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The ultrasonic attenuation of pure and impure dielectric crystals in the high-temperature or Akhiezer regime
is derived in a relaxation-time approximation which includes both dispersion and anisotropy of all relevant

thermal phonon parameters. The attenuation coeNcient results are proportional to the product of the thermal
conductivity for temperature gradients along the sound-wave propagation direction X„ times an average of the
phonon-mode Gruneisen parameter weighted by X„.Experimental data of the attenuation in the ultrahigh-

frequency band at temperatures between 80 and 300 K, in pure crystals of Si, Ge, TiO„MgO, and SiO„are
used to extract the temperature dependence of the efFective ultrasonic Griineisen parameter (UGP). For the
first three crystals the temperature dependence of the UGP is qualitatively similar to that of the thermal GP
squared, while its magnitude is in good agreement with calculations for the anisotropic continuum model. For
neutron-irradiated quartz and for Ge-Si crystalline alloys the UGP should also be dependent on the concen-
tration of defects or impurities. This dependence removes the discrepancies between the behavior of the

thermal conductivity and of the ultrasonic attenuation of imperfect dielectrics. Independent available experi-
mental evidence is presented in support of the present explanation of the above discrepancies.

I. INTRODUCTION

The absorption of sound waves in insulators for
0 v (1 (0 is the sound-wave angular frequency and
v is the thermal pho-non relaxation time), has been
the subject of an extensive literature from Akhie-
zer's original paper' to more xecent review arti-
cles and comments. ' ' Concisely, sound dissipa-
tion is due to the modulation of the thermal-phonon
frequencies caused by the strain of the sound wave.
The perturbed phonons relax towards local equilib-
rium via al&armonic phonon-phonon collisions in
an entropy-producing process which damps the
wave. For O'0 «kT (where T is the absolut tem-
perature) a linearized-Boltzmann-equation treat-
ment with heuristic assumptions as to the form of
the collision integral is sufficient to calculate the
absorption coefficient for all Ow. '"' Acoustic dis-
persion and anisotropies may be formally included
in this treatment but the resulting general expres-
sion for the attenuation coefficient is too complex
for direct application to the expeximental data. The
main difficulty being that one lacks sufficiently de-
tailed knowledge about the dispexsion and polariza-
tion dependence of such relevant microscopic quan-
tities as the Griineisen parameters (GP) and re-
laxation times of the thermal-phonon modes cou-
pled to the external wave. To obtain manageable
expressions for the attenuation one resorts to
drastic approximations. For example, neglecting
the wave-vector dependence of the mode Gp, and
disregarding local equilibrium effects, and for a
constant phonon relaxation time equal to the ther-
mal conductivity average, one obtains for the at-
tenuation coefficient

n = (3''TD'/pc's') y'.

Here E is the thermal conductivity of the material,
s and e are the Debye average and wave velocities,
respectively, p is the density, and y' is an adjust-
able effective anharmonic parameter independent
of T. Besides its simplicity, Eq. (1) relates the
attenuation to the thermal conductivity, a fact that
has been used to establish tendencies and to rough-
ly predict the magnitude of the ultrasonic absorp-
tion, from known thermal and acoustic proper-
ties. "" It is possible to estimate the value of y'
in the anisotropie-continuum model. z'" When ap-
plied to the experimental data of pure crystals,
Eq. (1) agrees with the observed frequency depen-
dence of the attenuation, but it faiis to predict the
correct temperature dependence unless y3 is also
allowed to vary with temperature. The need for a
temperature-dependent anharmonie parameter in
the attenuation has been noted by sevexal au-
thors. '0"~'"

An additional difficulty arises in the case of im-
pure ox imperfect crystals: the proportionality be-
tween the sound attenuation and the thermal con-
ductivity predicted by Eq. (1) does not seem to
hold. Measurements by Keller" and Lemanov et
aE.' in Ge-Si crystalline alloys show that the at-
tenuation w'as a much weaker function of atomic
composition than the thermal conductivity. Fur-
thermore, the attenuation of longitudinal w'aves
was markedly less sensitive to increases in con-
centration than that of shear waves. This discre-
pancy led Maris" to propose a phonon relaxation
mechanism for the extreme impure limit whereby
the attenuation was independent of the impurity
(elastic) relaxation time. In a recently published
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paper Logachev" has pointed out some divergen-
cies in the former mork for the case of point im-
purity scattering.

