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The ionic conductivity is calculated for a solid in which the ions are undergoing an order-disorder phase
transition. The interacting ion system is described by a lattice gas with a weak hopping term. Exact results are
obtained in one and two dimensions by using the exact results known for the Ising model. The calculated
theoretical conductivity agrees very well with the temperature dependence found experimentally.

I. INTRODUCTION

Ionic conductivity in crystalline salts is usually
described by a dif'fusion process whereby the ion
hops from site to site. The dc ionic conductivity
is usually very well described by an Arrhenius
relation'

o= (C/r)e

where C is a constant and 6 is the activation en-
ergy. The traditional interpretation of 4 is that it
represents the height of a potential barrier over
which the ion must hop in changing sites. Several
years ago Flynn suggested that another contribu-
tion to d arose from dynamic polarization effects. 2

The ion is a small polaron, and when hopping must
carry its polarization cloud with it. The theory of
this predicts a polaron contribution to the activa-
tion energy, and estimates show that this is a
significant contribution to observed experimental
values. "'

Superionic conductors are ionic crystals which
have unusually high values of ionic conductivity,
typically because a significant fraction [e.g. ,
(40-50)%] of the iona are disordering. ' There is
usually an order-disorder phase transition, which
may be fix'st ox'dery second ordery ol gx'adual as
the temperature is increased. If the ion disorder-
ing proceeds gradually with increasing tempera-
ture, either through a second-order phase transi-
tion, or a diffuse (i.e., no sharp transition temper-
ature) disordering, then the disordering process
itself also contributes to A.5 ~ 6 This occurs because
the disordering ions intexact with each other,
which inhibits their movements. The increasing
disorder with increasing temperature apparently
genex'ates more ion arrangements wherein an ion
finds hopping agreeable.

The first extensive treatment of this was by Sato
and Kikuchi. ' The model we adopt i.s similar to
theix s. This is a lattice gas with nearest-neighbor
interactions between diffusing ions: they called
this parameter z, while we call it U. But there
are some basic differences between Sato and

Kikuchi and us in the mathematical method of solu-
tion. They introduce thermal fluctuations classi-
cally, while we introduce them quantum mechan-
ically thxough the explicit use of phonon coordi-
nates. This permits us to introduce another pa-
rameter A. , which is the coupling of the ion hop to
the surrounding lattice vibrations. The size of
this parameter determines the rate of energy
transfer between hopping ion, and the thermal
bath of phonons.

Another difference in mathematical technique is
the treatment of the electric field. They introduce
it directly into the equations to be solved, and
calculate the degree of nonequilibrium it causes,
and hence obtain the ionic conductivity. We adopt
the simpler but equivalent procedure of using the
Kubo formula. ' This assumes the conductivity is
proportional to the electric field, and calculates
the constant of proportionality using equilibrium
statistical mechanics.

The model we use is the same as that of Pardee
and Mahan. ' Here we wish to show that this mo-
del can, in several special circumstances, be
solved exactly. Because of the analogy between
the Ising model and the lattice gas, the exact solu-
tion of the Ising model in two dimensions can be
used to solve the lattice gas also. One can exactly
evaluate the current correlation function in the ap-
proximation of taking only single ion hops.

Pardee and Mahan considered a solid where dis-
ordering is a second-order phase transition. The
ionic conductivity, calculated including the effects
of lattice gas and phonons, had the following two
features: the conductivity appeared to be thermally
activated below the transition temperature, it was
continuous at the phase transition, and the activa-
tion energy changed value at the phase transition.
That is, a plot of 1n(oT) vs l/T appeared to change
slope at the phase transition. These features are
observed in experimental measurements on solid
electxolytes which have second-order phase transi-
tions: RbAg, I, at 209 K,' CaF„' and C,H,NAg, I,."
The theoretical results of Pardee and Mahan were
obtained using mean-field theory.
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Some of these results were previously obtained

by Sato and Kikuchi, ' whose path probability method
is also a form of mean-field theory. " Their factor
VWf, which is similar to our S in (5.3), had the
following features: in P-alumina it decreased with

1/T, and appeared to be thermally activated. How-

ever, the bend over at small 1/T was not due to a
second-order phase transition, which is absent
in this material; in P'-alumina, a kink was ob-
served in VWf at the temperature of a second-
order phase transition, whenever one occurred in
the theory. However, the low-temperatuxe con-
ductivity did not appear thermally activated at low

temperatures —indeed, VWf increased with in-
creasing 1/T. Thus they did not directly explain
the experimental results mentioned above.

There have also been several recent theories of
first-order phase transitions in solid eleetro-
lytes. "'" These also include discussions of the
conductivity changes which occur, which are dis-
continuous.

The mathematical model we solve is called the
la, ttice gas ""The solid is represented as a
network of sites where the ion can sit. There are
usually more sites than ions, and no more than one
ion on each site. The mathematical problem is
isomorphic to the Ising model, with spin up or
down equivalent to the ion on or off a site. Inter-
actions are permitted between ions on neighboring
sites, and we restrict our model to a repulsive
intera, ction U between nearest neighbors. Con-
ductivity can only occur if we let the ions move,
so we introduce the hopping terms with a matrix
el.ement to. This gives the Hamiltonian

H= — n n,. +t C~ C,

where 5 is the jump distance, g is the density of
hopping ions, &, = &, is a relaxation frequency, and
d is the dimensionality. This reduces to the stan-
dard expression' when (1.3) is used for to. Thus
this form of t, permits the static barrier to be
introduced in a phenomenological way.

