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We have performed electron-hole drop (EHD) luminescence threshold experiments in conditions where an
optical hysteresis can be observed. The characteristics| of the thresholds are investigated and support the idea of
supersaturation to create EHD. A simple model of the growth time of embryos shows that this requirement
can explain the discrepancy between the spectroscopic and thermodynamic values of the exciton work
function. From our calculations we deduce for the EHD surface energy a value in range of 1.8-2.6 erg/m’.

I. INTRODUCTION

The condensation of gaseous free excitons (FE)
into electron-hole drops' (EHD) is characterized
by a threshold which reveals the occurrence of a
phase transition and has been studied by various
techniques: cyclotron resonance,? luminescence,
and p-»n junction experiments, *** An interpreta-
tion of the temperature dependence of the thresh-
old obtained above 2 K in these experiments leads
to a thermodynamic value of the FE work function
(¢4y ~17-18 K), which differs from the spectro-
scopic value® (¢, ~23K). This intriguing discrep-
ancy has motivated further investigations,

Here we report luminescence threshold mea-
surements between 4, 2 and 1,4 K, In particular
experimental conditions an optical hysteresis ef-
fect first reported by Lo et al.,* can be observed, ®
This strongly suggests that, by analogy with water-
vapor condensation, for example, supersatura-
tion is needed to develop EHD at a sufficient rate,
This necessity has also been demonstrated by Sil-
ver.” We will show that calculations of the growth
time of EHD embryos can account for the discrep-
ancy between ¢, and ¢q-® Using a simple model,
we deduce from our results that the EHD sur-
face energy o is with our choice of parameters
in the range 1,8-2.6 erg/m? This is higher
than previous theoretical estimations obtained by
variational methods® (0. 8~-1. 4 erg/m? and lower
than the recent results of Vashista et al. '° (3. 5-
4 erg/m?), The agreement with previous experi-
mental'! determinations is reasonable, We dis-
cuss the reasons why we cannot at the present
time expect a more accurate value of ¢ from a
nucleation theory.

II. EXPERIMENTAL TECHNIQUES

In our experiments a sample of pure Ge (N, - N,
~2x10' cm™) which is fixed on a large copper
block and immersed in pumped liquid helium, is
excited by a mercury or an halogen lamp, Typi-
cal size of the sample is 15x4X 3 mm®3, The tem-
perature of the bath, which is very close to that
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of the sample because of the small excitations
used (less than 1 mW/cm?), is measured with a
very sensitive Allen-Bradley carbon resistor. The
excitation and the luminescence light intensities
are measured by a photoelectric cell and a PbS
cell, respectively, at dry ice temperature. Lumi-
nescence is analyzed with a grating spectrometer
and the output signals are sent into lock-in ampli-
fiers followed by an X-Y recorder. The excitation
light intensity can be continuously varied using a
diaphragm monitored by a stepping motor.

III. EXPERIMENTAL RESULTS

Whereas the FE luminescence can be observed
at any excitation J, the EHD luminescence line at
709 meV appears (when the excitation is increased
from zero) only at a certain threshold J¢§ which
is strongly temperature dependent, If the modula-
tor (usually at 75 cps) required for lock-in am-
plification is placed between the light source and
the sample, the same threshold is obtained when
the excitation intensity is decreased down to zero,
This is obvious because in this case all the car-
riers are destroyed at each modulation and the
memory of the sense of variation of the light power
is lost. On the contrary, when the chopper is
placed between the Ge crystal and the spectrom-
eter, the sample is thus continuously illuminated
and the threshold J%, obtained when the excitation
is decreased can eventually be different from J§,.
This is the case below ~2, 25 K. The thresholds
obtained between 4, 2 and 1. 4 K are presented in
Fig, 1, The ratio between both thresholds in-
creases very rapidly below 2.2 K up to J§,/J &
=4 for 1, 8 K, and then tends to decrease,