It has been shown" that if in the genexal expres-
sion for the attenuation coefficient one averages
the microscopic GP weighted by the mode thermal
conductivity, one can obtain an expression for the
attenuation coefficient formally identical to Eq. (1}
mithout the need to introduce approximations about
the anisotroyy and dispersion of the various phonon
properties. The magnitude and temperatux e de-
pendence of the resultant effective "ultrasonic"
Griineisen parameter (UGP) are obtained from the
attenuation data in the A2 range. Such an approach,
which had been previously proposed in the eonstant-
phonon- rely, tion-time approximation for cubic
crystals x4.2~ gives some insight as to origin of the
similarities ox' differences between the ultxasonic
and thermal GPs with reference to the phonon
modes which axe effectively coupled to the sound
wave. A direct application of this formulation to
the case of Ge-Si alloys has explained the discre-
pancy between their thermal and acoustic proper-
ties by the change in the mean lattice ante. rmonicity
due to increasing concentration of impurities. In
addition, these changes mere found to be larger for
longitud~ than for shear waves.

In the present work me extend the application of
the above formulation to a number of nominally
pure dieleetries whose attenuation was found to
vary as O2 fx"om 80 to 300 K. As the original treat-
mentmo was developed for a single (inelastic} re-
laxation time, me present here the results of its
extension to the case when simultaneous elastic (e)
and inelastic (i) scattering processes limit the
thermal-phonon lifetime. In this may me are able
to apply the results more appropriately to the ex-
RI11lation of the RttenuRtlon of erystaQine Sl-Ge
alloys and of neutron-irradiated quartz. Elastic
and thermal data are also presented for other
crystaQine alloys systems mhich lend support to
the proposed correlation between impurities or de-
fects and the mean Rnharmonie properties of the
lattice.

H. ATTENUATION COEFFICIENT FOR PURE AND IMPURE

DIELECTRICS

Following the method of Woodruff and Ehrenreich'
the attenuation coefficient of a sound wave of polar-
ization j, radian frequency 0, propagating in a
crystal with velocity c& along k can be written in
the Akhiezex' limit, 02~2«1, as

In this expression C- „is the specific heat of the
phonon mode (q, n), P„=v„k is the projection of the
phonon velocity along the sound-wave propagation
direction, y„&(g) is the generalized GP which de-
scribes the change in the mode frequency caused
by the strain of the sound wave, y is the calculated
volume GP, arid 5~~ is Kroneclmr's 5. In Eq. (2),
terms multiplied by 5» arise from local equilib-
rium effects associated with longitudinal sound
maves, the last term representing classical ther-
moelastic losses. Equation (2) can be written in a
more concise fox m by performing a weighted avex-
age with the mode thermal conductivity for tem-
perature gradients along the wave propagation
direction,

K,(q, n) = ,'C-„„Pmv„,—

and defining an ultrasonic mode GP as

r„,(q}=(s lp„)[~„, »„,(I p„i,;}f„j.
We then have for the attenuation eoeffieient

'p2 Q2 $ ~8 y2«$
pC SS2

where

, +X,{q,n)12,(q)

ij~ n

Z, =g Z,(q, n}.

As described in Sec. I, the above expression for
the attenuation retains the simplicity of the origi-
nal qualitative expression given by Eq. (l), and
provides its formal justification. The nem effec-
tive UGP, I'2&, may be calculated if sufficient know-
ledge about the m~itude, dispersion, and aniso-
tropy of its constituents is availabl. As this is not
in general the case, it seems more fruitful to use
the ultrasonic measurements to determine the tem-
perature dependence and magnitude of I'& for com-
parison with the volume GP or with predictions
from specific models.