The current operator for the Hamiltonian (1.2)
ls

j = Q 5C~~C~, (1.5)

where 5 is the hop distance and e is the chax"ge of
the ion. The conductivity is found from the Kubo
formula. First evaluate the correlation function in
the Matsubara notation

fl (((&)=&~,i (&)is(o)).

%e are interested in the isotropic systems, so
replace this by the sealer

ll(~) =(1/(f)(~ j(&) j(0)) {1.6)

rt{' \= f dte {{(vl,'"

where d is the dimensionality of the system. The
retarded function fl„(~) is obtained by letting
i(d-(d+ i5. The conductivity, which is used here
to signify the real part of the conductivity, is

where V is the volume of the system. By combin-
ing (1.5) and (1.6) we obtain

ll( ) ( Q)

n~ = C~~C, ,
(1.2)

x (T,Ct„(r)C,(v)Ct„,C,).. '

t, = ff((e x(p- 2n.,/KT). (1.3)

The activation energy 4, is interpxeted as the
static barrier over which the atom must hop in
going from site to site. In our simple model we
a,re assuming that all sites have equivalent lattice
syxnrnetry, except for disorder. This interpreta-
tion of t, arises from the result obtained for the
conductivity from single hops in an uneorrelated
system

where the summation 5 is over the nearest-neigh-
bor sites. The phase diagram of this system has
recently been investigated, mostly by mean-field
theory. '~ " However, our interest is in calculating
the ionic conductivity.

The hopping matrix element t, is taken to be
proportional to an attempt frequency &, and an ex-
ponential factor with an activation energy

(1.8)

The ionic conductivity (1.f) is obviously propor-
tional to P~. But it has a further dependence upon
to because the hopping term is still in the Hamil-
toman (1.2) which affects the time development
of the correlation function. %'e make the approxi-
mation that to may be ignored in the time develop-
ment of the correlation function, so that we evalu-
ate

x (T,C~~„(7)C~(v)Ct,(„C;),=0. '

(1.8')
Another way to state this approximation is to say
that we evaluate this cox'relation function for the
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lattice gas alone, without the hopping term. This
approximation assumes that t, is small. The
physical basis of this assumption is very clear.
We are assuming that each hop is an independent
event, which is uncorrelated with any previous
hop. This approximation automatically excludes
a description of such interesting processes as the
caterpillar mechanism, "or the free-ion model, 4

since they do correlate successive hops. We are
in the process of testing this approximation by
calculating the correlation function with t, re-
tained, and these results will be reported else-
where. However, the ultimate justification is
whether the theory explains experiments. The
ionic-conductivity curves we derive agree very
well with the experimental results. ' " This is
particularly true in the striking feature that the
conductivity is thermally activated (1.1) below
the transition temperature, but not above. It is
also striking that these features are evident in
every solid which shows a second-order ionic
order-disorder transition.

We show that the correlation function may be
solved exactly in one and two dimensions for a
lattice gas which has 50% of the sites occupied.
This relies on the exact solution to the Ising mo-
del.""These results are given in Secs. III and
IV. Some general results for all dimensions are
presented in Sec. II.

II. GENERAL PROPERTIES

We wish to evaluate the time-dependent correla-
tion function

really S= 2 spin operators. Evaluating the com-
mutators gives

e' Cj~e =exp ~U nj, 6, Cj~, (2.3a)

e' Cj„e ' =exp —TU nj,~6, Cj,6, 2.3b

so that

)ez(e(4),

Z', exp &U nj,6. —nj, 6,6, (2.4)

x CjCj,6Cj,6Cj

x (1 —n, ~)n; (2.5}

II(r}= (I/4d}NZ(et, 6I+)'M(&) (2.6)

The correlation function M(r) describes an ion
which hops from site j to j+5. The factor nj indi-
cates that the initial site j must be occupied, and
(1 —n&, 6) indicates that this final site must be
initially empty. The exponential factors are also
easy to understand. They are simply exp[r(E,
—Ez)j, where the energies in the initial and final
state are

The extra factor of exp(7'U) in front comes from
commuting the exponential factor in (2.3b) through
C&t. Define the correlation function M(r),

vIM(e)=ee e 22( eCI (ee„.— e ..))

U nj+6s y

Ey ——U Q n;46, 6, —U.

The terms in the summation vanish unless 5= —5'
and i+ 5'=j. We shall restrict our attention to
lattices in which all sites are translationally equiv-
alent. In this case the sum over i and 5 may be
replaced by NZ, where N is the number of lattice
sites and Z is the coordination number of the lat-
tice. Thus we have

It is convenient to eliminate the factor exp(r U) by
restricting the summation 5' to the Z- j. neighbors
of the initial and final state site which are not
involved in the hop —so the summation Z„n~ „
does not include the site j+ 5, etc.

The energy difference between the initial and
final site is an integral multiple of U,

E~ —E) = EU.

In fact, the integer l is restricted to have values
betweenSince the ions are large, we insist that only one or

none can occupy each lattice site. Thus two Cj
operators should anticommute on the same lattice
site, but commute at different lattice sites. They
are neither fermion nor bosons operators, but are

—(Z —1)~l~Z —1,

since this represents the maximum and minimum
change in configurational energy of a single hop

NZ et'll(e)= 4 ( 2 ( Ce(e)CZe, (e)CeeCe) (2.2), .
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Z 1

M(r) = P P,e""
S=-(Z-1)

(2 7)
the moments of the distribution. Define these
moments as

The exponent lU is the amount of energy change
during an ion hop, while P, is the probability of
having a configuration of ions which permits this
energy change. Equation (2.7) is an exact conse-
quence of (2.5). From it, the conductivity is
easily derived'

efM"'=(-1)'U ',M(r)e7f

fM"' = 4 ' n f+6s+6 sf+ 6'
0

x (1- &,,) &).

