
PHYSICAL REVIEW B VOLUME 14, NUMBER 2 15 JULY 1976

Correction of the Brillo»nwcattering cross section in CdS for the Gaussian curvature
of the cd(k) surface

O. Keller
Physics Laboratory, Royal Veterinary and Agricultural University, DK 1S71 Copenhagen V, Denmark

(Received 6 November 1975)

A Green s-function theory of Brillouin scattering in anisotropic, nonconducting crystals has been published by
Nelson, Lazay, and Lax. Using the stationary-phase method they have obtained the dependence of the
scattered far field on the principal curvatures of the cs(F} surface. The dipole approximation used by the
present author to calculate scattering cross sections in nonconducting, hexagonal crystals involves properties
that depend only on the first derivatives of as(rj. In this work we compare the two methods and give an

explicit expression for the correction factor valid for an arbitrary optical anisotropy. The correction for
scattering from T, phonons in a plane containing the optic axis of CdS is discussed.

In a recent comment' on my original work on
Brillouin-scattering cross sections in CdS, ' Lax
and Nelson have pointed out, correctly, that the
cross section in anisotroyic crystals in general
depends on the Gaussian curvature of the tc(%)

surface. Thus the present addenda to my original
work2 has been made as a consequence of the Lax-
Nelson yayer. '

Let us consider the inelastic scattering of the
incident electric field Rt = Ee(P) exp[i(P r —&c,t)]
in the eigenstate 8, P by the fluctuation in the
dielectric tensor 5e=5e"(R) exp[i(R r —&f)] pro-
duced by the acoustic-yhonon mode p, , K.

In the linear dipole approximation the scattered
electric field at a point R in the far field is given
by (mks units}

2

E,(R, I) = A x (It x [5P]),
4m&+ c

where the square bracket around the nonlinear
driving polarization 6P denotes retarded value.
The Poynting vector of the scattered field is
parallel to the unit vector R = R/ft in the direction
of observation. The angular freciuency (to, ) of the
diffracted light is given by tc =—&cs = tc, + 0 = to,

In nonconducting crystals the unit field eigen-
vectors ev (q = I, 2) associated with a given Poyn-
ting vector are real (linear polarization of eigen-
modes} and form together with 8 an orthonormal
set. Using the expansion ft x (ft x A)

=+q, , (e" ~ A)e~, the time-independent part of
the electric field can be written

g~, (R, ui) = — P [e"~ 5P(tc)]eve'" R,
4m&~

(2)

where the amplitude of the driving polarization is
given by 5P = e,5e"(R) ~ Ee. The diffracted wave
vector is determined by the selection rule %"
=P s R" (phase-matched scattering).

The scattering cross section between the light
polarization states 8, q defined as os. 'v = ISsvtas/[Sstl

can now be obtained from the magnitude of the
Poynting vectors

I
s'I= l I & [(E;,)* («E,';, )/'w .1 I

I5,'I = ', e,crt'I -E' I'cos5e

of the diffracted and incident beams. Using the
relations

kv = (tc/c)rt v

live ~ ev) —ev(ev P}l= (&o/c)rtv cos5v,

one finds

I
ev ' 5e "(K) ~ eel

1 QP

4m&o c
n~ cosg~x n8cos5~ '

The cross section in Etl. (3) can be expressed in
terms of the unit electric displacement vectors
d~, d~ which satisfy the relation e„~e =n2cos5g,
and in terms of the effective photoelastic tensor
y'", which accounts for the rotational effect and
the indirect photoelastic effect. By means of the
well-known relation K'lu" (K) I'= SQNR/2p(Vg)'
between the Fourier amplitude of the atomic dis-
placement tt" (R) and the occupation number rtx
=%K or NK —1, one obtains in usual notation

2
os. &=—Id& p"" ~ us~ dsI'

dip

RANKx (rt')s(rt v)' cos5' cos'5v
2p(V,")'

In Ref. 2 the scattering cross section was, some-
what inconveniently, defined as the scattering
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efficiency per unit solid angle axound the scat-
tered-wave vector %~ and per unit length along the
incident-wave vector P .Furthermore, separate
powers in the two components of the scattered
polarization were not calculated, and lt x {Itx $")
were wrongly replaced by 5~x(k~x P), k~= k~/k~

[EBLIS. (3) and (21) of Ref. 2].
Using the dyadic Green's function appropriate

to anisotroyic media Nelson eI-, a$."have obtained
a genex"al expression for the scattering cross
section which involves the Gaussian curvature y~
of the &o(%) surface at the propagation vector P
The Green's-function analysis shows that the fac-
tor

r, = (no)2(22~)' cos52 cos252',

obtained in the dipole approximation, should be
replaced by

I 2= (IIe)2(2I")' cos52 cos5~/(k~)2X~.