For impure dieleetrics the main difference with
the previous cases is that the collision integral in
Holtzmann's equation mill nom have both inelastic
Rnd elastic relaxation terms for each phonon mode
gj, n}:

, Q&;,„&„(q) r'„g(4)-»„,(4) I-~ &gz

Qs yf

(2)

To simplify the notation the branch index n and
the phonon wave vector q will not be included sub-
sequently in the relaxation times. The equilibrium
distribution function of the phonons in the presence
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of the perturbing strain 8&(r, f) =S~e"""""is given
by f„(q,r, f}. As described by Woodruff and Ehren-
reich Rnd others ' ' each scRttex'lQg px'ocess will
relax the distribution function f„(q,r, f) towards
Planck's distributions f„'„f„', which are character-
ized by the perturbed enex gy of the phonons and
their local "effective" temperatures T, Rnd T,. The
locRl effective tempel Rtux'8 fox' 61Rstic pl ocesses
ls RssuD1ed ln genex'Rl to depend on q. By RI1Rlogy
arith the pure dielectric case, we write the frac-
tional changes in local temperature about the equi-
librium crystal temperatuxe T as

aT, /T =(y',.+ f y,. )8,(r, f),

&T. /T =[i,'(0)+f5f(q)]&&(r, f).
Calculating the attenuation coefficient by the meth-
od of %oodruff Rnd Ehrenxeich with t ' = t&'+ t,-' we
obtain, in the approximation Q'(1 —p„/c~)'v' «1:

t Qt,. Qt

The quantities y&, y&, $,'., Rnd $& are determined
by the system of equations

which connote conservation of the total energy of
the phonon system under both elastic and inelastic
scattering processes Fox' elastic colllslons
MRx'ls Rnd LogRchev made use of the lnvRx'lRQce

of the QUD1bex" of phonoQS Rt fixed frequency instead
of the above constraints. %e found it more con-
venient here to analyze the results with reference
to the pure dielectric case where the energy-con-
servation condition is normally used. Some fea-
tures of Eq. (10) are worth mentioning at this
point: (a) the expression is symmetrical in r, and

t, so that for t, -~ one recovers the attenuation
for pure dielectrics. In this case, from the first
part of Eq. (11)we obtain

y»~=-y and yf =QQ C „y P'~

this instance the anharmonic parameter can readily
be averaged with the mode thermal conductivity
and the attenuation results are again proportiona1
to X~.

For longftudlllal waves (j=L) local equilibrium
effects yield the terms in parentheses in Eq. (10)
which make the expression for the attenuation
more cumbersome. However, since t is a common
fRctol under the summRtlon slgny we D1Ry perform
tI18 RvelRge Rs described Rbove for tI16 pux'8 dielec-
tric case. %'e can then write the attenuation coef-
ficient proportional to the appropriate component
of the thermal conductivity times an effective UGP.
To test the validity of this procedure are have
solved Eq. (11) in several approximate ways and
found that the local equilibrium terms depend only
on averages of the combined relaxation time t.
For example, for relaxation times independent of
branch number n and for y„z dependent only on the
direction of Q, the local equilibrium terms inside
the square brackets of Eq. (10) have results pro-
portional to:

—b„&&«v»+&y„,» /Q, (»)
where the angular brackets & & and (& » represent
specific-heat-weighted averages over n and l|, re-
spectively. The first term in Eq. (12) is common
to the pure dielectric case and the magnitude of the
second term mill give a contx'ibution to the attenu-
ation of the same order of the classical thermo-
elastic losses. Several other approximations make
it possible to write simplified expressions for the
RtteQURtlon coefflclent As the vRlldlty of these
approximations is difficult to assess for real solid~,
we px'efex' instead to use the RverRglQg procedure
x eferred to above and express the attenuation for
boN pure and impure dielectrics as in Eq. (5}:

o(g = (3K»TQ /pcgs ) I.

The effective UGP, I'2&, which can be obtained from
the attenuation data, mill thus contain the effects of
temperature and/or defect concentration on the
average anharmonicity of the lattice as sampled by
the SOUnd %'aves.

In the applications that follow we will present, in
Rddltlon to ultrasonic data, soD1e independent ex-
perimental evidence which shows that the average
anharmonicity in materials with impurities ox de-
fects does change markedly with conceQtl Rtlon.
For the cases presented, this change is stronger
fox' longitudinal than for shear wave polarization.