(2.12)

(2.13}

~t6 2 zl
x( )= (1 —x")( ' I' s', ((( —((«

1=1-Z
Multiple differentiation of (2.7) gives our basic
equation

(2.8) )fP M&f) (2.14)

U(- (B) = O((B),

from which it is easy to show that

P, =e+' P, .

(2.9)

(2.10)

The evaluation of the conductivity is thus reduced
to the problem of finding the 2Z- 1 coefficients
P, . For a given lattice, these coefficients are
just a function of the dimensionless parameter
PU and also the concentration of ions. Usually
one has the problem of a given lattice with a
known concentration, in which case the conductiv-
tiy calculation reduces to finding P, (PU) as single
parameter functions.

One theorem which simplifies this procedure is
that

1=1 Z

0~P + g P /[I+ ( 1)~& »BU] -M(&» (2.IS)

where Of equals one ifj =0, and zero otherwise.
The static correlation functions (2.13) are some-

times most easily evaluated in terms of the anal-
ogous spin functions. In terms of the Pauli spin
operators n&= B(1+UJ),

One needs Z of these equations, in order to provide
enough equations to determine the Z variables P,
for l ~ 0. The moments M' ' are evaluated by a
series of static correlation functions (2.13). Using
(2.10), then (2.14) may be rewritten

This reduces to Z the number of independent P,
which need to be determined. The result (2.9) is
quite general, and is proved in many references. "
If one uses states ln) and

l
m) which are exact

eigenstates of the Hamiltonian K=I —p.N then

11{v)= g e «e" « ~'(n jllm)(m lj ln}

M"'=(-',)'((I 'a, —g'c.„,„.)
'

x (1 —xq*, )(1+ xf)),

K —H - P.N- 6f o'f 6s&
f5

(2.16)

U(w) =—(1 —e"")'tl

(d

2

(2.17)

n, m

6(d+E„-E e~ n n j m

(2.11)

Now taking (d - —co gives

U(-(0}=——(1 —eB }
CO

x 6 u+E —E„e~~n j m

which can be shown to be the same as (2.11) ex-
cept for interchanging the dummy summation
variables n and m.

The Z probabilities P, may be determined from

In evaluating the partition function, the summa-
tions over possible values n, = (0,1}are replaced
by o& = (- 1, 1). The linear term in Uf in X makes
the spins act as if they were in an effective mag-
netic field. The prime on the summation over 6'
means to exclude the term for which the neighbor
is either the initial or final hopping site. Hence-
forth the Z superscript will be omitted from the

Z0'f .
The above formulas are quite general. They

apply for any concentration of ions, on any kind
of lattice structure. However, the solutions we
discuss here are restricted to a special case. This
is where the lattice sites are 50% occupied. In
this case the chemical potential is a constant, in-
dependent of temperature, and equals p. = 2ZU.
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Then the term linear in a vanishes from (2.17),
and the statistical mechanics are identical to those
for an Ising model in zero magnetic field. For any
value of concentration other than 56%, the chemi-
cal potential varies with temperature, and the
term llneax' ln 0' must be x'etained. This is equiv-
alent to adding a magnetic field to the Ising model,
which makes the statistical mechanics much more
difficult.

Our results also only apply to certain kinds of
lattice structures, namely, those which can be
5()% occupied in an orderly way, with every other
lattice site empty or occupied. Not every lattice
structure has this property —the hcp in two dimen-
sions and the fcc in three dimensions axe examples
of structures which do not have this property.

%e assume that the interaction U is repulsive,
since the ions are charged. This is equivalent
to antiferromagnetic ordering of the equivalent
Ising problem.

For the case which we are considering, static
spin correlation functions (2.16) vanish if they con-
tain an odd number of spins. ""This eliminates
half of the terms in (2.16)

M") =1+a,
M" & =2(Z —l)D,

(2.2la}

(2.21h)

M" & = &(Z —1)+ (Z —1)'D+ —,'(Z —1)(2Z -8)S, etc.

(2.2lc)

0 ~ 0 I 0
(a)

0 ~ 0 ~ 0

(2.20)

The first correction terms to these asymptotic
expansions do not depend upon the particular crys-
tal structure, and may also be worked out in gen-
eral. Denote D as any two-spin correlation func-
tion, 8 as any four-spin correlation function, then
(2.18}becomes

(2.18a)

(2.18h) (b) e g g 0
e Q

e g ~ e

~ Q

~ ~ o
~ Q

(2.18e)

0 0
(c) ~ q ~ 0

e 0
0 Q~ 0

o Q

~ Q.~ 0
0 0

In the limit of zero temperature, the lattice gas
is completely ordex'ed, as is the equivalent Ising
system. All correlation functions in (2.18) are
either plus or minus one, in such a way that all
terms add. At zex'o temperature, M'J' is just the
number of terms divided by 2',

(2.19)

When this result is inserted into (2.15), the fol-
lowing solution is obtained for P,:

2, l=Z —1,limP, =

0, L~Z —2.

