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Exact microscopic theory of surface contributions to the reflectivity of a jellium solid*
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Exact microscopic formulas are derived for the surface optical properties of a jellium solid. The comparison of
these formulas to those derived classically by McIntyre and Aspnes shows that for s-polarized light, the
parametrization of surface-reflectance data using the classical theory is a valid procedure, but that for p-
polarized light, because short-wavelength fields are induced in the surface region, the classical assumption of
local dielectric response is invalid, and thus the classical prescription for parametrizing surface reflectance data
is unphysical.

I. INTRODUCTION

Until the present, little theoretical attention ha, s
been given to the optical experiments that can be
used as probes of surface electronic structure,
namely, surface reflection spectroscopy' and el-
lipsometry. ' Consequently, the data from these
experiments (changes in reflectivities for s- and
P-polarized light as a function of frequency and
impurity adsorption) are generally analyzed in
terxns of a simple classical model, as propounded,
e.g. , by Mclntyre and Aspnes' (MA). The MA

model, which is a natural generalization of the
picture ordinarily used in the analysis of bulk
optical data, assumes that a sample may be repre-
sented as a semi-infinite bulk dielectric, having
a sharp surface and a local dielectric constant e'(&u),

covered by a thin selvedge layer of uniform thick-
ness d and of local dielectric constant e'(&u) (see
Fig. 1). The purpose of the present paper is to
analyze the validity of this model from a micro-
scopic point of view, and thus to decide how physi-
cal a parametrization of surface optical data it
provides. The conclusions reached are that in the
case of s-polarized light, for which the electro-
magnetic field varies slowly in the surface region,
the MA model yields quite a reasonable approxima-
tion to the microscopic theory. However in the P-
polarized case, because the field varies sharply
across the surface, the use of a local surface di-
electric function is invalid, and the MA model is
therefore generally in poor correspondence with
the microscopic results.

In calculating bulk optical properties, the de-
scription of a sample as a dielectric medium with
a sharp surface and having a local dielectric con-
stant is mainly an approximation insofar as the
typically rather small effects of atomic discrete-
ness (or "local-field effects"4) are neglected. That
is, by virtue of the fact that light wavelengths are
very long compared to microscopic distances, the

details of surface structure as well as the nonlo-
cality of the sample's dielectric function can gen-
erally be ignored. ' Thus apart from local-field
effects, the classical model for bulk optical pro-
perties is in fact microscopically correct. '

The question addressed in the present paper is
the extent to which the same is true for the MA mod-
el's description of the surface contributions to
optical ref lectivity. That is, ignoring local-field
effects, the correspondence is explored between
the predictions of the MA model and those of the
most-general nonlocal microscopic jellium mod-
el, for surface optical properties. The main re-
sults obtained are the following:

(i) As noted above, for s-polarized light, the
MA model provides a quite reasonable parametri-
zation of surface-reflectance data. The reason for
the good correspondence between the MA model
and the microscopic jellium picture is that for s-
polarized light, the electric field is purely tangen-
tial to the surface, and therefore is slowly varying
everywhere in space, even across the surface re-
gion. This slow variation can be understood most
simply as a consequence of the classical matching
condition for the tangential electric field E„at a
dielectric interface, namely,

E„(outside) = E„(inside), (1.1)

which in the microscopic case translates into the
statement that E„ is essentially constant in the
surface region. ' Because E(r) is slowly varying,
for s-polarized light, the nonlocal relation

( )-} (, ') R( ')d'r'

between the current J(r) and the electric field E(r')
[via the nonlocal conductivity tensor, a(r, r')] re-
duces, to a very good approximation, ' to the local
relation

J(r) =(f (, ')d' ') E(r).

14 762



14 EXACT MICROSCOPIC THEORY OF SURFACE. . . 763

[ L. O

gb

'

gb

0

o(z)

(ii) For p-polarized light matters are (Iuite dif-
ferent. In this case the electric field has a com-
ponent normal to the surface, which, as one would

expect from the classical matching conditions,
undergoes rapid spatial variation in the surface
region, even for a long-wavelength incident beam.