and substitution in Eq. (10}then yields Eq. (2).
(b) For pure shear waves (j= T} the attenuation
coefficient is formally identical to the correspond-
ing expression for pure dielectrics except that t is
now the combined relaxation time (~,'+ r,'} '. In

m. EXPEMMKNTAL METHODS

By conventional cryogenic pulse-echo techniques~~
we measured the temperature Rnd frequency de-
pendence of the ultrasonic attenuation in nominally
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pure crystals of Si, SiO„TiO„and MIO «»»-
ious polarization and propagation directions. Non-
resonant crystal holders" and CdS film trans-
ducers" provided sufficient Qexibility to study the
attenuation for different polarizations in a fre-
quency range from 03 to 1.0 GHz at temperatures
above 80 K. The magnitude of the attenuation co-
efficient was determined by fitting a calibrated ex-
ponential to the pulse pattern while its variation
with temperature was obtained by the use of an
automatic ultrasonic attenuation recorder 27

The frequency dependence of the attenuation co-
efficient was determined at both extremes of tem-
peratures to ensure that for all samples measured
the attenuation was proportional to O'. In most
cases the temperature dependence of the attenuation
was determined at the lowest frequency of the ex-
perimental range for which the best pulse pattern
was obtained.

Neutron irradiation of our quartz samples was
carried out in the core irradiation facilities of the
RV-1 research reactor with samples and dosi-
meters inside an aluminum can. Dose refers to
intregrated thermal neutron Qux.

IV. RESULTS AND APPLICATIONS

A. Pure die1ectrics

O.l-

O.OI
l

300

FIG. 1. Temperature dependence of the ultrasonic and
thermal Gruneisen parameters of silicon. L and T indi-
cate sound wave polarization.

Measurements of the frequency dependence of the
attenuation at room temperature showed that in our
samples the attenuation depends quadratically on
frequency. Similar results have been reported for
these and other dielectrics for frequencies up to 1
GHz. ' The same frequency dependence was ob-
served at liquid-nitrogen temperatures although for
some samples a weakening of the frequency depen-
dence is already noticeable above 0.76Hz. For this
reason the temperature dependence of the attenu-
ation for a given material or polarization was
studied at the lowest convenient frequency in the
0' range.

The resulting effective UGP obtained by fitting
Eg. (5) to our measurements or to data published
by other authors"" are shown in Pigs. 1-4. Val-
ues for p, c&, and s were taken from an unpublish-
ed compilation by Anderson. 28 The appropriate
component of the thermal conductivity was used,
when available, in the calculation of 1'~ but this is
not in general the case. For comparison purposes
the squares of the measured thermal GPs2~ '2 are
also shown in the graphs.

With the exception of quartz and MgO, the tem-
perature dependence of the 1"2& and y' results are
qualitatively similar over most of the experimental
range. Bearing in mind that one is comparing dif-
ferent a.verages of the GPs, it may be tentatively
concluded that for these materials the contribution

2

2

O.I-

0 &IOO)

+ &III)

I

IOO 200
T fvj

l

300

FIG. 2. Temperature dependence of the ultrasonic and
thermal Gruneisen parameters of germanium (Refs. 2

and 14). L and T indicate sound wave polarization.
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FIG. 3. Temperature dependence of the ultrasonic and
thermal Gruneisen parameters of MgO for longitudinal
waves.

o 0 TiOg
8 Sion

to both parameters comes fx'om the same branches
of the phonon spectrum. This would not be the
case for quartz and MgO.

At room temperature one may make a compari-
son of the measured X'2& with its value calculated
from elasticity theory by assuming that v'„ is inde-
pendent of branch number n, and y & depends only
on the direction of the phonon wave vector and n.
Fol' 'this approximation~ fl'0111 Eqs (2) OI' (5)~ f I
18 rollgllly equal to (T„g), the specifIC-lleRt-weight-
ed average of the square mode GP. Local equilib-
rium texms are thus neglected in the attenuation of
longitudinal waves. Table I compares the value of
(ym&) calculated by the method of Mason and Bate-
man '" math the value of I'~ obtaxned fx'om the mea-

FIG. 4. Temperature dependence of the ultrasonic and
thermal Gruneisen parameters. I, stands for longitudinal
waves along the e and x axes, respectively, and T indi-
cates shear waves along the c and AC axes, respectively,
of rutile and quartz crystals.

sured ultrasonic attenuation at room temperature
for a number of crystals. Considering the limita-
tion of the anisotropic continuum model, and that
the various properties involved in the calculation
of I'3& frere not in general measured in the same

TABLE I. Comparison of the room-temperature Gruneisen parameter and its square mean,
calculated for the anisotropic continuum model, and their values obtained from thermal and
ultrasonic measurements.