This result is quite easy to understand. An
example is provided in Fig. 1(a) for the two-di-
mensional square lattice. If all the ions are or-
dered at zero temperature, then any ion jump
must go from a configuration of zero neighbors to
one with Z- 1 which is 3 in this example. This is
the only possible transition, so that all of the
oscillator strength is in this one peak

~ 0 e Q ~ 0 e

0 e '' ~ 0 0
A

(d) e 0 ~g Q

C} ~ 0 ~ 0 ~

e 0 e 0 e
A

0 e 0 ~ 0
(e) e 0 g g

0 ~ 0 08

FIG. f. Some possible hops, and ion arrangements,
for the two-dimensioral square lattice. (a} At zero
temperature, with perfect ordering, the only permitted
hops go from zero neighbors to three. (b) The only three
neighbor configurations where an ion hops from zero
initial neighbors to two final ones. (c) The three config-
urations where the ion hops from one neighbor configu-
ration to three final ones. (d) A possible defect where an
ion leaves its order ed site (dashed circl e} and goes to a
site with four neighbors (solid circle). Any hop A con-
tributes to P2. (e) After hop A has occurred, a hop B
contributes to P&.
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The sign convention on each spin correlation func-
tion is chosen so that it goes to plus one at T-O.
At low tempexature, it is easy to show that in two
and three dimensions,

48- sstf /2

S=1-8 -&8«2
(2.22a)

(2.22b}

I'~, =2-4Ze ~'~/',
lim

0 P 4(z I)e-s&&U/2
S-2

(2.23)

All correction terms, and other probabilities, faQ
off with higher multiyles of U in the exponent.
However, the next term in the expansion seems
more dependent upon the details of the structure,
beyond the simple dependence upon the coox dina-
tlon number Z, The one dimensional result ls d1f-
ferent, and is given in Sec. DI.

Next we consider the limit of high temperature,
where T-~. Here all spin correlations vanish.
Thus we obtain from (2.21),

lim M{o~ = 1,
pm&&0

limM"'=0
g m&&C&

Iim M&'& =-,'{Z-1),
gm O&&

Inn M &'& = -,'(Z - 1)(3Z- 4).
f ~4

Inserting this into (2.15) gives the solution

This may be derived by assuming a perfectly
ordered system, which gives the 1 term, and then
possible single spin flips in the evaluation of the
tx'Rce ~ Thus we get

M {0) 2 4 NU/2

M"'=2(Z-1}-8(z- I}&&

M&'& = 2(Z —1)'- 4(Z —1)(3Z —4)e ~

When these are inserted into (2.15), there is the
solution

III. ONE DIMENSION

The one-dimensional Islllg model can be solved
exactly, even with a magnetic field. So the lattice
gas conductivity may be calculated for any con-
centration of ions. This general result is a bit
complicated„and here we shall only present the
simple result for 50% concentration.

Here Z =2, so that only two probabilities I'o and

P, need to be found from (2.15),

P, +P,{I+&))=M&",

P,(1-&)) =M&'&,

(3.1a)

The moments are determined from {2.18)

M&0& = 1—(ooo,), M&» = (goo,) —(coo,).
These two spin correlations are well known, and
in any case are easily determined from standard
transfer matrix methods

(o,o,) =- tanh(-.'PfJ), (o,o,) = tanh'(-.'Pf/).

Equations (3.1}may be solved to obtain the prob-
abilities P, . The results are conveniently written
by first defining

either an ion hops from having zero neighbors to
two, or from one neighbor to three. There are
only three combinations of neighbors which permit
this in each case, and these six are shown in Figs.
1(b) and 1(c). This is exactly what is given by the
combinatorial factor for g = 4 and E = 2,

( 2Z —2 (6)
«- I+I

The additional factor of (—,'}6 enters P, because 2

is the probability that an ion does or does not oc-
cupy any site, and there are six neighboring
ions involved as neighbors, Further aspects of
these combinatorial methods apylied to lattice gas
conductivity are presented in Ref. 5.

IimP& =(-,')'r '

This result is also easy to understand. At very
high temperatures there is no order of any kind,
and RQ ion arrangements are equally probable.
Thus the determination of how many ion arrange-
ments leads to an energy change of EU is simply
a combinatoxial problem of how many different
arrangements are permitted. For example, con-
sider the probability of an energy change by 2U in
the two dimensional Ising model for the square lat-
tice Z =4. An energy change of 2U happens because

where e is the px'obability that the 8 sites ax'e oc-
cupied. At zero temperature every other site is
occupied by an ion, and these sites we call the A
sites. The empty sites are 8. As the temperature
is increased, the ions gradually disorder, thereby
pRx'tlRlly occupying the B sites~ and s ls this px'ob-
abibty.

P, =2(1-n)',

P, = 4n(I —n)',

P , = 2n'(I —n,}. .
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The conductivity is given by

N m ~„et05e(ur)= ——(1 —e 2 ) ' (1 —n)2

&& [n25(&+ U)+ 2n(1 —n}5(u}+(1 —n)'5(u —U}],

where 2N is the number of ions, and the other
factors are the conductivity per ion. This one-
dimensional model is characterized by the absence
of a phase transition, and the absence of long-
range correlations.

Pardee and Mahan derived an approximate result
using a model which neglected correlations. Their
result had the form

X X

x Q Q x

X X

(a)

X X

Q x x Q

X X

(c)

X X

x Q x Q

X X

(b)

x Q

x Q x x

X X

nz-I-j(1 n)z-1+l2Z-2

Z —1+l

(3.3a)

(3.3b)

x Q

Q x x x

X X

(e)
This is very similar to the exact one dimensional
result, where Z = 2. The difference is only in the
prefactor, where the exact result is (1 —n) in-
stead of n'+(1- n)'.

