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A numerical computation of the ground-state energies and zero-temperature pressure-volume relations of fcc
para-H& and ortho-o, was carried out within the framework of the selfnnsistent phonon approximation. The
calculations employed two recently proposed pair potentials and are expected to be valid up to several

hundred kilobars. The e6'ect of the hard core in the intermolecular interaction vvas treated with a short-range

correlation function. The pressure dependence of the phonon density of states, sound velocities, and bulk

moduli a&ere determined and comparison mth experimental data was made where possible.

I. INTRODUCTION

Recent years have witnessed a resurgence of in-
terest in the high-pressure properties of hydrogen
and its isotopes. The promise of a high-density
metallic phase' has brought about a wealth of the-
oretical calculations concerning predictions of
the transition pressure. ' " Additional motivation
can be ascribed to the belief that the planets Ju-
piter and Saturn are composed mainly of hydrogen
isotopes. '~'~ The possible role of deuterium in
laser-controlled fusion" provides additional in-
centive for further study of the high-pressure
properties of the hydrogen isotopes.

Most recent research has been directed towards
an ultimate goal of predicting the pressure at
which the molecular phase transforms into the
metallic phase. At this time the greatest uncer-
tainty concerning the transition pressure lies in
the description of the molecular phase. The equa-
tion of state for the metal has been known reason-
ably accurately for some time."' Although this
paper does not attempt to predict the transition
pressure, for reasons given below, we feel that
an increased understanding of the molecular phase
is an important contribution towards this goal.

It is well known that the lattice dynamics of sol-
id molecular H, and D„as well as other quantum
crystals at low densities, cannot be treated by the
conventional harmonic approximation. ' " This
method does not adequately treat the large contri-
bution of the zero-point motion of the molecules
in the solid. Indeed, the harmonic approximation
yields imaginary frequencies for these crystals
at low pressuxe. " For this reason we have chosen
the self-consistent phonon approximation (SCPA)
to calculate the pressure dependence of the lattice
dynamics of molecular H, and D, at zero tempera-
ture. Klein and Koehler" have recently used the

SCPA to predict the lattice dynamics of hexagonal
close-packed o-D, at zero pressure. Using a
Lennard- Jones potential, P(r), in conjunction with
a Jastrow function of the form exp [-—,cP(r)] they
calculated the phonon dispersion curves in the
(0001) direction. Although their results were not
in excellent agreement with the experimental re-
sults of ¹ielsen and Moiler, "possibly owing to
their choice of potential and short-range correla-
tion function, their results as well as other calcu-
lations' "using the SCPA to explain the behavior
of other quantum crystals as well as rare-gas
crystals, justify the use of the SCPA as a valid
tool for investigation of quantum crystal lattice
dynamics at temperatures well below melting.

II. Hq-Hg PAIR POTENTIALS

The results of any lattice-dynamical calculation
depend strongly on the form assumed for the inter-
molecular potential. " For this reason, we have
chosen two recently proposed potentials differing
greatly in their origin.

The potential recently proposed by England,
Etters, Raich„and Danilowicz29 (EERD) was ob-
tained by fitting ab initio calculations of the short-
range repulsive part of the H, -H, interaction po-
tential containing the valence and the quadrupolar
interaction terms. The potential is conventionally
separated into four parts

Here V» and V~ axe the induced dipole-dipole
and quadrupole induced dipole terms. V+ are the
quadrupole-quadrupole and V~ the valence terms.
AQ terms are dependent on the relative orienta-
tions of the two H, molecules. For the present
work we are mainly interested in the intermolec-
u1ar iuteractions between molecules in solid para-
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hydrogen and orthodeuterium. At low pressure
the rotational wave functions for both para-H, and

ortho-D, are characterized by J=O, where J is
the orbital angular momentum quantum number.
It is expected" "that J remains a good quantum
number up to pressures of several hundred kilo-
bars. Molecules with J=0 have a spherically sym-
metric rotational wave function and can be con-
sidered to be rotating uniformly. At higher pres-
sures the admixture of the higher rotational states
becomes significant and the molecules will be or-
dered as is the case for ortho-H, and para-D, .
For a uniformly rotating molecule, the aniso-
tropic contribution to the interaction potential due
to V~~ averages to zero. Spherically averaging
the Van der Waals energy, V», one obtains

V»- 1.18479 x 10 59/r',

and the spherically averaged induced dipole-quad-
rupole energy V~~ is given as

Vo~ — 3.1081 x 10 75/r'.

The spherically averaged valence energy V~, ob-
tained from atomic orbital calculations is given
as"

V„=[83.69171x 10-" (24.58269/r) x 10 "]
x exp[ —(3.533 97 x 10')r] .