Direction Crystal
Longitudinal

(» p2

(100)

c axis
x axis
AC axis

Si
Ge
MgO
CaF2
BaF2
SrF2
Ti02
SiO2
BiO2

0.70 O.Vl 0.50 0.45
1.21 1.10 0.67 0.60
2.72 4.6V 1.44 1.60
1.56 1.83 1.15 1.90
1.V8 1.68 0.73 1.5V

1.23 1.18 0.93 1.58
3.24 ' ' ' 0.70 1.64
2.30 1.38 0.71 0.70

0.08
0.14
0.1V

0.33
0.19
0.28
0,07

0.17
0.13, 0.35
0.39
0.20
0.38
0.05

0.57 0.62

2, 13, 29
2, 29, 30
13, 31
5, 32, 33
5, 33, 34
5, 21, 33
35, 36
37
37
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samples, the agreement is surprisingly good. By
calculation we have found that for cubic crystals,
both the values of I'2z and (y~~) depend more strong-
ly on the polarization (j) than on the sound wave
propagation direction. Note that for longitudinal
waves the disagreement between the values of I'2z

and (y'„~) is at worst less than a factor of 2. For
some cubic crystals this disagreement is so small
that a mutual cancellation of the terms in the at-
tenuation coefficient due to local equilibrium effects
is suggested. For these cases, the observation of
Lewis" that collinear phonon interactions (for
which P'„=cz) still make a large contribut' r 'o "".-.a
attenuation of longitudinal waves in dielec'. ries at
room temperature is a plausible expla."='i in for the
agx'cement found between the two anharmonic pa-
rameters.

It is interesting to note from Figs. 1-4 the dif-
ference between the temperature dependence of the
thermal GP of Si and Ge and those of quartz and
rutile: in the latter materials the thermal GP in-
creases with decreasing temperature. Such an
anomalous behavior of y' has been attributed to the
contribution that low-lying optical phonon modes
make to the thermal expansion of these materials
at relatively high temperatures. " Taking into ac-
count the contribution of optical modes to the an-
harmonicity of rutile, Shaner" has predicted that
y should pass through a peak around 100 K and then
decrease to its elastic value of O.V as T approaches
0 K. The fact that the temperatuxe dependence of
I'2& for this material is in accordance with these
predictions indicates that the sound wave in TiO,
is effectively coupled to the optical modes. This
coupling seems to be much weaker for quartz and

MgO. Further evidence of the contribution that
optical modes make to y for some crystals is that
its measured value is significantly greater than
the value (y„~) calculated from the elastic con-
stants. The corresponding columns of Table I in-
dicate that this is the case for TiO, and the alka-
line-earth fluorides at room temperature.

sonic data over a wider dose range. "~ However,
the increase in 12& with the concentration of radia-
tion-induced defects is quite evident. The general
trend on the curves of I"2& vs dose indicates that the
effect is greater for longitudinal than for shear
waves, but more data are needed for the latter
polarization at higher neutxon doses.

To study the dependence of the effective UGP on
impurity concentration we have selected measure-
ments of the ultrasonic attenuation at room tem-
perature in Ge-Si crystalline alloys by Keller" at
0.64 GHz, and by Lemanov et al."at 1 GHz. The
lower half of Fig. 6 shows the variation of the ul-
trasonic attenuation and thermal conductivity with
atomic composition, and in its upper part Fig. 6
shows the resultant I'~ calculated from Eq. (5).
Also shown for Ge-rich alloys is the volume GP
used by Abeles et al.~ to fit their thermal conduc-
tivity measurements. The dependence of I'~ on
concentration is seen to be quite large, particular-
ly for Si-rich alloys, and clearly stronger for
longitudinal sound waves. For Ge-rich alloys the
increase of I"~ with composition is weaker than in
Si-rich alloys, but it is nevertheless four times
greater in Ge»Si, , than in pure germanium.

