' cm 2,

m = 10 ' cm ' it follows that 6 «G . The latter
is confirmed experimentRlly.

The SARF formula (4) reduces then for moving
dislocations to

It (» & (4'o) &m gy'Ill+(~n)+ (~o) p

Combining the Orowan equation (1), the expression
for the mean dislocation velocity v = nb/r and Eg.
(23),

(~a)
y'H', +((u»~)+(s)'o) p yb' n

is obtained.
Assuming R statisticRl distribution of dislocR-

'tlolls one Blay wl'1ie (Kallei't alld Mehl'111g )

((o»o) =Ap,

with A =const(=0. 13 cm'sec ' for "NaC1) (Baum-
hoer et af."), Eq. (24) can then be rewritten

() A 1 ~g
y'IP, + ((u»n)+ ((u'q) Pb' n

To calculate the value of g+ one should evaluate
the field gradients of E11. (5). This, however, is
R tedious tRsk fox' atoms around R dlslocatioIl be-
cause of the slow convergence of the summation:
Such calculations have been carried out only for
perfect crystals using their symmetry properties
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(De Wette" and De Wette and Schacher25). To avoid

this difficulty we used for our calculation of g the

approximatiox"

B,=QB,~=B,I'(8;, n„)f(r,), (27)

which is valid in cubic lattices for field gradients
caused by dislocations. Here 8, is a constant for
the material and type of dislocation" (screw or
edge) considered. The function f (r,.) depends on
the distance r, between the nucleus i and the dis-
location line, whereas I' is the angular function
determined by the type of dislocation, by the angle
8, between the vector r, and the slip direction,
and by ct„=cos(H„X„){X„is the cube axis of the
dislocation frame; v = 1, 2, 3).

Two possibilities can be distinguished:
(a) r, r„where r, is a critical radius indicating

the range above which the displacements of the nuclei
due to the dislocation can be calculated adequately
from linear elasticity theory. In ionic cx'ystals
the value r, = Sb (recall b is the magnitude of the
Burgers vector) is usually valid. In the region
where r, &r„the expression

f(r, ) = I/r; (28)

may be applied, and the electric fieM gradient is
then given by

B( B I'(8(, a„)r——('.
The value of B,I' is only slightly dependent on the
character, i.e., edge or screw, of the disloca-
tion. 22

(b) r;~r, . In this range, within the core of the
dislocation, Eq. (28) breaks down. To avoid the
difficulties mentioned before we used again an ap-
proximation.

Granzex et gl."calculated the positions of atoms
in the core of an edge dislocation in NaCl. They
used anisotropic boundary conditions at the core
radius and allowed the atoms inside the core to
relax to their final positions. This was done for
several potentials [in their article appeared a
printing error in Eq. (2): the denominator of the
arctan function in the expression for u(x, y) should
be x+ y cosa instead of x+ y sinn] at the core ra-
dius and allowed t e atoms inside the core to relax
to theix final positions. This was done for several
potentials. From their calculation of the energy
per atomic plane they found a deviation from the
well-known I/r behavior for three points inside
the core.

Using the same principles under which Eq. (28)
was derived we assumed that the field gradient in
the core could be approximated by fitting a parab-
ola through these three points, having its axis at
r, = 0 and the same value and slope at r,. = r, as the

fieid gradient function B, given by Eq. (29). For
the core atoms, i.e., r; —r„wefound in this way
the distance function f(x,.) of the electric field gra-
dient

f(r,) = ~-r;+0.5,

where the unit of r, is the Burgers vector. As-
suming no change in the angular function I' going
from r &r, to r &r, the calculation of g reduces to

~,=, F(8g, &.)f (&;)F(8l, &!)f(&l) (31)
~g'=, F'(8g, tt„)f'(r;)

where B =BOI"(8,', a„')f(r;') the field gradient at
site i after the sudden motion of the dislocation
across a free path (see Fig. 2).