Here all energy units are in ergs and all distances
r are in cm. The above potential plunges to an un-

physical value of - as r- 0. It starts to go neg-
ative at approximately r = 1.5 A. It is desirable
to modify the potential in a manner similar to that
suggested by Trubitsyn"

V= V„+Vy(V~~+ Vo~),

where

Vz = (exp[- (7.561 x 10')(r —1.8515 x 10-&)]~ 1]-'.

This form for V& was found to smoothly extend the
potential nearly to r = 0, although the unphysical
behavior is still present for r less than 0.5 A.
This presents no problems as values of the inter-
molecular distance this small are not considered
here. It should be pointed out that this potential
is only strictly valid for para-H, and ortho-D, at
sufficiently low pressures so that all molecules
are rotating freely. However, orientational cor-
rections for ortho-H, and para-D„as well as
para-H, and ortho-D, at very high pressures are
expected to be small. "

The other potential investigated is one among
several proposed by Ross. ' Using the liquid per-
turbation theory of Mansoori and Canfield, "Ross
calculated Hugoniots for a family of potentials that
satisfy existing shock data. The large error bars

of the shock data made it less meaningful to pick
a single potential than to find a range of potentials
satisfying experiment. The 0-K isotherms using
his family of potentials were then calculated using
a Lennard- Jones-Devonshire cell model. Ross re-
ports that the potential which seems to fit both the
shock data and the experimental results of Stew-
art" is given as

V(r) = 3.268 x 10 "exp(—3.195 x 10'r)

r6

~

~ ~

~

1.2414 x 10-" 3.0998 x 10-"
+ rs

8.766 x 10 ~'
x exp— r6 7

where energy units are ergs and r is in cm. Again
this potential is spherically symmetric and thus
cannot describe orientation- dependent properties
of the solid hydrogen isotopes.

III. CALCULATIONS

When grown under normal conditions at ambient
pressure, the crystal structure of p-H, and o-D,
at zero temperature is known to be hexagonal close
packed'4 (hcp). Recently, Durana and McTague"
have observed a phase transition to face-centered
cubic (fcc) structure at pressures on the order of
0.8 kbar. Recent x-ray evidence" has shown that
when grown on special substrates o-D, and P-H,
form in the fcc structure. This indicates that the
hcp structure at zero pressure may be only meta-
stable with the fcc structure being kinetically in-
accessible under normal growth conditions. For
these reasons we have chosen the fcc structure in
our calculations.

The self-consistent phonon approximation (SCPA)
as a method of treating the anharmonicity of quan-
tum crystals has been reviewed by Werthamer"
and we shall therefore present only a brief outline
of the theory as it applies to the present problem.

The SCPA frequencies co„-„and polarization vec-
tors E„-~ are given by the eigenvalue equation

co&~E„-„=— 1 —e '"' 4 v ~ &„-„,

where M is the molecular mass, k is a wave vec-
tor in the first Brillouin zone, and A, is a branch
index running from one to three. The vector ~
is equal to R,, —R, where R,, and R, are position
vectors of lattice sites l' and l, respectively, with
the lattice site at l chosen as the origin.

To account for the hard core of the molecular
interaction we have included a short-range cor-
relation function. With the addition of a short-
range correlation function, f, the force constants
4(T ) are given as
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@(~)= «vKr+ u)& —&~(v+ u)&&'1)'&f '(v+ u)&, (2)

where u=u, .-u, and u, is the displacement of mo-
lecule / from equilibrium. The effective potential,
W(x), is obtained from the true intermolecular po-
tential V(r) by

W(y) =y'(r)[V(~) (g2/2M) V'in/() )],
where r = P+u

~

.
The angular brackets in the above expression for

(f (v) are a shorthand notation and are defined by

I d Esca(f. +u)e u D )(f)~ u/2'

I 3 2' ~ u'f( ((f)~ ul2 '

The displacement-displacement correlation func-
tion D(v) is found from the self-consistent fre-
quencies ~„-„and polarization vectors &».

for potentials exhibiting a 1/r" repulsion. Since
the potentials are not known accurately in the core
region, the variational form was chosen as a
means of approximating the form appropriate to
each potential.

The ground-state energy of the crystal is then
given as

E k)L +

The condition that the Gibbs free energy be sta-
tionary with respect to any change in the unit cell
gives the equation for the pressure I'. For an fcc
crystal the pressure is given as

P= — 3
&' %TV r+u — O' V 2 7+u

&f'(&)& = 1,
&f'()')u& = o,
(f '(r)u u) = D.

(4)

(5)

(6)

Equation (4) is the normalization condition. Equa-
tions (5) and (6) ensure that the short-range cor-
relations do not alter the average distance between
molecules and the width of the distribution of any
pair of molecu1es. Following Horner, we have
used the longitudinal components of Eqs. (5) and

(6) to determine the constants A„A„and A, for
eoeh lattice shell. The dimensionless parameter
b was found, for each molar volume, to an ac-
curacy of better than one part in 10' by minimi-
zation of the ground-state energy with respect to
b.