Because E' varies as rapidly as o(r, r') does in
the surface region, one may not approximate the
nonlocal relation between J(r) and E(r'), E(I. (1.2),
by the local relation, Etl. (1.3). Thus it is hard to.
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FIG. 1. Schematic illustration of MA model (Ref. 3)
for surface contributions to optical ref lectivity. The
conductivity and the dielectric constant jump to their
"selvedge" values at z= —d and to their bulk values at
z=p.
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as the local conductivity tensor, one sees that the
only serious ayproximation in the MA model, for
s-yolarized light, is the replacement of smoothly
varying o„,(r) by the piecewise constant model
conductivity (cf. Fig. 1)

0, z&-d,
o„„(r)=1 o', —d&z&0,

g', 0&z

(where z is the coordinate normal to the surface).
As a consequence, while the MA model formula for
the surface correction to (R,', ', the classical reflec-
tivity for s-polarized light, is
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n6I'"/dt "= 4q,dim(o, /o „), (1.6)
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where

(1 6)

o *(z) =- J" d'r' o' (r, r') (1.9)

Io"*(r,r') means the x-x component of o(r, r').
o *(z) is independent of x and y by virtue of the
assumption of two-dimensional translational in-
variance, i.e., of a jelluim solid. ]

q, =2wcos6, /)(

(where )( and 8,. are, respectively, the wavelength
and the angle of incidence of the light), the micro-
scopic theory yields the very similar exact for-
mula

z(AI

FIG. 2. Spatial behavior of the normal. component of
the vector potential A (z) [note: E (z) =—(im/c)A (z)] in

the neighborhood of a jell. ium-vacuum interface (taken
from Ref. 6, Fig. 4). The curves shown were calculated
using the random phase approximation for electron gas
radius rs=2 and for Ace=13.125. The jellium surface
here corresponds to the singLe-electron potential barrier
V(z) =-Vo/(1+exp-[z/a+(z/5a)3]}, with V0=16.4 eV and
a=0.66 A. A'(z —) has been normalized to 1. Note that
A'(z) undergoes rapid phase as well as magnitude osci)la-
tions in the surface region. It is not clear how best to
choose an MA model dielectric function to calculate a
classical A (z) for comparison. In the upper panel I
show the classical form of ReA'(z) assuming no selvedge
layer (d = 0) and & (~) equal to the bulk jellium value for
rs=2 and A~=13.125 eV (dashed curve). For the same
classical model ImA~(z) is identically zero.
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see why a model based on a local dielectric con-
stant such as e'(~) should give a useful description
of the surface response to P-polarized light.

In addition, as is illustrated in Fig. 2, the mi-
croscopic calculation of E' leads to a spatial de-
pendence which is very different from the classi-
cally predicted step- function behavior. It is there-

fore doubly difficult to see why values of z'((d) and

d, chosen to give agreement between the MA model
and ref lectivity data for P-polarized light, should
have any physical content.

In the microscopic theory, the formula for the
surface correction to S,'~l', the classical reflecti-
vity for P-polarized light, is found to be

„, =qq, r|o qqq —q,*, „', „,~ Iq* q'q'(o, tq)] „, q(*) Iq,', q,*q'(o, tq))I. ((.(o)
cl dz E &0, +I —1E&

In Eq. (1.10), cr(0, &u) is the bulk transverse di-
electric constant at wave-vector zero and fre-
quency cu, 'q„and q, are, respectively, the wave
vectors along and normal to the surface for the
incident beam, and q,' is the normal component of
the wave vector of the refracted beam inside the
sample. Finally, "~"means a value of z deep in-
side the solid. ' [o'(z) is defined in Eq. (1.9).j

Equation (1.10) does reduce to the MA formula

e —e q f —q(((1 +t /f )
N(P) =40 d™

1 — 2 2
cl Q)( —giE

(1.11)

where

f '—:1 + (47Ti/u))0'' (1.12)

when one assumes a conductivity tensor of the
form of Eq. (1.5) (see Appendix); and for normal
incidence (q„=0, q, =q), where s and p polariza-
tion are indistinguishable, Eqs. (1.10) and (1.11)
do reduce respectively to Eqs. (1.8) and (1.6}.
However, in general there is no obvious relation
between the formulas of Eqs. (1.10) and (1.11),
analogous to that between Eqs. (1.6) and (1.8) for
the s-polarized case.