%e calculated gz for a free path trajectory of an
edge dislocation across n Burgers vectors, n being
an integer. Assuming that the configuration of the
dislocation line before and after the movement re-
mains unchanged x elative to the slip plane, i.e.,
relative to the external field Ho, it follows that
n„=n„'. In this case the function I' remains ap-
proximately constant, too. The computer pro-
gram now was organized as follows (Fig. 2):

(a) A [110](110)-edgedislocation is placed in the
origin of a Cartesian frame.

{b) Using the corrected anisotropic displacement
formula of Qranzer et al. ,26 the position was cal-
culated of an atom i in a rectangle with coordinates
(-X „.,X,„+n)and (Y ... —Y „)and outside a
"core" square with sides determined by the x and

y positions (-3 Burgers vectors, +3 Burgers vec-
tors) and (+Sb, -3b).

(c) In the core square the position of atom i was
taken from Granzex' et al. from the calculation in
which they used the Born-Mayer-Huggins poten-
tial. (The atomic positions they obtained are not
very sensitive to the potential used. )

nucl, eus i

X
Xmax

FIG. 2. Geometry of the variabl, es used in the calcula-
tion of quadrupolar geometry factor g~ for a mobile dis-
location according to Eq. (31). The unprimed coordinates
describe the initial position of the dislocation relative
to the considered nucleus i, whereas the primed coordi-
nates give the final. position after a jump of the disloca-
tion of step width n. The limiting values Xiii&x, 1m~ are
determined by the convergence of the sums in Eq. (31).
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Xmax=

Ymox = 100

0
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FIG. 3. Quadrupolar geometry factor g for a mobile
dislocation as a function of the step width n (in units of
the Burgers vector b). As expected from the general for-
mula (18), g+ varies from zero (step width n equal zero,
i.e, the unprimed and primed positions are identical) to
one (step width equals infinity, i.e. , no correlation bet-
ween the unprimed and primed position).

(d) The field gradient was calculated using Eqs.
(29) for (b) and (30) for (c).

(e) The dislocation is then allowed to move n

Burgers vectors.
(f) The procedures (b)-(d) were repeated in

order to calculate the field gradient of atom i after
the movement.

(g) The procedures (b)-(f) were repeated for
all atoms inside the large rectangle. From this

go [Eq. (31)] could be calculated.
The calculation was performed on the Cyber 74

computer of the University of Groningen. The pa-
rameters X,. „and Y,„werevaried over several
orders of magnitude to determine g as a function
of n. The maximum number of atoms used for the
calculation was 1250000. From this study it could
be deduced that the convergence of g@ for varying
Xmas and Y „wasrather good for values of X
= Y,„=100Burgers vectors. Doubling of X,„.and

Y,
„

from these values changed gz with less than
1%. As an example the result of such a calcula-
tion is presented in Fig. 3.

For edge dislocations the core structures are
known, and mainly for this reason we based the
calculation of the geometry factor g on the a,s-
sumption that the dislocations were all of this
type. We observed that for large step widths of
edge dislocations g~ becomes quite independent
on detailed atomic positions in the core or else-
where, and we have reason to suspect, therefore,
that there would not be much of a difference be-
tween the effect of an edge or a screw dislocation.

III. EXPERIMENTAL DETAILS

The reported measurements were performed on
"NaCl and "RbCl single high-purity crystals fur-

DR'R
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s

R R
I

I
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FIG. 4. Part of the mechanical. tester which is insert-
ed between the pole pieces and the probe head. D is the
diaphragm, L is the coil, B is the connector to the
spectrometer, S is the specimen, P is the PVC tem-
plates, and C is the condenser.

nished by Kort Co. at Kiel (Germany). They were
cleaved along (100}planes and then carefully pol-
ished to square prisms with the (100) direction as
an axis and (100}and (110}side planes. After pol-
ishing the crystals were kept at 150 C for at least
6 h and slowly cooled in air. The final dimensions
were length, 25 mm, and width between side
planes, 10.5 mm. After the deformation some
randomly chosen crystals were investigated for
their impurity content by means of a Perkin Elmer
spectrophotometer. The concentrations of im-
purities, mostly Ca and K, were below 10 ppm.
"Na and "Rb nuclei were chosen for investigation,
because for these (&uo),„~(~s~) (as will be shown
afterward). One condition for the application of
the SARF equation (4) is thus fulfilled. The spec-
trometer used is a commercial Bruker EXP 4-60
pulse spectrometer with a modified resonance cir-
cuit described elsewhere. " The decay signals ob-
tained exhibited a signal to noise ratio of about
200: 1 and were stored on a fast transient record-
er (Biomation 802) and then transcribed on mag-
netic tape. Further processing of the decay sig-
nals was carried out by an on-line Varian 620lL
computer.