FIG. 2. Two spin-correlation functions which were
numerically evaluated. Each circle represents a spin
site.

IV. TWO DIMENSIONS

The static spin correlation functions for the two-
dimensional Ising model may be solved exactly. "'"
The Ising model has a phase transition, which
corresponds to the order-disorder transition of
the lattice gas. This two-dimensional example
is the most interesting case for which an exact
solution may be obtained for the ionic conductivity.
These spin-correlation functions may only be ob-
tained exactly in the case that there is no magnetic
field, which corresponds to the lattice gas with
half of the sites occupied. We have solved the
particular case of the square lattice.

We need to solve four equations from (2.15)
[r) =exp(- PU)],

P, +P,(1+r})+P2(1+q')+P2(1+rl') =M'",

P, (1 —ri) + 2P2(1 —ri') 3P+(1 —2r}') = M"',
(4.1)

P (1+2)) +4P, (1+r}}+9P, (1+r)') =M

P, (1 —q)+ 8P2(1 —rt2)+ 27P, (1 —r}2) =M" .
It is straightforward to solve these equations, to
obtain the P, as linear combinations of the M'&'.

These lengthy results are presented in the Appen-
dix. The M'~' are combinations of two and four
spin correlation functions. The five correlations
involving two spins are shown in Fig. 2, and the
13 correlations involving four spins are shown in

M' '=1+D
a&

M"'= 3D, +Dq+ 2D~)

M' ' = &+ 2D +Da+ 2D + 2D~+ 3D

+ —,S,+S,+S,+3S +2S„
M"'=4M"'+3$ + —'S +3$ + —'S +6$2 g ~ 2 f g

+ 3S„+—S]+ 3S + 3S + 3$) + -S

(4.2)

There remains just the problem of calculating
these spin correlation functions for each value of
temperature. For this we used the method of
Montroll, Potts, and Ward. " They give explicit
formulas for the two spin functions, and their
method is easily extended to four spin functions.
These numerical methods are described further
in the Appendix.

Figure 4 shows plots of two spin-correlation
functions as a function of the dimensionless vari-
able PU. Not all five correlations are presented,

Fig. 3. The two spin functions are denoted D,
where the subscript n =a, b, c,d, ore corresponds
to the spin arrangements of Fig. 2(a). So

a ( 00o01) i Db (o00o02) s

Dg = (v00ogy), etc.

Similarly, the four spin functions are denoted S,
with n corresponding to the arrangements in Fig.
3 (a).
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in (2.22a). In fact, this asymptotic expansion may
be carried one step further, with the result

D =1 —4q'-4k@'+O(q'),

y=4- (number of bonds).
(4.3)

A bond is defined as a line joining two spins which
are immediate neighbors. Thus D, has one bond
so &=3, while the other D have no bonds and
jp =4. This asymptotic behavior is also discern-
ible from Fig. 4, where D, approaches unity at
large pU slightly faster than the other lines, which
merge into one line as their asymptotic expan-
sions are identical to order O(q'). The vertical
line is the transition temperature at

p, U=2 In(M+ I) = 1.76

Above this temperature, each correlation behaves
differently.

Several of the four spin-correlation functions are
shown in Fig. 5. They also have similar asymp-
totic values at low temperature. They obey the
rule

FIG. 3. Four spin-correlation functions which were

evaluated. Each circle represents a spin site.
S.=1—8q'- 4}t'q'+ O(q'),

k' =8 —(number of bonds). (4 4)

O
I-
ct

K
Ko0.5

I

5.2Q.e l.6 2.4
PU

FIG. 4. Temperature dependence of the two spin
correlation functions. A curve labeled (a), (b), or (c)
corresponds to the spin arrangeznent in Figs. 2(a), 2(b),
or 2(c). The phase transition is at P, U = i.76, with the
ordered state to the right.

in order to avoid cluttering Fig. 4. The correla-
tions have nearly the same value in the ordered
state. The long- range order is sufficiently strong
that the separation of the spins is only of secondary
importance. This feature has already been noted

and putting these into (4.1) gives

P, = 2 —16rP —46r}'+O(q'),

P2 = 12' 28r+l O(q+),
P, =4@'+O(q'),

P.= O(n').

(4.5)

Thus at low temperature, all of the probabilities
have the form

-Svy&
l (4.6)

The values of A, and y, are listed in Table II. The
prefactor Ao is not known. Unfortunately it cannot

By counting bonds one can come up with the fol-
lowing values (Table I)

The probabilities P, are shown in Fig. 6. The
values for 1&0 are not shown, but are easily ob-
tained from (2.10). The curves do have the asymp-
totic behavior, at both low and high temperature,
which was described above.

The asymptotic expansion at low temperature
has been carried one step further than the general
case in Sec. II. Putting (4.3) and (4.4) into (4.2)
gives

M"' = 2 4q' -12@'+-O(q'),

M"'= 6 —24' —8403+ O(q4),

M + ' = 18—96ri —280@~+O(q~),

M" ' = 54 —336r}'—1068rP + O(q4)
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FIG. 5. Temperature dependence of some four spin-
correlation functions. A curve labeled (a), (b), or (f)
corresponds to the spin arrangement in Figs. 3(a), 3(b),
or 3(f). The phase transition is at PcU —1.76, with the
ordered state to the right.
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FIG. 6. Temperature dependence of probabilities P&
for the two-dimensional lattice gas.

even be determined from the numerical results.
Observe in {4.1) that the last three equations are
solved for P„P„and P„and then Po is obtained
from

(4.7)

At low temperature q-o, one has that P, and M"'
both go to 2, so that Po, which is exponentially
small, is obtained by subtracting two numbers of
order 2. Our numerical accuracy was about eight
significant figures, which is more than adequate
to assure the correctness of Fig. 6. But in the
asymptotic region, which we estimate to be pU&4,
P, is already 10 ' and dropping fast, so that we do
not accurately determine Po in the asymptotic
region.