In order to interpret Eq. (1.10) it should be noted
that by Poisson's equation, the quantity dE'/dz is
essentially" proportional to the surface charge in-
duced as the P-polarized light is refracted. Thus
Eq. (1.10) shows that &6V~'/(it,'f) is a measure of the
dipole moment of the induced surface charge.

The remainder of this art;icle is organized as
follows: In Sec. II, the results discussed above

are derived from first principles, i.e. , the mi-
croscopic formulas for &6I' '/(it' ' and nS"'/(it"'
are obtained starting from Maxwell's wave equa-
tion, using the most general, nonlocal jellium con-
ductivity tensor. In Sec. III these formulas are
tabulated together with their MA model counter-
parts. Finally, in an Appendix it is shown how Eq.
(1.10) reduces to the MA result for P-polarized
light, assuming a conductivity tensor of the form
of Eq. (1.5).

II. OPTICAL PROPERTIES OF JELLIUM SURFACE

In this section, I derive exact formulas for the
surface contributions to the reQectivity of a Qat-
surfaced jellium solid for both s- and p-polarized
incident light. The formulas reveal that for P-
polarized light, the surface contribution to the
ref lectivity is a measure of the dipole moment
of the surface charge induced by the incident beam,
as the solid tries to screen out the light. For s-
polarized light the surface contribution to the re-
flectivity measures the distance over which the
conductivity tensor of the solid heals to its bulk
form.

The restriction to a flat "jellium" solid, of
course, amounts to the assumption that the solid's
conductivity tensor o(r, r; (d) is of the two-dimen-
sionally translation-invariant form o(p —p';z, z';(d},
where p —= (x, y), and the surface normal points in
the z direction. With this assumption, the wave
vector of the electromagnetic field along the sur-
face, q„, is a good quantum number, and the Max-
well wave equation for the vector potential A& „(z)
assumes the form'

, —q'„+ — A&„„(z)— u,—+iq„u, —+iq„A-, (z) = —, dz'If; „(z,z') A~, ( '), (2. l)

or equivalently,

A,- „(z)= dz' '
~

dz" o& „(z',z") ~
A& „(z")— u, , +iq„u, , +iq() ~ A., „(z') .

z L

(2.2)
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In writing Eqs. (2.1) and (2.2), the gauge has been
chosen in which the scalar potential is identically
zero. The unit vector u, points in the plus-z di-
rection. The quantity q, is defined by

q, -=[(~/c)'- ~q„~']"'. (2.3)

And finally, o& (z, z') is the two-dimensional
lit

Fourier transform of ly(p —p';z, z';&@).
In the derivation which follows, the jellium sur-

face is assumed to lie in the neighborhood of the
plane z =0, with the bulk of the solid occupying
the half-space z & 0. Thus for z or z' smaller than

0
minus a few A, o. (z, z') is essentially zero.

~ll ~ ~
(Since c; „is a short-ranged function of ~z —z'~

one need only specify where z or z' lies. ) On the
other hand, for z or z' greater than a few A,

,o'; „(z,z') has healed to its bulk jellium form,
l.e. ,

=, ( '&, = (*- ')= ' """""'(( * ~ *&"* I + ""'-; ""' ' '*'(( *+ *)"* I).
dAL, - ( jF )( /8)

q», (s g, g') a cess)I~()„.
Il

I
J.

(2.4)

(This form is fixed by rotational invariance. ")
The reason one can derive exact formulas for

the surface contributions to the ref lectivity of a
jellium solid is that a long-wavelength expansion
for A& „(z) can be extracted from Eq. (2.2) u)ith-
out one's actually having to solve the equation. As
they must, the zeroth-order terms in the expan-
sion yield the classical formulas for the reflecti-
vity of a flat, semi-infinite solid. The first-or-
der terms, however, are more interesting; they
describe the surface contributions to the reflecti-
vity, and they do so exactly.