The coil was mounted in a tensile machine,
partly shown in Fig. 4. The inner rod (brass) can
be displaced relative to the outer ones with a con-
stant velocity. The distance between the rods was
fixed by diaphragms with a large stiffness perpen-
dicular to the rods axis and a low stiffness in the
displacement direction. The diaphragms prevent-
ed the bars from buckling, which was effective up
to a load of 200 kg: 'The maximum load in the
experiments did not exceed this value. The cross
head templates were manufactured from polyvinyl-
chloride, so as to avoid bringing metal in the coil
during a test. The cross head velocity could be
stepwise varied from 10 ', 3 x 10 ' cm/min, etc. ,



]4 INVESTIGATION OF DISLOCATION MOVEMENT BY NUCLEAR-. . . 927

up to 1 cm/min. No plastic deformation in the
machine itself took place. The direction of com-
pressive deformation lies always in the (100) di-
rection of the sample, perpendicular to the exter-
nal field H . The stress was measured by a
strain-gauge load cell and the elongation by an in-
ductive displacement transducer. Measurements
at temperatures lower than room temperature
were carried out by using a hollow polyvinylchlo-
ride cylinder around the coil as a cryostat, and
blowing N, vapor through it or filling it with liquid

N, . The part of the tensile machine shown was
placed in the gap of a 10-in. Bruker BE-25 mag-
net with a current stabilizer and an external
Bruker NMR stabilizer B-SN 15.

IV. PRINCIPLE OF MEASUREMENTS

C
T)p

a
X
Cf

4l

cf

C
d

Vl

10 - sec

6

2

-2 -')
10 - sec

10

p

23
Na Cl, H // & 110 )

We oriented the crystals with one of the (110)
directions parallel to the large external field H,
so as to avoid a possible orientation effect. In
this case, the dislocation lines and the slip direc-
tion of the one activated set of the two possible
conjugated (110) {110)slip systems will be equiv-
alent to the other one. It will not make any dif-
ference then whether the number of moving dis-
locations in one set is larger than the other one.

An example of a typical measurement is shown
in Fig. 5. From this it is apparent that an applied
plastic strain rate i =(d/dt)(dL/L) causes a sig-
nificant change in the relaxation time T„.In ac-
cordance with earlier observations (Hut et al.')
it was observed that the line shape and the ex-
ponential character of the decay are not affected
by the plastic deformation rate. In Fig. 6 an ex-
ample of atypical series of measurements is given.

From these results and from the exponential de-

F(t) Na Cl

T= +20'C
K(p

Spin-locking field
H)-

.5 sec ) 3.5G

Ssec

F(t)

i P~ ~" &~8 =0
', (T)p-g

f.=6.7x10 sec'
+llll 'W++'A. IIAj+t':'r'/+gal~

(T -48 )
!:~~fj'| f i r& ~'i r~' '~~@

I) 4.8T p=48sec)

time t

FIG. 5. Experimental result showing two free induc-
tion decays F (t) after a spin locking sequence of 8 sec
and a locking field H& of 3.5 G (see insert) with zero and
finite plastic deformation rates i. The values of T&&

given in the figure are calculated from the usual express-
ion F (7) = F (0) exp (- T/T&& ) in which F is the maximum
of F (t).