The EHD luminescence signal I at a given ex-
citation J greater than J%, depends on the excita-
tion history (sense of variation, speed of varia-
tion, maximum excitation) used to reach J, Fig-
ure 2 displays some results obtained at 1, 9 K,
Branch A is obtained when the excitation is reg-
ularly increased; branch B when it is decreased
from some maximum value J,, ~10 J§,, the
whole run being done in two minutes. If we had
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FIG. 1. Temperature dependence of the luminescence
thresholdsJA and J8, of the 709-meV line owing to the
recombination of condensed pairs in EHD with emission
of an LA phonon. Crosses are the experimental points
for the nucleation threshold J# whereas the circled
crosses represent those for the destruction threshold
Jﬁl when it is different from J?h Threshold is defined as
the point at which the signal comes out of the noise level.
Solid line is the theoretical variation of the threshold
J;‘h between 4.2 and 2.0 K calculated with ¢=2.4 erg/m?,
A=3.8%x10! sec”'K™ and x,,=10 pairs. Its slope is
17.4 K. Dashed line represents the variation of g, (r*)
for the same set of parameters. Dashed-dotted line
gives the variation of n,, ; its slope is the exciton
work function. Value of the exciton density is obtained
from by Eq. (1) with the indicated values of the parame-
ters.

stopped at J;, J;, J3, -+, the corresponding
descending branches would be By, B,, By, « -,
The important observation is the following: as
soon as EHD have been created (J>J4,), the lu-
minescence signal will go to zero only at JJ,
whatever the way of variation of J between J§,

and J5 has been, Another interesting and intri-
guing observation is a slow variation of the lumi-
nescence signal, For instance, at a given excita-
tion J, points C and D drift, respectively, to C’
and D’ (see Fig. 2). This evolution is not strictly
exponential at the beginning but can be then char-
acterized by a time constant of ~400 sec below

2 K. Note that, in our experiments, points C’
and D’ never coincide, Above the X point of he-
lium the time constant of the drift is much smaller,
certainly because of fluctuations owing to bubbles
in evaporating normal helium, We have also ob-
served that the threshold J§, is independent of

the chopping frequencies we have used (up to 1000
cps) to modulate the excitation light, This means
thatat J4 the drop formation time is less than1 msec.

IV. DISCUSSION
A. Equilibrium model

Our attempt to interpret the preceding data is
based in this paper on the following approxima-
tions: (i) we consider the equilibrium between the
FE gas and individual drops, ignoring interactions
(like collisions for example) between them; (ii)
we neglect the gradient in the FE density owing
to the strongly absorbed light excitation; (iii) we
suppose that the FE density is kept constant when
EHD are formed or destroyed, With these limits,
calculations are considerably simplified and we
think that these assumptions are justified in the
excitation region close to thresholds, because the
FE diffusion length (L ~1 mm) is large and the
EHD density is small throughout the excited re-
gion,

It is well known'? that the combined effects of
the EHD surface energy o and lifetime 7 give the
following relation between the EHD radius # in
equilibrium with an FE gas of density n,,:

nex(r) = Q¥+, e%/rnng (1)

where
a=4ny/3 v, T and n,,,o=g(2rm*ET/h?)¥2e® AT |

Vex 18 the FE thermal velocity, ¢ the FE work
function, m* is the FE translation mass, g is the
FE ground-state degeneracy, and n, is the EHD
bulk density, We use' 7=40 usec, ny=2, 4X 10"
cm™, g=16, and m* =0, 33 m,.

The smallest stable radius 7* at a given tem-
perature corresponds to the minimum density

[(a.u)
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0 5 1‘0
EXCITATION J(a.u.)
FIG. 2. Variation of the peak luminescence intensity
I of the 709-meV line as a function of the excitation power

J. When the excitation light increases from zero, the
luminescence follows branch A. When it decreases from
Jmax~ 10 J4 it follows branch B. If we stop at Jy, Jy,

J3, ..., the corresponding descending branches are B,
B,, By, .... All the branches converge at J&. I we
wait a long time at the excitation corresponding to points
C and D there is a continuous shift towards points C’ and
D',
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7oy (%) in equilibrium with a drop and it is given
by

7* = B(AOT)Vze"‘/z’”e"/""o’”,

where
2(3/4m)Y3 (37%/4ny) ¥ *8m* gk ?
Bz=Tng73— and A= o L

A is the Dushman-Richardson constant and is
equal to 3,2x10'° sec* K2, Above this minimum
density, there is an equilibrium® corresponding
to two EHD radii; it is unstable for the smaller
radius and stable for the greater one,

As we have already reported® using a very sen-
sitive differential method, we have been able to
measure the ratio o /» at different excitations
close to the thresholds on both branches A and B
of the hysteresis between 2,2 and 1,5 K. We
have interpreted the value of this ratio at the
threshold J%, to be 0/7*. We obtained an excel-
lent agreement between our measurements and
the model, provided we used for the FE work
function ¢ the value ¢, and not ¢,,. We could also
deduce that A/o=1,6x10' sec’' K2 erg ' m? with
¢ =23 K. Hence o=2 erg/m? if we keep the the-
oretical value of A,

