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Keller has published a treatment of Brillouin scattering inside an anisotropic crystal with application to off-
axis phonons in CdS, whereas the present authors have provided a treatment valid for a crystal of any sym-

metry and level of anisotropy, any direction of input light, scattered light, and sound (consistent with phase
matching) and to either polarization of the light beams and any type of sound wave. Moreover, our treatment
includes solid angle and demagnification corrections for an arbitrarily oriented exit crystal surface. Since the
treatment of Keller does not use the dyadic Green's function appropriate to an anisotropic medium, his results
are in disagreement with ours after we have omitted the surface corrections from our theory.

Keller' has written an interesting paper on Brillouin
scattering of off-axis phonons in CdS combining work
on phase matching kinematics in anisotropic media' with
the Brillouin scattering theory of Hamaguchi. ' The first
sentence of his abstract reads "Incorporating the rota-
tional contribution to the direct photoelastic effect. and
the angular deviation of the Poynting vector from the
wave vector of the diffracted light, a Brillouin scattering
theory, valid for a general anisotropic scattering
kinematics in a hexagonal crystal is derived. " Keller also
acknowledges the present authors's general theory of
Brillouin scattering in anisotropic media4 which is based
on a Green's function for electromagnetic propagation
in an anisotropic medium' and which includes the very
important boundary corrections needed for comparison
with experiment. The reader may assume that if our
results are specialized to the hexagonal case, they will

agree with Keller's results inside the crystal, and that
our principal contribution is the correction associated
with the boundary (i. e., solid angle and demagnification
corrections associated with observing the light outside
the crystal rather than inside). This conclusion is false,
in the sense, that if there is appreciable anisotropy,
Keller's results' (as well as Hamaguchi's3) are in
significant disagreement with ours, even inside the cry-
stal. We believe ours to be correct. This belief is based
not only on an examination of the two theories but also
on a successful comparison of our theory with experi-
ment4 on the highly anisotropic crystal calcite. In that
work 36 independent measurements were consistently
fitted to nine photoelastic tensor components. Further-
more, the measured value of the antisymmetric com-
ponent agreed within 5'/0 with theory. ' This level of ac-
curacy is believed to apply to all components measured.
Since this level is small compared to anisotropy correc-
tions, which are at issue here, we believe the agreement
supports the calculated anisotropy effects of our theory.

To facilitate comparison with Keller we rewrite our
result for the scattered power per unit flux inside the

crystal in a form that relates it to the corresponding
quantities outside as well as to the scattering efficiency
R:
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where co is the (angular) frequency of the scattered
light, c is the velocity of light in vacuum, 8 refers to the
incident beam (in the crystal), @ refers to the scattered
beam, n~ and n~ are the corresponding indices of re-
fraction, 5~ (or 8&) is the small angle between ray and

Here P „",', the incident(inc) power inside(ins) the cry-
stal, differs from the incident power outside(out)
the crystal PoUi by the entrance transmission coefficient
P"'. The incident beam inside the crystal has a cross-
sectional area A. A transmission correction P""also
relates the scattered power outside the crystal Po„t to
the scattered power inside P „',". The scattering cross-
section [the right-hand side of Eq. (1)] is proportional
to the accepted solid angle d0;"„ofray vectors inside
the crystal, and the source volume V~ from which light
is accepted by the detector field stop. Thus the scattering
efficiency R, an intrinsic property of the crystal and the
scattering process, has the dimensions of a reciprocal
length (R is the scattered power per unit incident power,
per unit solid angle, per unit path length).

Since Keller does not discuss the relation between
d0;"n, V and the detection optics, we must compare
our expression for R with his corresponding expression
(denoted o-&). Equation (4.6) of our Ref. 6, when com-
pared with Eq. (I) yields the expression
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wave vector for the incident beam (or scattered beam),
k& is the propagation constant of the scattered beam,
and E~ is the Gaussian curvature of the &uAk surface at
the propagation vector k@. All the above mentioned fac-
tors enter because of the way in which light propagates
in an anisotropic crystal according to our Green's-func-
tion formalisms, ' The nonlinear interaction that yields
the scattering is contained in the factor,

cies and temperatures in ordinary Brillouin scattering
experiments. To facilitate the application of Eq. (7) to
the uniaxial case considered by Keller, we note that for
the extraordinary ray in a uniaxial crystal'
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where ~PL is the nonlinear polarization induced by the
incident electric field E~, ~e is the unit electric field vec-
tor of the scattered beam and e, is the free space per-
mittivity. The evaluation of J for Rarnan scattering by
polaritons is given in Ref. 6, whereas its evaluation for
Brillouin scattering is given in Ref. 4. For the Brillouin
case
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with
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where s = k@/k& is a unit vector in the direction of the
scattered wave vector and K is the dielectric tensor.

Keller's equation (27) can be rewritten in the form of
Eq. (6), above, with rLN replaced by
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where ~e is a unit vector in the direction of the incident
electric field in the crystal. From Keller's definition, his
Eq. (18), the vector'4
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where the dimensionless angular-dependent factor r LN
is given by
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Equation (6) is the result for Stokes or anti-Stokes Bril-
louin scattering for phonons such that %o (( kTat
thermal equilibrium. For the nonequilibrium and/or
quantum case Stokes scattering should be corrected by a
factor (Ttu/k?) (n+1), and the anti-Stokes by (Tire/kT) n,
where n is the actual number of phonons in the mode.
In the equilibrium case with n = [exp(Txo/kT) —I]
these factors are close to the unity for typical frequen-

d~ (or d@) is the unit electric displacement vector for
the incident (or scattered) light beam, b is the unit
sound wave displacement vector, and a is the unit sound
wave propagation vector. The Pockels tensor p,~(,( carries
the superscript eff to remind us that the indirect
effects9 " and the direct rotational effect' ' ' are in-
cluded. The conventional factors k, T, p and v are
Boltzmann's constant, the absolute temperature, the
crystal density, and sound velocity, respectively.