FIG. 6. Experimental run consisting of consecutive
compressive deformations at increasing strain rate. The
associated decrease in the total relaxation time T&& of
2~NaC1 is shown in the upper half of the diagram. The
variation in the relaxation time Tfp

follows that of the
strain rate without any measurable time lag.

cay the dynamic part of the relaxation rate, RD '

can be calculated according to the expression

R' ' = (1/T„),= (1/T„); —(1/T„)z (32)

In doing this we found no dependence on tem-
perature of RD ' in the region' 77-293 K and no
dependence on the deformation &.

V. EXPERIMENTAL RESULTS AND EVALUATION

In order to check the conditions for the applica-
tion of the SARF theory we measured for "NaCl
as well as for "RbCl T, and T, during plastic de-
formation. T, was measured after a 180'-v'-90'
pulse sequence: no change in signal height or
line shape was observed with respect to the non-
deforming case. From this we concluded that
T, and T, are constant during plastic deformation
in accordance with the conditions (b) and (a) re-
quired for Eq (4). .

In order to obtain experimental proof for a
SARF-type equation for the dislocation motion,
we measured R~ ' as a function of & with Hy as a
parameter (Fig. 7). The slope of the curves up to
i = 2 x 10~ sec ' is about 1 as predicted by Eq. (26).
The small deviation from the straight lines at high
deformation rates & in Fig. 7 are not completely
clear. Estimates give that the deviations do not
indicate the beginning of the usual maximum in the
relaxation rate. We suspect that the available
stiffness of the mechanical device, which is not
well known, will produce in the high-velocity
region lower deformation rates & in the sample
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FIG. 7. Measured data of the dynamic part of the
l'elaxatlon rate 8 p~ of Na and ~ab as a function
of the strain rate 4. The slope of the straight lines in
the figure is in agreement with the theoretical. relation
(26).

as would result from ca'culations using the known

machine parameters. Thus, the plots of Fig. 7
justify application of a SARF-type formula. Ac-
cording to Eq. (26) a plot of the relaxation
time (T„)~=(R~)' vs EP, will yield a straight
line, which can be extrapolated to the inter-
ceptat H', = -(1/y')((&aP~)+ (&oo)). The slope of the
line is determllled by Cc, with C = pb yz//go
= const. Figure 8 shows the results of such an
evaluation of the experimental data confirming the
theoretical prediction given by Eg. (26). The oc-
curence of an apparent common point of intersec-
tion of the different experimental curves with the
H, axis is explained by the fact that the change in
(&oo) with strain in the different samples yielding
the data in Fig. 6 is small compared to (&o2c)+ (&o2c)

and lies within the experimental error. Further-
more, the ratio of the slope of two different
curves in the figure is determined by the inverse
ratio of their deformation rates i as required by
Eg. (26).

We also measured R~ ' in NaCl as a function
of the slip plane orientation relative to the exter-
nal field. No orientation dependence was observed
within an error of about + 10%: This is in good

30

~.o-

~~&0
/ r

-3 -2 -1 o

FIG. 8. Dynamic part of the relaxation time (Tfp)p =

(Rpp) of ~Na in NaCl vs the square of the locking field
H& showing the linear relationship between (ApP) ' and
H&2 according to Eq. (26). The intersection of the lines
with the abscissa is approximately in one point given by
2.8 G2.

agreement with the theoretical model used for
the calculation of g. So far only the qualitative
agreement between theory and experiment has
been discussed. In order to determine whether
there is a quantitative agreement the values of
the different parameters of Eg. (26), viz. , A,
((o2~) and (uPc) should be known.

For the shape of the free induction decay after
the locking pulse (see Fig. 5) the following ex-
pression is valid (Kanert and Mehring"):

8„(t)= C,~,D(t)+ C~D(t)Q'(f), (33)

D(t) = exp(-2&'P) (34)

Q(f) = exp(--'(s')f), (36)

where S„(f)is the normalized decay function, C,&,

and C~ the transition probability coefficients and
D(t) and Q'(f) the dipolar and guadrupolar Fourier
cosine transforms, respectively, of the distribu-
tion functions. With I=

& as for "NaC1 one ob-
tains"

C, )2=0.366, C~ =0.634, Q'(f) =Q(2t).