These low temperature probabilities may be
understood as arising from simple defect struc-
tures. %e have previously explained P, as being

due to hops such as shown in Fig. 1(a). The prob-
ability P, caused by a Frenkel-type defect as
shown in Fig. 1(d). An ion has left its ordered
site {dotted circle) and sits elsewhere (solid
circle). This process requires Rn energy of 4U,
since the new site (solid circle) has four neighbors.
It is well known in defect theory that the equilib-
rium distribution of these defects is determined
by an activation energy which is half of this, or
2U. T1Hs explalDs why p, = 2. Any ion hop ln the
vicinity of the vacancy, such as A in Fig. 1(d),
causes an energy change of 2U, so that this hop
contributes to P2.

Figure l(e) shows an ion A hopping. Then a sub-
sequent hop 8 goes from one neighbor to two, and

TABLE II. For the two-dimensional lattice gas, the
probabilities P, at T«T, asymptotically behave as A,
exp(-pUy, ). The values A& and y, are listed. The values

y, are the new values obtained &when thermal fluctuations
are 1ncluded.

TABLE I. Values resulting from counting bonds.

Sf
sa.s~.s~
sg, sg, s~, $)
s, sc, s~, s~
s~

2
12
4
?
4

12
2
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contributes to P, . The probability of this is the
probability that A happened, which gives y, =3.
Another possible event, in Fig. 1(e), is for A to
hop back rather than B to hop. This reversing of
A contributes to P, . The probability of this hap-
pening is still the probability that A. hopped origi-
nally, which gives y, = 3.

Our objective is to calculate the dc conductivity
o(0). Our theory gives o(e) as a sum of 5 func-
tions, and it is not obvious how to deduce the dc
limit, i.e. , how to take the limit ~-0. Our view
is that this is proportional to the l =0 probability.

to ionic hopping conduction, ' and we described it
in Ref. 5. For single hop processes of the type
being considered here, one just adds to II(r) in
(2.6) and (2. I) a factor e ~"',

1II(~}= NZ——e o"' ~ P,e ""
4d

(5.1)
C'(v) = X[(No+ 1}(1—e '"o}+No(1—e'"o)],

where X is an ion-phonon coupling constant which
is derived previously, and N, = [exp(P~, tf) —1] '.
Using the standard expansion

cr~(x PPo, (4.8) e '" = exp[ —X(2No+ 1)]
where P is the e-0 limit of the prefactor (1 —e eU}/

This conclusion is based upon the simple argu-
ment that P, describes the probability that the ion
can hop without changing its configuration energy.
This is necessary since the dc electric field pro-
vides negligible energy to the hopping ion. In Sec.
V we show that the inclusion of polaron coupling
makes the conductivity calculation more compli-
cated. ' The fluctuations in the phonon system pro-
vide a source or sink of energy to the hopping ion.
The inclusion of this effect yields the result that
the dc conductivity now involves a sum over all of

Pr

x M I (X )e+~+/ '"o e '"0
m

r = l-z m=
PrI ~ Xo

xe e"o/' 5(~ —lU- m(u, ),

Xo = 2K[NO(NO+ 1)]'/

gives the conductivity

w NZ eto5 (1 —e e")
'"'=4d V a

(5.2}

V. THERMAL FLUCTUATIONS

The operators n~ and C~ describe whether an ion
sits or moves from a site R, . While in this site,
the ion may oscillate about its equilibrium posi-
tion. It also may interact with the ions in its vicin-
ity, which may also oscillate. These vibrations
are called phonons. They provide a sink or source
of energy, which is coupled to the configurational
energy of the ions. In fact the ion can undergo a
hop which changes its configurational energy by
m U, with m 10, as long as this energy is either
provided or absorbed by the phonon system.

We will assume an Einstein model for the phonon
spectrum, with constant frequency o. This is a
standard model for optical phonons. Infrared and
Raman experiments in solid electrolytes show that
the optical phonons have increasing width as the
degree of disorder increases. " ' This is true in

AgI and also the fluorites where a substantial
fraction of the ions in the solid are disordering.
It is not true in P-alumina, which has only a
small fraction (5%) of the ions involved in the dis-
order. ""We shall try to account for this width
by introducing a phenomenological damping.

The model we use to include these phonons is
standard. It evolved originally in the theory of
conduction by hopping electrons —small polarons.
Flynn pointed out the applicability of this model

where I are Bessel functions of complex argu-
ment.

We will now use the fact that the phonons have a
finite width. The summation over the discrete
numbers of phonons m, which is really a summa-
tion over the discrete phonon energy m &„ is re-
placed by a continuous integration variable y =m&o.
Iff is the argument of the summation

g f(m ~o) 5(& —m &o —I U)

1 1
dy f(y)5(& —lU- y) = —f(&—lU).

0

Thus a discrete envelope of values is replaced by
a continuous envelope of the same shape. This
smoothing process could also be attributed to the
acoustical phonons. For the dc conductivity at
&=0 we obtain

mP NZ eto&

0

(5.3)
2=1

S=exp[- x(2N, +I)] g P, IJ, / (X )e 'e~/'.