With the same method we have also measured
the ratio o/7 on branch A of the optical hysteresis
and we have checked'® that at a given excitation,
the drops have larger radii and are less numerous
than on branch B, According to the preceding
equilibrium model, this observation supports the
idea that some supersaturation is required to al-
low the formation of EHD, When some of them
have grown and when the excitation is then de-

creased, their size can diminish to a value smaller -

than that at J¢, and they can reach a radius very
close to »* at J& ., In fact when the radius is
slightly above »*, the mean destruction time of
the EHD due to fluctuations processes can be
short, so that the drop cannot reach exactly the
minimum stable size, This effect will be con-
sidered later in this section and the results will
show that it is nearly negligible in the whole tem-
perature range considered here,

Hence we should expect from these size mea-
surements that the threshold J%, would be pro-
portional to the FE density n,, (»*). However, as
can be seen in Fig, 1, the temperature dependence
of J%, is complicated. In particular the rapid de-
crease of the optical hysteresis above 2 K and its
disappearance above ~2, 25 K cannot be explained
by the simple equilibrium model given by Eq. (1).
We think that an interpretation of this phenomenon
would take into account the motion of EHD, On
the contrary, below 1,7 K, the variation of this
threshold with temperature is very slow, and it

is not accounted for by the variation of n,, (v*).
As shown later the correction due to the destruc-
tion time of EHD is even smaller on the FE den-
sity than on the radius and cannot exceed some
per cent, Thus it seems that the interpretation
of this threshold J2 cannot be done within the
approximations that we have presented at the be-
ginning of this section,

The temperature dependence of J4, is simpler,
We have to calculate the critical rate of the super-
saturation that allows an embryo to grow and
reach its equilibrium size in a short enough time,
This formation time will appear to be dramatically
dependent on the FE gas density, Usual conden-
sation theories' cannot be directly applied be-
cause of the finite lifetime 7 of the condensed
pairs, '* We shall use a method based on prob-
abilistic considerations because it gives a con-
crete sight of the growth process., This method
can be applied to the calculation of the destruction
time as well,

B. Stochastic model

Let us consider a drop surrounded by the FE
gas. As pointed out by Silver, ? the different
mechanisms of loss and gain of an electron-hole
pair by this EHD are stochastic events and this
drop will have a continuously fluctuating size,
Having x pairs at time ¢, it will be a small time
h later either in state x, x— 1, or x+1 with the
following respective probabilities:

P(x, x=1) =e(x)h,
P(x, x+1) =c(x)h, (2)
Plx, x) =1-[e(x) +c(x)]n,

where % is chosen independent of x and small
enough so that the higher-order processes are
negligible,

When x is not too small c¢(x) and e(x) are given
by:

(%) = Voytoymr? = AT 2Sx %/ 3¢70/2T

e(x) - x/T+AT2x2/3e-¢/kTeZO/ 'rn()bT,

with x=4$mngr3., Here S =1, /My, is the super-

saturation rate and will act upon the EHD forma-
tion through the term c¢(x). The larger this quan-
tity, the faster the growth of the embryos,

When x is small, the expressions given by Egs.
(3) are certainly not appropriate, The collecting
process at the very beginning will be the attrac-
tive interaction between the excitons or from a
possible nucleation center, Furthermore, sta-
tistical mechanics should be used to describe
small embryos and in the framework of our drop
model, parameters like n,, o, and 7 have cer-
tainly different values, But to our knowledge cor-

(3
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rect expressions for e(x) and c(x) have not yet
been calculated.

The independence of the probabilities given by
Eq. (2) with respect to ¢ is typical of Markoffian
processes and very general results can be ob-
tained, '® Because of the finite lifetime 7, the
Markoffian process in the case of EHD is irre-
ducible and recurrent, This means that starting
from a state x the probability P3 that the embryo
will reach another state y at a certain time later
is always equal to one, This is why there is an
equilibrium distribution n,(x). It is obtained
readily from the detailed balance principle and
has been studied by Silver. 2 For any x we have
the following relation:

c(x) n,(x) =e(x+ 1) n,(x+ 1), (4)

Here #n,(x) is the density of embryos in state x.