Equations (2)—(5) may be combined to yield the Bril-
louin scattering efficiency in the form
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where y;~(,( is the complete photoelastic susceptibility.
Although there are numerous identities relating the

vectors ', ~e, s and the direction t = VcuQk/~'7&uCk)
~

of the ray vector, these involve properties that depend
only on the first derivatives of ruQk. Since r LN involves
the Gaussian curvature E~, which involves the second
derivatives of cuAk, and Keller's result, rtc, does not, it
is not possible to transform Keller's result into ours.
This difference arises because Keller does not use the
correct Green's function for an anisotropic crystal' that
involves the Gaussian curvature. In short, a correct ex-
pression for light scattering that applies to observation
in a particular direction inside an optically anisotropic
medium must contain the Gaussian curvature of u&Ak at
the value of k corresponding to the observed light.

Keller's work is also limited by the fact that he has
not calculated the separate powers in the two com-
ponents of scattered polarization. This is evident since
his answer does not depend on the unit scattered elec-
tric field vector ~e.

To demonstrate the disagreement with Keller more
specifically, we evaluate Eq. (7) for the case of T~ pho-
nons in a hexagonal crystal and quote Keller's answer
for the same result. For the case considered by Keller,
the phonon propagates in the x,z plane



OMMENT ON KELLER'8 THEORY OF BHILLOUIN SCATTERINQ

but has its displacement vector perpendicular to that
plane

b = (0, I, 0) .

The incident light is ordinary with its unit electric dis-
placement vector given by

fiel stop according to the relation'

I&
= MDcosp/(cosa sin Hs)

where H~ is the scattering angle inside the crystal, and N
is a correction for noncoplanarity given by'

N = 1/(cos@ cos@ ' —cosP sing sing') . (21)

The scattered light has its propagation vector in the
direction

s = (—cosP, 0, sinP).

If the scattered light is ordinary, Eq. (7} yields a vanish-
ing result because F=O. For scattering from ordinary
into extraordinary polarization, Eq. (7) yields
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Here $' is the angle of tilt between the plane defined by
the unscattered laser beam and the normal to the input
surface and the plane defined by scattered ray and exit
surface normal; @ is the angle of tilt between the latter
plane and thc departure plane define by the normal
to the exit surface and the scattered ray after it has
left the crystal. N reduces to unity when the unscat-
tered beam, the scattered wave vector, scattered ray, and
exit surface normal are all in the same plane.

Equation (1) can then be written in a form useful for
describing any scattering process outside the crystal
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where p, = ~33/~t t.
Instead of evaluating r~ using Eq. (10}we shall in-

stead use Keller's equation (32), his final answer for
this geometry. His result is
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Equations (17) and (18) are clearly different. Although
the difkrence is small in CdS, it can be of significance
in materials of greater anisotropy, such as calcite, and
Keller's remarks lead the reader to believe his results
have wider applicability.

Keller dismisses our work4 with the statement, "Un-

fortunately, the above theories are too complicated to
be applied to elastic waves with arbitrary polarization
and propagation directions. " %e claim, however, that
Eq. (7) is not only correct but is as easy to apply as Eq.
(10).

Expression (6) for R describes the scattering process
inside the crystal. But the angle dO;"n is actually deter-
mined from the detector solid angle d QD by the rela-
tion'

d&;"„=d&D&@ (~/c)' a»~/cosp,

where P is the angle of arrival of the scattered light ray
to thc normal of the exit surface inside the crystal and n
is thc corresponding departure angle outside the crystal.
Similarly, the scattering length is = Vs/A inside the cry-
stal is limited by a length ID associated with the detector

or
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after Eq. (2) is used to relate R to the intrinsic property
Jof the scattering mechanism. If the expression, Eq.
(4), for J that applies to Brillouin scattering is inserted
into Eq. (23), wc obtain
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Equation (24) with % = 1 (noncoplanarity neglected)
agrees with Eq. (2.35) of Ref. 4. The latter was used to
analyze the experimental data for Brillouin scattering in
calcite where anisotropy plays a kcy role. For the calcite
measurements, no noncoplanarity correction was need-
ed.

In summary our results inside the crystal diA'cr from
those of Keller because we have used the correct
Green's function inside an anisotropic medium. Our
result Eq. (24), for Brillouin scattering applies to a cry-
stal of arbitrary symmetry and level of anisotropy, to ar-
bitrary directions of the input light, the scattered light
and the sound wave, consistent with phase matching, to
sound waves of any type, and to either polarization of
input and scattered light. Equation (24} also includes
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the solid angle and demagnification corrections for arbi-
trary directions of the above mentioned rays to the cry-
stal axes and surface normal (when the noncoplanarity
correction factor N is included). These surface correc-

tions are important because measurements are always
performed outside the crystal. Contrary to Keller's com-
ment, we believe Eq. (24) is in an easily applicable
form, in spite of its great generality.
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