This is similar to the result obtained in Ref. 5.
Figure 7 shows plots S vs PU for 1=10. This is

not quite proportional to o~,T since there is addi-
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IO
(5.4)

X=IO

V=2'

Recall from (4.6) that each P appears thermally
activated at low temperature. Thus each term in
the summation is

-2
IO

A, x'~ r(1+II Iv/ .) (5 5)

V)
CA
4J

X
O
CO

4J
X
Ci

1
IO

IO'
0.6 I.O 2.0

Pu

where the exponential factor is

y, =y,-+k(I+II I). (5.6)

They are also shown in Table II.
The factor y, is quite sensible. For example,

consider P, . It describes the probability of hops
whereby the ion changes its configurational energy
by BU. It requires a phonon energy of 3U to do
this, and the probability of having such a contri-
bution is exp(-3PV). This is just the additional
factor which arises in (5.4) from the phonon con-
tribution. Now P, describes events whereby the
hopping ion gives up 3U of energy to the phonon
system. This it can do anytime —it does not need
a thermal fluctuation for this. This intuitively ex-
plains the factor in y, of

FIG. 7. Plot of the function S in (5.3), which is pro-
portional to rod, . X=10 is the ion-phonon coupling
parameter, and U=2~0, where (do is the attempt fre-
quency. The theoretical curve gives a dc conductivity
which is thermally activated below the second order
phase transition, and not above.

tional temperature dependence in t„as mentioned
earlier. This latter contribution would just add
another linear term to the semilog plot. For this
example we have arbitrarily chosen U= 2~p.

The quantity S in (5.3) is the lattice gas and

phonon contribution to the experimental quantity

o~, T. Below the order-disorder transition tern-
perature of P,U =1.76 the conductivity appears to
be thermally activated. At smaller values of PU
the conductivity bends over, and appears to
change its activation energy. This is exactly the
experimental behavior observed in solid electro-
lytes such as CdF„RbAg, I„and C,HgNAg, I,
which are believed to have disorder phase transi-
tions of the second type. This behavior was
shown in Ref. 5 using mean-field theory, and is
now verified by the present calculations, which
contain a more rigorous treatment of disordering
than Ref. 5.

It is interesting to examine the function S at low
temperature. Here Np goes to zero, as does Xp.
Evaluating the Bessel function for small argument
yields

k(I +II I) = 6(I) .
For / &0 it is necessary to acquire energy from
the phonons, which has a probability of e ', but
the hopping ion can always give up energy to the
phonons.

The dc ionic conductivity is now given by a
summation over all values of l. This is a result
of introducing phonons into the theory —or
thermal fluctuations. At the very lowest temper-
atures the conductivity is dominated by the term
in (5.4) with the smallest value of y, . These have
I =+3. The case I =3 is the event in Fig. 1(a),
which is just a simple disordering hop. Thus the
ionic conductivity is not dominated by special de-
fects, but by the simplest of disordering jumps.
This may be a general feature of all lattices, in
two or three dimensions. Combining (2.23) and
(5.6),

yg-i ——(Z —1), yz-2 = ~Z —2,

so that y~ 2&y~ ~ for all Z above 2—i.e., for all
but one dimension. Another feature of y,

- in Table
II is that a large number of l values have the same
value of y, and therefore contribute nearly equal-
ly at low temperature. We guess this to be a
peculiar feature of the simple quadratic lattice.

UI. DISCUSSION

Qur objective has been to calculate the dc ionic
conductivity. This has been done for a lattice gas



which has a order-disorder transition at some
temperature. Thermal fluctuations were included
in the calculation. The results, shown in Fig. 6,
predict that the conductivity is continuous through
an order-disorder transition. However, the con-
ductivity appears to change its activation energy
at the phase transition. These two features are
observed in solid electrolytes which do have a
second order phase transition of the order-dis-
order type.

The present calculation only evaluated the con-
ductivity from events where the ion made a single
hop. That is, each hop is statistically independent
from any other. The next logical step is to con-
sider double hop events, wherein two subsequent
hops are correlated. We have spent very much
time doing this, and so far have extracted very
little physics. There are two difficulties. First,
there are many different kinds of ion arrange-
ments and combinations for two jumps, so many
terms are involved. Second, the thermal fluctua-
tions are far more complicated. For example,
because the phonons can cause two ions to inter-
act at a distance, two ion hops may be correlated
even when they are spatially far apart. It is even
hard to evaluate two successive jumps of the
same ion. This is stiO being investigated.

Our final result is the conductivity as a function
of frequency. Although our interest was to apply
this to dc conductivity, one might consider its
application to ac measurements. Many recent re-
sults have been reported on the infrared and
Raman response of superionic conductors. "" To
calculate the frequency-dependent conductivity for
infrared, two contributions are needed. The one
we evaluated was the contribution from hopping
from site to site. There is also the term where
an ion just oscillates at one site. For a simple
damped oscillator this is

curve. This does not happen in the present case.
This is probably because short-range order was
neglected in the mean-field theory, while it is re-
tained in the exact theory. Short-range order is
important for determining the actual configuration
in the vicinity of a hopping ion, and hence the real
values of I', . Short-range order does not abruptly
vanish at the phase transition, but dies out slowly
with increasing temperature. Experimental curves
do not display any kinks.