When 7 is infinite, as in the case of classical
vapors, the Markoffian process is transient, The
equilibrium distribution cannot be maintained by
the system, because the probability Pj tends to
zero when y is small with respect to x, But the
system can reach a steady-state nonequilibrium
distribution™ 7,(x), corresponding to a nonzero
flux F, independent of the size x and the time,
This flux is the number of embryos formed per
unit volume and time and is given by

F=c(x) ng(x) — e(x+ 1) ny(x+1).

The distribution n(x), being a decreasing func-
tion of x, is usually cut at a maximum value x,,
for which ny(x,,,) =0. The value” of F is then

F=n,, {c(l)/ [1+ "’“Z“(g%)]} (5)

j=2

When x,,, is chosen larger than about twice the
unstable equilibrium size x;, F is remarkably
insensitive to the choice of x;,. In the case of
EHD this is only true when x; and the stable equi-
librium size x, are well separated. But even
then, if x,,, is chosen larger than x,, F now tends
to zero. This is clearly owing to the fact that the
embryos cannot grow indefinitely and that there
is an equilibrium distribution,

Having created in our crystal a supersaturated
vapor of FE, we can divide within the framework
of our approximations the condensation process
into three main phases, at least when x; and x
are not too close, First there is an induction pe-
riod where the first embryos form and have to
pass beyond the point x;. Then, when there is
enough embryos for the distribution n.(x) to be
accommodated, the condensation occurs at a con-
stant flux F obtained from Eq. (5) with x,,, be-
tween x; and x,. Finally, when nearly all the
embryos have been formed the flux F decreases
to zero and the distribution tends to n,(x), This

whole study would be helpful to understand the
excitation dependence of the number of EHD but,
here, we will restrict our attention to the thresh-
old of condensation only,

A complete mathematical treatment of the re-
laxation of the initial distribution towards #,(x)
is at the present time beyond our scope., But,
using the fact that the probability P} to reach any
final state y from any initial state x is always
equal to one in our case, we can calculate the
mean time 7, that an embryo needs to grow from
x=1 to the stable equilibrium state x, at a fixed
supersaturation S, It will be a simple way to
study the possibility of the beginning of the con-
densation process.

For this purpose we have to consider the ran-
dom walk of the embryo in the state space, It
can be easily deduced from Eqgs, (2) that an em-
bryo will stay in state x for time 7,, which has
an exponential distribution law, the mean time
7, being

T.=le(®) +c(0]™, (6)

Then, when the transition occurs, the embryo will
either gain a pair with the probability P; or lose
one with the probability P;:

. clw -__ el
Py= e(x) + c(x)’ Py= e(x) +c(x) ™

and, from the reached state, the process will
start again, and so forth indefinitely., Let us
call #(x) the mean time to reach the stable equi-
librium state x, starting from x, smaller than x,,
Obviously #(x,) =0. We can obtain the following
relation which is easily interpreted:

) =T, + P tix+ 1) + P t(x- 1), (8)

Then, introducing the quantity A(x) = #(x) — ¢ (x+ 1),
we get the following recurrent relation:

A(x) =1/c(x) +[e(®) /c(x)]A(x-1)

and the time we are looking for is finally:
xg=1

T,=tD) = 2 A(x) . (9)

x=1
The destruction time can be calculated in a
similar way, Weintroduce #'(x) the mean time
required to reach the state 1 starting from a
state x and A'(x) =¢'(x) - # (x—1). We obtain the
following relations:

(0 =T, + Pt t'(x+ 1)+ P; £ (x-1), (10)
and
A =1/e(x) +[c(0) /e()] A" (x+1),

Unfortunately Eq. (10) now has an infinite num-
ber of solutions but it can be shown'® than the one
we are looking for is the smallest and corre-
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This series is convergent because the lifetime 7
is finite; and the time of destruction is finally

Xs
Ty=t(x)= 2 A'(x) . (11
x=2
This time T, depends clearly on all the quan-
tities c¢(x) and e(x), whereas T; depends only on
these quantities for x smaller than x,. As al-
ready pointed out, the values of e(x) and c(x) are
not known for small systems and even their order
of magnitude is questionable, This uncertainty is
not so important for T, because at the supersat-
uration rates at which this time is not too large,
the size x; is not too small, It is the contrary
for the time T, and we do not know whether the
formation time of small embryos is long because
they have a large probability to be destroyed be-
fore collecting new pairs, or whether it is short
because, for example, a nucleation center may

C. BENOIT A LA GUILLAUME, AND M, VOOS 14

have a large cross section to capture excitons,
We have attempted to test this in a very crude
manner, We supposed that the formation of a
small embryo can be neglected up to a minimum
size x,, and we tried successively x,, =3, 5, 10,
15, 20, and 25, The larger x,, the easier the
formation of the embryos, From the state «,,
we still used Eqgs. (3) to get c(x) and e(x), essen-
tially because they have the limit behavior e(x)/
¢(x) =owhen x—~0, which is a way to express the
difficulty of building these embryos.