The method used to construct the long-wavelength
expansion of Eq. (2.2} is as follows. The z' inte-
gral in the equation is divided into two integrals,

over the domains (—~, Z) and (Z, ~), where Z is
chosen to lie sufficiently far into the bulk (-a few

A) that for z or z') Z, cr;, „(z,z') has healed to its
bulk form [cf. Eq. (2.4)]. The integral over (Z, ~)
can then be carried out trivially, because A; „(z)
must behave as a ylane wave in the isotroyic me-
dium which occuyies the region z ~ Z, and the re-
sult has a straightforward long-wavelength expan-
sion. At the same time, the integral over (- ~, Z)
can be directly expanded in powers of q, and q —= ~/c,
because (for light such that h(() ( 200 eV) these
quantities are much smaller than the inverse sur-
face thickness.

Thus one begins by defining the quantities

A,- „(z;Z) and AP „(z;Z) by

A- „(z;Z):— dz' ', tdz" o. „(z',z ) A; „(z ) — u, , +iq„u, , +iq ~ A; (z')
& g L

(2.5)

A-,
" .(z;Z)=A, .(z) A,.' „(z;Z). (2.6)

The expression for A (z; Z) may be immediately
simplified by using the trigonometric identity

sinq, (z —z') —= sinq, (z —Z}cosq, (Z —z')

+ cosq, (z —Z) sinq, (Z z'). (2.7)

Combining Eqs. (2.2}, (2.5), and (2.7), one finds
that

As„.(*;z)=(s ss,(*-z)

determines the behavior of A; „(z) with z-Z by
substituting into Eq. (2.2) the ansatz" "

(2.9}

(q,"—q', )T; „=q'(4zi/&u)g("(q'; &u) T-

+ [(q'/q")(4zi/(u }o"'(q'; (u) + 1]

x q (q T&''), (2.10)

One easily finds, '"using Eq. (2.4), that Eq. (2.9)
does indeed solve Eq. (2.2) provided that T; and

q,' satisfy the secular equation

sinq, (z —Z} d

q, dZ (2 9)
wherein

q' =- (q„,q', ) (2.11)
an expression which only involves A& „(z) evalua-
ted in the bulk region of the solid.

To complete the evaluation of A., „(z;Z), one q—:(()/c. (2.12)
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Equation (2.10) is solved by taking the dot product
of both sides with q', yielding the equation

An ( Z) t d ~ slIlq~(z —z )

g

(q' T- )E(~'(q'(u) =0,

where z'~'(q';~), defined by

(2.13) tSI + Qg i + sq(( ug i + sq((dz ' dz'

e' '(q';to) —= 1+ (4vi/&o)[cr"'(q';~)+o"'(q';(d)),

(2.14)

is the longitudinal bulk dielectric constant. As-
suming that

&' '(q'(o) =0 (2. 15)

(2.16)

has no solution at the frequency &u,
"Eq. (2.13)

simply requires that

q' ~ T~ „—-0
or that A& „(z) be transverse for z 2 Z. Substitut-
ing Eq. (2.16) back into Eq. (2.10) one finds an ad-
ditional condition, namely,

(2.23)

In order to proceed, it is convenient to specify
at this point whether one is looking at the case of
s- or P-polarized light, Let us consider the case
of s-polarized light first, and to be specific, let
us assume the incident beam to have its electric
vector in the x direction. Then q„will necessarily
point in the y direction, and from Eq. (2.23) one
obtains the expansion through second order

z
A;"'„(z;Z) = q' dz' (z —z')

q,"= q', + q'[e r(q'; (u) 1], — (2.17) 4gi

z r(q'; (u) =-1+ (4n i/(o)a'"(q'; &u). (2.18)

Adding q'„ to both sides of Eq. (2.17) one sees that
this equation is equivalent to the familiar formula

q"/e "(q'; (d) =q'. (2.19)

One may now complete the calculation of
A; „(z;Z). According to Eq. (2.17), q,' will be a
small quantity if q, and q are. Therefore, since
Z= a few A, one has from Eq. (2.9) that

where z r(q'; &u), the transverse bulk dielectric con-
stant, is defined by (2.24)

Note that terms involving g&" „and 0&' „do not ap-
pear in Eq. (2.24); this fact is a consequence of
rotational invariance in the x-y plane, which im-
plies that these off-diagonal components of the
conductivity tensor are of O(q, q„) and O(q, ), re-
spectively.