Mean-field theory also did not give the correct
value for the activation energy in the low-temper-
ature regime. Pardee and Mahan found for T«T„

y, = —', Z(Z —1 —/),
I Z —I+I j

If we set 8=4 and compare this with the exact
results of Table II, it predicts some of the expo-
nents correctly and some incorrectly. Again, the
error appears to be in the neglect of short-range
order. Attempts are underway to see whether
mean-field theory can be improved to produce the
correct results.

The spin-correlation functions for the two-di-
mensional Ising model were obtained using the re-
sults of Montroll, Potts, and Ward, "which are
similar to those obtained by Green and Hurst. " A
two-spin-correlation function

(o'o Oo', ) =(1 —Z')""I' „(y '+Q),
Z = tanh(-.'PV)

is evaluated as a Pfaffian P,+ (y '+Q). If a
matrix is antisymmetric, with zero elements on
the diagonal, its determinant is a perfect square.
For example,

2 V ((u' —(oo)'+ (u'I (6.1)

A comparison af (6.1) with the hopping result
(5.2) shows that (6.1) is much larger in magnitude
in the infrared. Thus the hopping contribution may
be neglected in this region. Thus our theory is
really only of interest for dc. We also note that
several more sophisticated theories of infrared
conductivity have been recently published. ""Our
reason for presenting the simple result (6.1) was
to establish the magnitude of the onsite contribu-
tion.

The exact results presented here show up sev-
eral errors in the mean-field theory of Ref. 5.
Mean-field theory predicts that the conductivity is
continuous at the phase transition, but that the
slope is discontinuous —there is a kink in the

-Qg2

j.s

14

Qxs Qx4

Q23 Q24

Qg~Q34 —Q~SQ24 +Qj4Q23p,—Q23 0 Q34

The Pfaffian is the square root of the determinant.
The second-order Pfaffian for the above is

P2(a) ol2s34 olSu24 + 14s28 '

We define the order n=m+1 of the Pfaffian as one-
half the dimensionality of the equivalent determi-
nent.

The elements y
' and Q are both antisymmetric

matrices, which are determined as follows. The
two spins are connected by a continuous series of
bonds. An example is shown in Fig. 8(a) for the
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correlation function (o»o») . The circles repre-
sent the spins which are to be correlated, and the
x's are the intervening spins. Each circle can
only be connected by one or three bonds, while

each & by two or four bonds. Each bond can leave
a spin in one of four directions: right, left, up,
or down, denoted R, L, U, D. The degree of the
Pfaffian equals the number of bonds. Each bond

I

has two ends, and these are each labeled with the
spin location (o, P) and the direction it leaves that
spin: R, L, U, D. These 2n bond ends label the
rows and columns of the matrix Q. They may be
arranged in any order, with the proviso that the
sign of the correlation function be chosen such
that at zero temperature the up spins give +1 and
the down spine -l. Our example in Fig. 8(a) gives

R(0, 0) L(0, 1) U(0, 1) D(1, 1) R(1, 1) L(1, 2)

[0,1]sq [0,1]„~ [1,1]sn [1,1]ss [1,2]s

0 [0,0] „ [1,0] [1,0] [1,1]

0 [1,0] [1,0] „ [1,1]

0 [0,0] [0,1]
0 [0,1]„,

R(0, 0)

L(0, 1)

U(0, 1)

D(1, 1)

R(1, 1)

L(1, 2)

where only the upper diagonal values are shown.
The elements of Q are obtained by subtracting the
columns coordinates from those of the rows. Thus
the element [n —a', P —P']xr comes from row
X[a', P'] and column Y[a, P]. The evaluation of
the quantities [a —a', P —P']xr is described in Ref.
1V. They are given as explicit linear combina-
tions of quantities called F„,which in turn are
explicit combinations of elliptic integrals.

The matrix y
' has mostly zeros for elements.

Its nonzero elements are obtained by inspecting
the matrix Q and locating all its elements which
are either +[0, I]s~ or else +[1,0]cn. In each of
these elements y

' has the value v(Z ' —Z) '.
There is often more than one way to connect up

the intervening bonds. For example, Fig. 8(b)
shows an alternative to Fig. 8(a). Both give the
same numerical result although the elements in
the two Pfaffians are mostly different. We

checked for numerical mistakes by evaluating
many of these correlations by two different bond
arrangements.

The four spin-correlation functions are evalu-
ated according to the same rules. One draws in
as few bonds as possible, such that each corre-
lated spin is connected with one or three bonds,
and each intervening spin by two or four bonds.
In Figs. 3(a)-3(c) this can be accomplished with
only two bonds. In Fig. 3(d) it takes three bonds,
as shown in Fig. 8(c). The correlation function
is given by

(oooo) =(1 —Z )"P„(y '+Q),
where n is the number of bonds. The antisym-
metric matrices y

' and Q are constructed as be-
fore.

The other result we present in this Appendix is
the solution to (4.1),

(!i) (l2)

L

x—0
0—x

(oo) (oi)

(a)

!
0—x

0—0

(c)

(!2)

!
0

0—x—x
(pp) (oi) (o2)

P, = ~(1 —q) '[6M ' (I+q+6ri'+q +q )

—5M&'&(I -q')(I+q)

+M~"(I -q)'(I +3@+@')],

P, = g (1 —q) '[-3M'' l (1 +q )' + 4M '' l (1 —q')

—Mi'&(I +r))(1 —q)'],

P, = 2(1 —q) '[2M' (1+4q+q') —3Mi i(l —q')

+M&"(1 -q)'] .
FIG. 8. Some bond arrangements in evaluating spin-

corr elation functions.
These results may be used to obtain P, from
(4.7).
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