(5)

It follows from Eqs. (5) and (6) that the correction
factor g~ is given by

Note that the optical anisotropy contained in
(d" ~ p"" ~ II"gc.do ~' is the same for the two models.

If one neglects the angular deviation of the group
velocity from the phase velocity, but retain an
index of refraction appropriate to the direction of
propagation, ' EII. (5) is reduced to ro= (222}2(22~)'.

As an example of relevance to Ref. 2 we con-
sider the scattering from &, phonons in the gz
plane of a uniaxial crystal. Since the T, mode is
yiezoelectrically inactive, the scattering is due
to the direct photoelastic effect only. The selec-
tion rule shows that an ordinarily polarized inci-
dent beam is changed into an extraordinarily
polallzed scattex'ed beam and vlcc vex'sa. For an
extlaord1nary x'ay 1Q a unxaxlal crystal one has

{k)'X= (dete„)(k e„~0)/(k 72 ~ k)2

2 2)2 (COS P+ }I Sill P)
(cos'P+ p, Sin2P)'~2 '

where p, = (22, /12o)2. Neglecting the deviation 6~ one
gets I o=IIo'p, "'(cos'p+ p, sin'p)"'.

In case (ii), one finds

r, =r, =no2}1"'[(cos'a +p, sin2a)

x(cos'e+ }I'sin2n)J "'
as expected since a spherical o&(%) surface for
the scattered beam implies that X~(k~)'= 1 and

0
In the theory of Nelson et a$."only the Gaussian

curvature of the v(%) surface for the scattered
light occurs. This is due to the fact that the inci-
dent light normally forms a parallel beam (laser
radiation}. Neglecting 5e one obtains ro=IIo'}I"'
x(cos2II+ sin2II) "'.

In Fig. I is shown the angular variation of g, and

r2 in CdS for A = 6328 A (Ilo = 2.460, 12, = 2.4V'I) for
the cRses (1) RIld (11), It ls Seell that the angular
dependence predicted by the dipole approximation
is far from the correct variation obtained by the
Green'8-function formalism [case (i)]. Further-
more, the simple model retaining only the direc-
tional dependence of the index of refraction (52
=5~=0) gives results close to r, . (With the ver-
tical scale used in the figure 2 o and 2, coincide. )
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„, (cos'p+ p, sin'p)"'
1 Oi (co82P + ~ 2 sin2P)2/2 (6)

cos5 = (k ' f„k)/(k 6„'k}

where k=%/k. If the incident and scattered lights
have theix yroyagation vectox's in the directions
ko = (cosu, 0, sina) and k~ = (cosp, 0, sinp), the
appropxiate refractive indices fox scattering from
ordinary into extraordinary polarization [case (i)]
Rl'e III =2IO Rlld 222 =tleIZO(IIO Cos p+ 222 8111p); Rnd
from extraordinary into ordinary polarization
[case (ii)] III =N, IIo(22o co82cI+n228in2a) 'I' and

Sg SOO

In case (i), EBLIS. (5) and (6) yield

30 0 90

FIG. l. Angular variation of the anisotropy factors for
T&-phonon scattering in the ~s pl.ane of CdSP 0

= 6328 A.)
as obtained: from a "zero-order" (0~, 08) and a "first-
order" (I „18) dipole approximation, and from a Green's
-function calculation (2„,28). The incident and scattered
photons are denoted by G. and P .
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This holds in general for weak anisotropic media
since p, =1+a, ~«1 implies that ry ~p

=no(1+ —2b, cos'P) [and r, =no8(~ b)(3+ sin'P) J for
case (i), and r, = r, = n', (1+ 2b. cos'n) for case (ii)

if one calculates to first order in b, . It is obvious
that the correction introduced by the anisotropy
factors (ro, r„r,) is small in weak anisotropic
crystals like CdS.
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