In the case of P-polarized light, it turns out that
one only needs to know the value of A;" (z; Z)
through first order in the small wave vectors.
Thus for P-polarized light one writes

A; „(z= Z) = Tz „(1+iq,'z —z q,"z'+ ~ . ~ ) . (2.20)

Thus for z within a few A of the surface, expanding
the trigonometric functions in Eq. (2.8) and sub-
stituting from Eq. (2.20), one finds the formula + ~ ~ ~ (2.25)

~ dz'o- „(z',z")A- „(z')

A-,
' „(z;Z)={I+-,'(q,"—q', )Z'+[iq', Z(q,"—q,'))z

——,'q', z'+O(q')/T~ „. (2.21)

u —+ iq„

(2.22)

which follows directly from Eq. (2.1), A&" „(z;Z)
may be written in the form

It remains to find a similar formula for~It
A; „(z;Z). Using the identity(charge conservation)

Z
A~&'"„(z;Z) = i q„dz' (z —z')

g
dz'

dze &pc (zI ze)Ag4@i

+ ~ ~ ~ (2.26)

[In writing Eq. (2.26), rotation invariance in the
x-y plane has again been used. )

Both of these equations may be written in simp-
ler forms. Specifically, using Eq. (2.22), Eq.
(2.26) may be rewritten

Z

A,',
" (z; Z) = iq„dz' (z —z') —A „(z'),

(2.27)
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while integrating by parts, E(I. (2.25) assumes the form

Ag'„(ziZ) = dz' [0,", „(Z,z") —e'"„„(, )]d(t"; (z") + IT(„dz' dz If;„„(z',z") ~
A& „(z").

(Summation 011 the repeated 111dex p= st yt z, ls implied. )
At this point one collects results. Combining E(ls. (2.21), (2.24), (2.2'I), and (2.28), via E(I. (2.26), one

has for s-polarized light with the electric vector in the x direction, the equation

s
dq (z)= tq „((+'q'zz (q,"-q')(-,'X' —Zz)--,'q'z'+q* dz'(*-z') -- q', „(z')+O(q')),

where (I "(z') is defined by

(2.29)

(zt) — «ttoxx (zt ztl)
~n» td (2.30)

For P-polarized light, one has the yaix" of equations

d[ ( )=z( ( ()q+zt'q+ f dz"[z" (X z") —tz'" (z z')[d) (z")

(2.31)

~zez s
A;" „( )z=( Ii+,'q)zT4„+i(l„dz'(z-z'), A4x „(z'). (2.32)

It is by studying the asymytotic properties of these
equations as z is taken out into the vacuum, that
one dex'1ves expressions fox' the x"eflectlvity of the
)ellium solid.

Consider first the case of s-polarized light. For
z sufficiently far into the vacuum that g „(z,z')
=0, Ag (z) must [see, e.g. , Eq. (2.1V) be a lin-
ear combination of plane waves tx'aveling towaxd
and away from the surface. That is, A& „(z) is of
the form

A (z- ~) =A' e"d'+8- e "i' (2.33)
Cil» & 4(i» ft)I

where, of course, Ao~ „and 8- „can be identified
ll»

as the vector magnitudes of the incident and reflec-
ted waves, respectively. In the long-wavelength
limit, fox' z in the vacuum but small in magnitude
compared to q, ', E(I. (2.33) has the series expan-
sion

A,- .(z)={AD „+II, „)[I-xq',z'+0(q', )]
+ (A,'- —8& „)[iq,z+0(q,')]. (2.34)

The expression fox the reflectivity, for s-polarized
light is obtained by comyaring the x comyonent of
E(I. (2.34) with E(I. {2.29) term by term, according
to powers of s.'~ Thus one obtains the microscopi-
cally accurate matching conditions

d4'-* +R =T" [1——,'(q"- q')n'+" ] (2.35)
+it» ~ %i» ~ &n» ~

&P, -It „, =Tg„, [q'/q. +{I/iq,)(q,"-q',)f)],

(2.36)

S (Ix Z')z'= dz'z' " -q(*'))o,",„( )
(2.37)

s ox zt
d =

I dz' ~ t(z'))
rr".,„(") (2.38)

[e(z) Is the ordinary step function. ] In deriving
E(ls. (2.35)-(2.38), one makes use of E(I. (2.17)
and of the fact" that

(7; (z -~) -=(7,' „(~)= ((d/4vi)[e r(0, cv) —1].