C. Numerical results

We have performed calculations at various tem-
peratures for different values of A and o keeping
their ratio constant and equal to our experimental
result,® i.e., 1.6x10' sec' K2 erg™ m?,

Let us first discuss the destruction time T,.
The possibility of destruction of a drop by sto-
chastic fluctuations will be realized in a short
time only when x; and x, are not too different, and
this is the case near the critical size, We find
such a strong dependence of 7, on the supersatura-
tion that this effect is completely negligible above
2 K, The results obtained at 2 K as a function of
the supersaturation are presented in Fig, 3.

With a small change of the supersaturation we
change from 7, =107 sec to T,=10' sec, The
lower the temperature, the less rapid this varia-
tion, Table I shows the results obtained between
2 and 1, 25 Kfor T,=1 sec, which is the lock-in
time constant we used in our experiments, At
the lowest temperature in the differential experi-
ment (1, 5 K), the correction on the radius is
~20% which is of the order of the experimental
error, so that we can consider that the interpreta-
tion of the data given in Ref. 6 to get A/o was
correct, We see that the corrections on the
threshold are very small and cannot explain J&

TABLE I. Minimum drop sizes obtained in different
models as a function of temperature. The radius »* is
the minimum stable drop size corresponding to the equi-
librium model given by Eq. (1). In the stochastic model
it appears that drops having a size slightly above this
limit can be destroyed by fluctuations far much faster
than they can form again. The radius T corresponds to
a destruction time T4 of 1 sec, -A is the relative dif-
ference between » and 7*, and S, is the relative super-
saturation ng,(7)/ng(r*). The numerical values are ob-
tained with 0=2.5 erg/m? and A =4 sec™' K™2. Above 2 K
the difference between 7 and 7* is negligible.

T (K) 2.00 1.82 1.67 1.54 1.43 1.33 1.25

r* (A) 2560 1550 1000 700 520 410 340
7 (A) 2760 1740 1140 840 640 550 480
A (%) 8 12 16 20 25 34 42

S, 1.00 1.01 1.01 1.03 1.05 1.12 1.19
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TABLE II. Slopes and supersaturations as a function of surface tension ¢ and embryo
size parameter x,. The main figure is the slope in degree Kelvin obtained between 4.2
and 2.0 K for the temperature variation of the nucleation threshold J#, in the usual co-
ordinate scheme (In &4 7°%/? vs 1/T). The formation time has been chosen tobe Ty=0.5
msec and we present the results when the slope is between 15.9 and 18.1 K. The figures
in parentheses are the relative supersaturation rates S,=rng,/n.(7*) at 2.0 K for the cor-

responding values of ¢ and x,,.

a
(erg/m? 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2
3 18.1 17.6  17.0  16.4  15.9
Tm = 3.8) (4.7 6.0 (1.7)  (9.8)
=5 18.0  17.6  17.2  16.6  15.7
m (4.00  (5.0) (6.2 (8.0) (9.2
‘o —10 18.3  17.9  17.4  17.0  16.5 16.0
m (4.00 @7 (.7 (7.0 (8.7  (10.1)
v =15 18.3  17.9  17.5  17.0 16.4  15.9
" (4.1)  (5) (6.7 (7.2 (8.9)  (10.5)
=20 18.2  17.9  17.5 17.1  16.5
™ (4.2 (.00 (6.0 7.5 (9.1)
X =25 18.1 17.8 17.4 17.2
=

(4.6) (6.5) 6.4) (7.6)

below 2 K, This point remains unclear, Let us
now consider the formation time 7,., We have
calculated the critical supersaturation at which

it has a value of 0, 5 msec, for example, Plotting
our results in the usual coordinate system