There seems to be little direct experimental data

lOO

n Elerman (Re~. 4l)
o 9ornrnel ond Dronsfeld (Ref. 8)
~ Fitzgerald and Silverman (Ref. 4OI

lOO

B. Imperfect or impure die1ectrics I O-

Figure 5 shows 1"2& as a function of dose for neu-
tron irradiated natural quartz obtained by fitting
Eg. (5) to our data. Also shown in the figure are
data, of Bommel and Dransfeld' and of Fitzgerald
et al.~ at 90 K. The thermal conductivity used in
the calculations was read from the smooth curve
shown in the figure which is drawn through the ex-
pex imental points reported by Berman4' for natural
irradiated quartz. Our results are only qualitative
since the magnitudes of I'~ calculated from our
data have been changed arbitrarily to coincide, at
low doses, with that obtained from previous ultra-

O. I

20

Dose (lO'en/em~)

l

50
ha

FIG. 5. Thermal conductivity and ultrasonic Gruneisen
parameter of natural quartz as a function of neutron ir-
radiation dose at 90 K. Filled circles represent our data.
L and T indicate sound wave polarization.
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on the effect of composition on the anharmonicity
of Ge-Si crystals. The results of Abeles et al.~
for the y of Ge-rich alloys shown in Fig. 6 are
perhaps too indirect to accurately reflect the
changes. We have found in addition reports of the
pressure derivatives of the elastic constants and
of the third-ordex' elastic constants of some crys-
talline alloy systems" "from which one may cal-
culate an avexage elastic GP.4' The results of such
calculations are shown in Fig. 7 for4' Be-Cu and44

Cu-Zn alloys. For the first system y~ changes
much more with composition for longitudinal than
for shear polax ization even though the range of
composition reported is only a few tenths of an
atomic percent. The same behavior is observed
for shear polarization in Cu-Zn, where 30-at.%
Zn produces only a 10% change in ym. Measure
ments in Cu-Ni alloys" indicate a monotonic in-
crease in the value of the third-order elastic con-
stants from pure copper to pure nickel. For @-
phase Cu-Al alloys4' the change in the third-order
elastic constants with composition reflects itself

0.64 6Hz Keller (Ref. 16)
o (loo& L
o &Ilo& L
0 &II I & L

~ Abeles (Ref. 42)

in a monotonic decrease in the calculated high-
temperature GP of approximately 0.5% per at.%
Al. This limited evidence is in general in agree-
ment with our explanation of the discrepancies be-
tween the acoustic and thexmal properties of crys-
tals with defects in terms of a concentration-de-
pendent effective UGP. Clearly, more experi-
mental data are desirable on the effect of impuri-
ties or defects on the anharmonic properties of
dielectrics, such as thermal expansion coefficients
or third-order elastic constants.

V. CONCLUSIONS

It is shown that the high-temperature ultrasonic
attenuation in pure and impure dielectrics crystals
have results proportional to the thermal conduc-
tivity for temperatuxe gradients along the sound
wave propagation direction times an average effec-
tive ultrasonic Gruneisen parameter, which is
temperature dependent. For pure dielectrics the
magnitude of this parameter compares well with
that calculated from the elastic constants in the
anisotropic continuum model, while its tempera-
ture dependence results are qualitatively similar,
in some cases, to that of the square thermal
Gruneisen parameter. For impure dielectrics the
ultrasonic Gruneisen paxameter should also be a
function of the concentx ation of impurities or de-
fects. This variation explains the discrepancies
between the strong dependence of the thermal con-
ductivity and the relative insensitiveness of the

l.O

IOO, — 101-

&e'

Be-Cu
Silversmith et ol (Ref. 43)

O.I—

yz IO-
e O. l 0.2

Atomic 4 Cu

1 6Hz Lemonov et ol (Ref. 17}
+ &IOO&, &IIO&, &III) L, T

O,OI

Ge

i !
6 8 lO

Atomic percent

I I l

90 92 94 96 9S
Si 0 IQ 20

Atomic % Sior Zn

Cu-Zn

30

FIG. 6. Relative variation of the ultrasonic attenuation,
thermal conductivity, and Gruneisen parameters with
composition in Ge-Si crystalline alloys. L and T indicate
sound wave polarization.

FIG. 7. Relative variation of the elastic GrGneisen
parameter with composition in two crystalline alloys.
L and 7' indicate sound wave polarization.
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attenuation on the impurity concentration. Expex-
imental data related to the variation with composi-
tion of the third-order elastic constants, and of the
pressure derivatives of the second-order elastic
constants in some crystalline alloys are in agree-
ment with the present explanation of the above dis-
crepancies.
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