(2.39)

From E(Is. (2.35) and (2.36) one can immediately
solve fol' tile 1'eflectlvItyt 6tI ~ fol' 8-polarlRed
light. One obtains the result, to first order in q,
and g~~

6t"'=i@* /A& P=6t,",'[I 4q, imP 0(q')],

(2.40)

in which the classical reflectivity S';, ' is given by

dt( ) -=(1—q,'/q, )/(1+ q,'/q, ). (2.41)

Substltutlng E(I. (2.38) lllto E(I. (2.40) slid Ilo'tlllg
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that the value of Z in Eq. (2.38} can be set equal
to ~ without affecting the result, one obtains the
final formula for 8"'

6P=6I,(!d) 1+4q, dz'Im
~ d)O

(2.42)

Notice that the O(q, ) correction in Eq. (2.42) mea-
sures the width of the region over which F", „(z)
rises from zero to its bulk value. Thus this cor-
rection is a surface property. Also notice that in
limit of the MA model, ' commonly used in the in-
terpretation of surface reflectance measurements,
Eq. (2.42) yields the expected result. The MA
model assumes a semi-infinite solid occupying the
half-space z ~ 0 and having a local dielectric con-
stant ~' (6 for "bulk" ), covered by a selvedge layer
of thickness d, having local dielectric constant q'
[cf., Eq. (1.5)]. In this case, then, Eq. (2.42)
yields the formula

Let us now turn to the case of p-polarized light.
It is again true, for z in the vacuum but small in
magnitude compared to q„ that A- „(z) is of the
form given in Eq. (2.34). In order to obtain an ex-
pression for the reflectivity in this case, however,
it is convenient to match Eq. (2.34) to Eqs. (2.31)
and (2.32)." Thus one must learn how to extract
the z- ~ behavior of A,. „(z) from these latter
equations.

To begin, note that according to Eq (2..32),
A~ (z) is constant to seroth order in q„and q,'.
Thus, since by rotational invariance in x-y planes,
(T- „(z,z'), oP „(z,z'), and o&~ „(z,z')are, respec-
tively, of O(q„I, O(q,",), and O(q"„q,', ), and since by
two-dimensional translation invariance

dz'z;, .(z, z')= f d*'-,'", ,(z, z') O(Z'„),

(2.44)

6I~ = 6t(!d)(I + 4q,d Im[(e, —I)/(a, —1]j,
which is the MA result. '

(2.43)
»I th«erms tn Eq. (2.31) involving off-diagonal
components of 7(T;, „(z,z') are negligible, and Eq.
(2.31) may be rewritten

A.-' (z) = (1+iq'z)T '+ -dz" [(y*' (Z z ) —o-" (z z')]A.' (z") +i q ~ T-" dz' (7'(z').

(2.45)

This equation may be reduced further by taking advantage of Eqs. (2.9) and (2.4) for the behavior of
A;*„„(z")and oa'„„(z=Z, z"). Using these equations the term involving o,', (Z, z") in Eq. (2.45) can be
evaluated, leading to the result

d4 „(z)=[& (0, (d)+iq,'z]T.; dz" o-,"„(z,z )d4& „(z")
S

+[a*(0,(u)- IJiq,'ZT „„+iq„T~ „J dz' (z'(z').
Z

(2.46)

Finally, using Eqs. (2.16) and (2.39), the last two
terms of Eq. (2.46) can be combined, to equal

("(o.) (I~;z!,, f ~(z(;, .)**). *,
'

(2.47)