The r dependence off,(r) is strictly valid only

%ith frequencies and polarization vectors ob-
tained from an initial guess (in this case a har-
monic approximation with potential parameters
adjusted to give real frequencies) D(&) is obtained
from Eq. (3). The force constants are then cal-
culated from Eq. (2). Frequencies and polariza-
tion vectors are calculated using Eq. (1). Equa-
tions (1)-(3) are then iterated until self-consis-
tency is obtained.

For the short-range correlation function, f, we
have chosen a form recently proposed by Horner"
for use at low temperatures,

f (~) =f.(r)(tA. +A,(~- ~)+A, (~- ~)']"',
where f, (r) = e ("~" ~'. The constant o corresponds
to the Lennard- Jones value 2.95S A. In the pres-
ent work the constant b is treated as a variational
parameter. The constants A„A.„and A, are de-
termined by the following set of equations:

where a is the lattice constant.
Five shells of nearest neighbors were treated

self-consistently in the determination of the force
constants 4, frequencies v„-» and polarization
vectors &». A total of 96 shells of nearest neigh-
bors were included in the lattice sums appearing
in the expressions for the energy and pressure,
Eqs. (7) and (8), respectively, with shells 6-96
being treated harmonically. The calculations
were repeated at several molar volumes treating
ten shells self-consistently. Since no significant
difference was found, we assume a SCPA treat-
ment of five shells and a harmonic treatment of
the remainder to be sufficient.

In the evaluation of the reciprocal-lattice sums
appearing in Eqs. (3) and (7) we have employed ten
special reciprocal-lattice vectors in —' of the

4&

Brillouin zone. The ten special vectors along with
their appropriate weights, proposed by Chadi and
Cohen, "were found to give more accurate Bril-
louin zone sums than several hundreds of points
and weights chosen using the conventional grid
method. " The use of the special reciprocal-lat-
tice vectors aQows for considerable savings in
computer time with virtually no loss in accuracy.
For further reduction in computation time we have
exploited the symmetry of both the real lattice as
well as the reciprocal lattice in Eqs. (1), (3), (7),
and (6). The details of the symmetry considera-
tions are given in Ref. 40 as well as references
contained therein.

Normally, inclusion of a short-range correlation
function in the self-consistent theory also has the
effect that the calculated frequencies are not the
true frequencies for the crystal. The true fre-
quencies, O„-~, and polarization vectors, e~, are
to be identified with the poles of the displacement-
displacement correlation, D, and are given by the
equation
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1~ A A

Mpe ".'D(r) (vvf'(7+u)) D(i)) i- .

However, if all components of Horner's second
and third conditions [Egs. (5) and (6)] are used to
determine the constants A„A» and A» the
self-consistent frequencies ~&q, and polariza-
tion vectors Rqq, will in fact be identical to the
true values Qkq and eqq. The use of the longi-
tudinal components of Eqs. (5) and (6) in our
calculations does in fact induce a slight error.
We have calculated the zero-temperature dis-
persion curves in three symmetry directions
as a function of pressure for both the self-consis-
tent frequencies and the real frequencies. At
pressures greater than 0.6 kbar we have found no
difference between the self-consistent frequencies
~-„„, and the actual frequencies 0-„„. Below 0.6
kbar the longitudinal frequencies differ slightly
at the zone edge with the self-consistent frequen-
cies being negligibly higher.

Assuming the self-consistent frequencies to be
identical to the real frequencies we have calcu-
lated the phonon density of states as a function of
molar volume. The method used in this calcula-
tion was that of Raubenheimer and Gilat. ~' All
density of state curves generated had the typical
fcc form shown in Fig. 1. The effect of pressure
on the density of states is shown in Figs. 2-5
where we have plotted the logarithm of each Van
Hove singularity as well as the maximum fre-
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FIG. 2. Volume dependence of the singularities and
maximum frequency in the parahydrogen phonon density-
of-states curve as calculated with the EERD potential.

quency as a function of the logarithm of molar
volume.

Our pressure-volume results were fit smoothly
to the functional form

n
AC)|

j=o

where V is the molar volume. The n+ 1 constants,
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I I I I I I I Figures 6 and 7 show the calculated bulk moduli as
a function of molar volume.

The velocity of sound

~47g
v, =lim

k~0

was calculated for the three symmetry directions
[100], [110], and [111]. The pressure dependence
of the sound velocities is shown in Figs. 8 and 9.

IV. DISCUSSION

I.O

0.0
l.6 l.8 20 2.2 2.4 2.6 2.8 30 3.2

Ln (volume/mole)

FIG. 4. Volume dependence of the singularities and
maximum frequency in the parahydrogen phonon density-
of-states curve as calculated with the Hoss potential.