(In 7, T"¥2 vs 1/7), we obtain a linear variation
between 4, 2 and 2 K and a less rapid variation
below. Although this behavior is analogous to the
experimental one, we have no confidence in the
results obtained when the unstable equilibrium
size is very small and too close to the minimum
size x,. This is the case below 2 K and we think
that it is more reasonable to restrict our atten-
tion to higher temperatures to fit the experimental
data, Neglecting the EHD surface energy o would
give a slope of In 7., T"¥? vs 1/T equal to the FE
work function. When o is taken into account, the
critical supersaturation being larger at lower
temperature, the slope is smaller. Our results
are presented in Table I, As we could have ex-
pected, the slope increases with x,, at a given o:
when the formation of the first embryos is more
rapid, the effect of o is less important because
this quantity acts to enhance the evaporation in
small embryos. In the same way, the slope de-
creases when o is larger at a given x,, because
the unequilibrium state is larger and then more
difficult to overstep.

These variations of ¢ and x,, will also modify
the critical supersaturation at a given tempera-
ture. In Table II we have also indicated the rela-
tive supersaturation 7.y /n.,(7*) at 2 K to get
a given slope. This supersaturation increases
with x,,. We can compare it with the experimental

ratio of the thresholds, i.e., J# /J% =3.6 at this
temperature, We have pointed out previously
that the temperature dependence of J%, cannot be
simply explained, and then there is no reason that
both the ratio J£,/J%, and n,, /n,, (»*) should be
equal, The latter is certainly larger than the
former but it seems reasonable to assume that
the difference will not be too important, There-
fore we think that the results obtained with x,,
larger than 15 are not acceptable, On the other
hand, we cannot trust calculations performed
with x,, smaller than five pairs, which corresponds
to an embryo radius of 170 A (when #, is kept
constant), Therefore we conclude that starting
from an FE work function of 23 K to reach a

slope of 17-18 K leads to an EHD surface energy
in the range of 1, 8-2, 6 erg/m?, A fit is pre-
sented in Fig, 1, We display in Table III the crit-
ical values for both the absolute and relative
supersaturation rate, i.e., S;=1y /My, and S,
=gy /Moy (v*) at different temperatures for the

TABLE III. Variation of the absolute and relative
supersaturation rates, i.e., S;=ng/ngy,0 and Sy =g,/
nex(7*), as a function of temperature for the choice o
=2.4 erg/m? and x,, =10 to have a formation time T} of
0.5 msec.

T (K) 4.00 3.33 2.86 2.50 2.22  2.00
1/T (K™!) 0.25 0.30 0.35 0.40 0.45 0.50
S, 2.5 3.2 4.1 5.4 7.3 10.1
S, 2.5 3.1 3.8 4.7 5.4 5.7
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choice o=2. 4 erg/m? and x, = 10,

As we have already emphasized, the EHD
formation time is very strongly dependent on the
supersaturation rate and this can be seeninFig, 3,
This phenomenon has the same origin as in
the case of classical vapors and can be easily
understood by inspecting Eqs. (7). Up to the un-
stable equilibrium point x;, the destruction pro-
cess of the embryos is quite favorable with re-
spect to the formation process because e(x) > c(x).
It is the reverse between both equilibrium points
x; and x,, but for two reasons this does not lead
to a negligible growth time between them, First,
an embryo always has a certain probability to
decrease again below x; before reaching x,, Sec-
ond, the number of pairs to gain is quite impor-
tant, We find in our calculations at 2 K that down
to 7, ~5x10™ sec, both the time to grow from x,
to x; and then from x; to x, are nearly equal, At
higher supersaturation, the second part becomes
larger so that the total time is nearly constant
and equal to ~5x10°° sec, We have also checked
in a simple way that the decrease in supersatura-
tion owing to the simultaneous formation of a rea-
sonable density of drops will not modify the growth

time too much, Each growth step is less rapid
but x, becomes smaller.

V. CONCLUSION

We want to point out that in the case of classical
vapors the surface energy is obtained from accu-
rate experiments which are different from the
measurements reported here, The nucleation
theory is then used to be a test for itself, The
description of the formation of small embryos can
lead to very different results. No nucleation the-
ory at all can avoid this difficult problem.

Here the reverse procedure has been used be-
cause 0 has not yet been obtained independently
of other purameters. Such an experiment would
be very useful to study the nature of the nuclea-
tion process. Nevertheless, we believe that the
study reported here gives an approximate value of
of the EHD surface energy and provides a simple
explanation of the discrepancy between ¢ and
¢th'
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