Thus as z-- ~, Eq. (2.46) yields the expression
for Af „(z),

- T(, „(& (0, &u} —iq,'( [ez+(0, &o) —I]P)+O(qg),
(2.48)

where P is defined in Eq. (2.38).
Equation (2.48) may be compared with Eq. (2.34)

to yield the matching equations

=T;,.["(0. )- q,'6["(o, )-1]].O(q;)
(2.49)

AP —R „=(I/iq, )TZ „[iq,'+O(q'}]. (2.50)

Of these equations, Eq. (2.49) will be useful in de-
termining the surface contribution to the reflecti-
vity for P-polarized light, but Eq. (2.50) will not,
because it does not reveal what are the first-order
corrections to the classical matching condition for
Ao&' „-R, „. In order to obtain a second useful
matching condition, then, one returns to Eq. (2.32},
which implies that, as z

A~ „(z-—"~")-(I+iq,'z)T-", „
+ sett zT 1 —6 0~ QP

moo

(2.51)

the derivation of this equation depending on the fact



EXACT MICROSCOPIC THEORY OF SURFACE. . . V6S

that to zeroth order in the small wave vectors,
according to Eq. (2.40),

T' Z '
(z)-

III~ ~
z (0 (u)Tf e

z- —"~" (2.52)

q))' Aa +q+a„, =0

~
II Oe

qII R~ „-q, Rg' „=0,
(2.53)

and that satisfied by T;„„,Eq. (2.9). Using these
equations, the comparison of Eqs. (2.34) and (2.51)
yields the matching condition

To obtain a useful matching condition from Eq.
(2.51) one makes use of the transverseness con-
ditions necessarily satisfied by A. and R& „, viz. ,CII ~ 4d ~

SlqI I

i i ao
dz'

(2.54)

in which 8„(z) is the zeroth-order solution to Eq.
(2.46), normalized to 1 at z-~. That is, tt„(z)
satisfies the equation"

e, (*)=e'(D, ~)- ' f e,",(z, e')e;, (e'). (2.55)

Equations (2.54) and (2.49) may now be combined
to give an expression for the ref lectivity of a jel-
lium solid for p-polarized light I, '~' to first order
in the small wave vectors. One finds that"

z (0, (o) ( (, de„q, p[z (0, (o) —1]
(2.56)

where 8,'~' is the classical ref lectivity for p-polar-
ized light, given by

(~) 1 —q,'/q, e r(0, (u)
ci —

1+q,'/q zr(0 (L))
' (2.57)

z 8 (z}—d[1 —zr(0, e)].~ OO

(2.58)

At the same time, using Eq. (2.38) (with Z taken
to ~), one has that

[Equation (2.56) is identical to Eq. (1.10), since
E'(z) = (Ao/c}A'(z) in the gauge for which the sca-
lar potential is identically zero. ]

Two straightforward checks of Eq. (2.56) can be
carried out: (i) One can show that the result is in-
dependent of the choice of origin of z, and (ii) one
can verify that Eq. (2.56) agrees with the classical
solution of the MA model. This second check is
sketched in the Appendix; the first is accomplished
in what follows.

Suppose that the origin of z is shifted so that z
-z+d. Then, using Eq. (2.52), one finds that

cf
z 8 (z)- z 8 (z+d)

~ «eo Z «oo

while

q(( —q"/z (0, &u)

={q' —[z (0, ~)+1]q',}/z'(0, &u). (2.62)

Substituting these equations into Eq. (2.60) shows
that the latter expression equals

dim(1) = 0, (2.63)

or in other words that Eq. (2.56) for (RO) is in-
dependent of the choice of origin, as it should be.

In conclusion, it is worth remarking on the
physical significance of Eq. (2.56}. According
to Poisson's equation, the induced charge ex-
cited when a P-polarized light beam strikes a
surface 5n„(z) is given by

z (0, +)
q,"—q', c&' (0, u&)

~ [ o, -]
(2.60)

However, according to Eq. (2.17),

qe. - q e. ~ (0e (e))

= [&r(0, ~) —1]{q'—[ er(0, ~) —1]q', }, (2.61)

—e( \), e. (2.59)

Z(d
5n~(z} = — iq((+u, ' A; (z),

or in the limit q~}-0,

(2.64)

(2.65)
Thus the shift in origin causes a change of the
surface term in Eq. (2.56) proportional to Thus, according to Eq. (2.56) the surface con-
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tribution to 6I' ~ measures the quantity

6n„(z)
Z Z ~z (2.66)

about an origin fixed by the value of P. That is,
the surface correction to 8 ' measures the dipole
moment of the induced charge-density fluctuation.