C„were evaluated numerically for both potentials
for P-H, and 0-D,. The number of terms needed
for best-fit conditions varied from 8 to 15 depend-
ing upon the potential and the isotope considered.
Bulk moduli, B, were then calculated as a function
of volume, where

Figures 10 and 11 show the zero-degree iso-
therms for both the EERD and Ross potentials.
We have assumed the zero-pressure volume,
V„of 22.65 cm'/mole for parahydrogen as sug-
gested by Roder et al.4' For orthodeuterium we
have used the value V, = 19.998 cm'/mole which is
consistent with the neutron-diffraction experi-
ments of Yarnell, Mills, and Schuch. " The bulk
moduli calculated from Eq. (9) are displayed in
Figs. 6 and 7. The zero-pressure volumes used
to convert the V/V, values of Anderson and Swen-
son44 to the molecular volumes shown are 22.90
cm'/mole for normal H, and 19.94 cm'/mole for
normal D, as reported in Ref. 44.

The EERD potential gives excellent agreement
with the experimental pressures and bulk moduli
of Anderson and Swenson for hydrogen. The deu-
terium pressure-volume results obtained with the
EERD potential follow more closely the results
of Stewart than those of Anderson and Swenson.
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FIG. 5. Volume dependence of the singularities and
maximum frequency in the orthodeuterium phonon den-
sity-of-states curve as calculated with the Ross poten-
tial.

FIG. 6. Hydrogen bulk modulus as a function of molar
volume. Dots represent experimental bulk moduli (Ref.
44) for normal. hydrogen. Solid and dashed lines are
bulk moduli calculated with the EERD potential and Ross
potential, respectively.
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zero pressure this ratio in the self-consistent ap-
proximation is approximately 25/p, while in the
harmonic approximation it is infinite. The har-
monic approximation gives higher values of this
ratio than the self-consistent approximation over
all pressures considered; however, at pressures
greater than 10 kbar the difference is nearly zero.
This leads us to agree with the authors of Ref. 47,
at least for pressures greater than 10 kbar, that
the short-range correlations may be adequately
accounted for in the harmonic approximation.

V. CONCLUSIONS
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I

5
I
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Volume (cm~/mole)

The zero-pressure experimental results are shown
in the figures. The sound velocities of Bezuglyi,
Plakhotin, and Tarasenko" were measured with
ultrasonic waves in polycrystalline parahydrogen
and are therefore average velocities. Nielsen"
measured the phonon dispersion curves with co-
herent neutron scattering in single crystals of
hcp parahydrogen and orthodeuterium at 5.4'K.
Using a third-nearest-neighbor force model he
then calculated the sound velocities shown in the
figures. No experimental sound velocities appear
to be available at the present time in the region
the face-centered cubic structure is expected.

Previous authors have used the harmonic ap-
proximation to compute the zero-degree isotherm~'
and recently ' to compute sets of parameters for
the Lennard- Jones and Buckingham potentials
that would satisfy Stewart's data. To test the va-
lidity of this approach we calculated the trace of
the nearest-neighbor displacement- displacement
correlation both self- consistently and harmonically
for H, using the EERD potential. The square root
of the trace of the displacement-displacement cor-
relation divided by the nearest-neighbor distance
was found to decrease with increasing density. At

FIG. 13. Parahydrogen ground-state energy vs molar
volume for 8.5& V& 5 cm3/mole. Dashed and solid lines
were calculated using the Ross potential and EERD poten-
tial, respectively.

We have calculated the zero-degree isotherms
for parahydrogen and orthodeuterium, as well as
various lattice-dynamical quantities such as sound
velocities, phonon density of states, and ground-
state energies for solid para-H, and ortho-D, .
We have also determined the bulk moduli. Our
pressure-volume results appear to be in better
agreement with experiment than several other re-
cent calculations. '""" The most important con-
tribution to the improved results is no doubt due
to the forms of the intermolecular potentials
studied. The potential due to England et al. was
found to give better agreement with experimental
static pressure volume results for parahydrogen
than the potential suggested by Ross. Ross's po-
tential appears to fit more closely the results for
orthodeuterium although the potential does exhibit
some weaknesses at densities corresponding to
zero pressure, as well as predicting less accurate
bulk moduli. A comparison of the hydrogen and
deuterium results for the two potentials investi-
gated suggests that the two-body intermolecular
potentials might be somewhat different for these
two solids.

By examining the rms displacements of the mo-
lecules we have verified that the classical har-
monic approximation may be used at pressures
greater than about 10 kbar to calculate lattice-
dynamical properties of parahydrogen.

It is hoped that this work wiQ stimulate further
experimental work on solid molecular hydrogen. "
In particular, more accurate values of the sound
velocities or a determination of the dispersion
relations for the fcc phase would be very helpful
in the determination of intermolecular potentials
for hydrogen and deuterium.
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