Assuming Gaussian distxibution functions
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FIG. 9. Square root of the mean quadrupole energy
(~~ ) and the total dislocation density p as functions of
the applied stress O'. The well. -known o' vs 4p law is ex-
perimentally confirmed.

with (& )'~ and ((a))'~ =~(((oo)) ~ (valid for I=-,'),
the dipolar and quadrupolar linewidth, respectively,
the resulting expression for 3„(f)becomes

S„(t)= 0.366 exp(--,'&'P }
+0.634exp(--,'&'P) exp(-2(a')P). (36)

From this analysis it was found that (&o2~) = 32
x 10' sec 2, in good agreement with the value of
40&10' sec ' as given by Hebel. "Furthermore, the
evaluation of the free induction decay shows that
the root of the mean quadrupolar energy (&oz)

varies linearly with the applied stress for (&o2+)'~'

values of about (1-7)x 10' sec ' as presented in
Fig. 9. The diagram together with Eqs. (2) and

(25} and A =0.13 cm' sec ' as given above confirms
the well-known proportionality between the applied
stress o and Wp. Evaluating the curve with H, =26
in Fig. 7, one obtains R~ ' = 161' . Substituting
these values in Eq. (26) it follows that go/n = 2.5
x 10~. From the calculated values of gz (Fig. 3)
it is concluded that only dislocation jumps across
large distances satisfy this equality.

In the case considered gz = 1 and n, = 4000 Burgers
vectors or nb= 1.6 x 10~ cm. This agrees rather
well with the distance between the dislocations
given by 1/v p and which was found to vary be-
tween 5 x10~ cm and 0,5 x 10~ cm in the deforma-
tion test (Fig. 9). This agreement would confirm
the idea of dislocation motion impeded by forest
dislocations. Because R~" is a function of dis-
location movement alone RD ' should be independent
of temperature as long as the dislocation activation
mechanism remains the same, which was confirmed
by experiment. 4

The values for AD ' for "NaCL and for "RbCL

(Fig. 7), where the same dislocation mechanism
operates are different, since the factor (Hz)/
(y2H', + (&AD)+ ((oq)) in Eq. (24) is different for both
nuclei. For nuclei with spin I the mean quadrupo-
lar energy (&o2+) can be written (&o2o) =const x q
with q = C»Q, where Q is the nuclear quadrupole
moment and C» is the corresponding matrix
element of the gradient elastic tensor connecting
the mechanical stress tensor linearly to the EFG
tensor. " With the notation "1*' for "RbCL, "2" for
"NaC1, and x =q(1)/q(2), the ratio RD"(1)/R~ '(2)
of boththe relaxation rates of the two systems (1,2)
measured in a rotating field of the same strength
H, =2 6 is given by Eq. (24) as RD '(1)

R~'(1) + &'(2)Hl+&&4(2))+&~o(2)&
R ~ '(2) y'(1)H,'+ ((u2D(1)) + x'(ufo(2))

'

The dipolar second moments and the gyromagnetic
ratios y of the two systems are nearly the same.
Taking into account the different constants C»
and the different quadrupole moments ("NaCl: C„
=7.5&&10' dyn ' ' "@=0.1 b, ' RbCl C =32&10'
dyn '~', "Q =0.13b (the value of C» of "RbJ given
in the paper is extrapolated to "RbCl taking into
account the different shear modulus of both
systems, "and using (era~(1)) = (sr~(2)) = 40 x 10'
sec~ together with (srao(2)) = 20 x 10' sec ' (Fig. 9)
for the ratio RD '(1)/R~ '(2) the value of approxi-
mately S is obtained. The latter is confirmed by
the experiments (Fig. 7).

From the stress-time curves during stress re-
laxation the values of the strain rate sensitivity
(scr/slug ), r as a function of the mean value of o
were obtained (Fig. 10). This relationship is lin-
ear in accord with the well-known Cottrell-Stokes
law. The occurence of this law together with the
observed linear relationship between c and Wp

is usually interpreted as an indication that the
mean free path of a dislocation is determined by
the distance between the forest dislocations. '

VI. DISCUSSION

We have shown here that measurements of the
nuclear relaxation time T„in the rotating frame
for 'Na in NaCl and "Rb in RbCL single crystals
as a function of deformation velocity furnish in-
formation on the mechanism of dislocation move-
ment in solids.