III. RECAPITULATION AND DISCUSSION OF RESULTS

For convenience I tabulate here (in Table I) the
microscopic and classical results for the surface
contributions to the ref lectivity of a jellium solid,
for s- and P-polarized light.

For s-polarized light one sees in Table I that
the microscopic and classical formulas for &(R/

R„are closely similar. However, the microscopic
formula for P-polarized light explicitly depends
on the spatial behavior of A g, (z) in the surface
region and only reduces to the classical formula
if A z g

(z ) is of th e c 1as s ica 1 s tep fu nction for m
of Eq. (A5) (see Appendix). Thus the parametriza-
tion of data using the classical formula for P-
polarized l.ight appears at the very best to be a
procedure requiring considerable caution, one for
which an independent experimental test would be
highly desirable. Such a test might involve, for
example, a separate determination of the classical
surface optical constants of an optically isotropic
adlayer (such as an adlayer of inert gas atoms),
using first s- and then P-polarized light. " Ac-
cording to the microscopic formulas devel. oped
here, one would expect that the value determined
for e'(~) will depend on which polarization was
used, a result which would clearly contradict the
idea underlying the cl.assical picture.

Regarding prospects for further theoretical
work, it should be noted that the jellium model
is itself, of course, not an exact model of a real
solid. Thus it seems reasonable to ask, for ex-
ample, whether the existence of local-field effects
in a real. crystal might not invalidate the classical

picture even for s-polarized light. A complete
answer to this question awaits the extension of
surface reflectance theory to the crystal. line case.
However, it does seem reasonable to expect that
surface local-field effects will not be significantly
stronger in determining surface optical properties
than bulk local-field effects are' in the determina-
tion of bulk optical properties.
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0, z&-d,

o(r, r'; &u) =16(r —r') v', -d& z &0,

gb

(Al)

then Eq. (2.56) reduces to MA's formula for the
surface contribution to the reflectivity for p-
polarized light, '

g(p) = —4
cl

Z —Iqiil'(e +e )/e'e
q' - lqiil'(1+e )/e

(A2)

where

e' =1+(4wz/ur)u" . (As)

The derivation is straightforward. Substituting
Eq. (Al) into Eq. (2.38) immediately yields the
expression for P,

APPENDIX

In this appendix I sketch the derivation of the
statement that if the conductivity tensor is taken to
be of the form assumed by McIntyre and Aspnes'
(MA), namely,

TABLE I. Formulas for 4S'~ /S ~ from the microscopic theory and from the NA model (Ref. 3).cl

Polar ization

N icroscopic

NA model

AS
Scl

4q~ dz Im
o "(z)

o "(z) = d r' cr""(r,r', cu)

4q,d Im

&"(~)= ~+ ~"(~)4@i
CO

~T(p cu) ~z(z)
dZ qll ET(p ~) f ~z(oo)

+ [q~(
—q e (p, u)) J —8(Z)2 2 T 0 (Z)

a "(~)

e'(Cg) —e b(CO)™
I g &b(~)

q2 6 b(~) ff + ~ b(M)/6 (co)

q()
—q~ e (cu)

kr~~-q~& (p, ~)l
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+a &a0=~d= ao e —1
(A4)

Substituting Eq. (Al) into Eq. (2.55), yields the
behavior of 8 (z),'

8 (z) = so/z', -d& z &0,

1, ~&p

(A5)

(which one could have guessed immediately from

the classical matching condition which states
that eA' is continuous across a dielectric inter-
face}. From Eq. (A5) one finds that

J(dz d = d-k —,—1)
a.(z)

dz
(A6)

Equations (A4} and (A6) may now be substituted
into Eq. (2.56), leading, after some algebraic
manipulation, precisely to the MA result, Eq.
(A2}.
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