In the present case where the mean quadrupolar
energy does not exceed the mean dipolar energy
the theories of Slichter and Ailion and of Rowland
and Fradin can be adapted to cor relate the mode
of movement of dislocations with the nuclear
relaxation rate. Furthermore an evaluation of the
"Na free induction decays after the spin locking
pulse leads to the mean quadrupole energy (aPz)
which is shown to be proportional to the applied
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stress, i.e., the well-known o-v p law is valid.
It is well known that during plastic deformation

point defects as well as dislocations are produced,
and NaCl is no exception to this, as is obvious
from the experimental evidence of Davidge and
Pratt. " The density of these point defects increase
with increasing strain. If the relaxation rate RD '

would be due to these point defects, one would ex-
pect it to be a function of e; within the limits of
accuracy of the experiment, this is not observed.
It would seem safe to conclude that RD" contains
no significant contribution from point defect move-
ment.

So far our results and the usual solid-state the-
ories are consistent. Not quite clear at the mo-
ment however is the variation of the dislocation
mean free path with strain: from Eq. (26) together
with the data presented in Fig. 7 it would follow
that with increasing strain (&uo) increases and
therefore n decreases. This decrease is not as
large as would be expected from the decrease in dis-
tancebetweendislocations with strain from Fig. 9.

Comparing the results from the nuclear relaxa-
tion experiments to those obtained from strain
rate sensitivity measurements the fact has to be
noted that the first method gives the mean distance
covered by a unit activated dislocation segment
whereas the second method gives the mean dis-
tance covered by an activated dislocation segment

2 — ~
STAGE I — STA G E II/

/
/

I I

QS 10 15 2.0

G (kg/mm)

FIG. 10. Inverse strain-rate sensitivity as obtained
from stress relaxation experiments vs the mean value of
o during stress relaxation. The experimental. data con-
firm the Cottrell. -Stokes law.

which has, by the assumed random distribution of
obstacles, the same length as thi. s distance. Com-
bining the results of the nuclear relaxation experi-
ments and the strain rate sensitivity measurements
we arrive at the interpretation that both in stage
I and stage II decreasing lengths of the dislocation
lines are activated to move over a more or less
constant distance with increasing strain.

Consider the findings of Heidemann" and Hesse":
during pre-yield slip and also dislocation multiplica-
tion has taken place on all four slip systems.
Heidemann observed that the dislocation density in
a plane in which slip takes place is saturated.
After approximately 0.2% of plastic deformation
the distance between the dislocations in the slip
plane reaches a minimum value of approximately
1.2 && 10~ cm.

The number of the slip planes activated increases
with increasing strain mainly by multiple cross
slip out of the original slip planes. Thus broadening
slip bands form, which eventually fill the crystal
at the end of stage I. The distance between the
slip bands then is of the order of the distance be-
tween the dislocations in the slip planes. The
polygon walls formed early in stage-II limit the
propagation of the activated dislocation segments
in the direction of the Burgers vector. The dis-
tance between these walls —1.2 x 10~ cm —agrees
well with the mean distance covered by a unit
activated dislocation segment —1.6 x 10~ cm.

It must be emphasized, however, that this in-
terpretation is necessarily highly speculative at
this stage. In order to obtain a more detailed
insight in the dislocation processes taking place
during plastic deformation in NaCl various other
nuclear relaxation experiments should be carried
out on (i) crystals compressed along (110); (ii)
crystals doped with impurities or irradiated be-
fore deformation with neutrons which would limit
the mean free path of the dislocations.

Initial results of new measurements (Hackeloer")
indicate that it should be possible to extend this
work to higher deformation rates and to systems
where (ur2c) is noticeable larger than (uP~). For
such cases the SARF model ceases to be valid
and one has to apply a more general theory as
given by Wolf."
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