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The electronic structure of tetrahedral semiconductors is formulated on the basis of a four-orthogonalized-

plane-wave (OPW} expansion of the wave functions at the center of each Jones-zone face. The band gap is

found to be approximately equal to twice the magnitude of the [111]matrix element of the pseudopotential
rather than the [220) matrix element or the Heine-Jones perturbation form. This confirms the dependence of the

gap upon even and odd parts of the pseudopotential assumed by Phillips and Uan Vechten in formulating
their ionicity theory. Fitting of this gap to the optical-absorption peak E, gives values in semiquantitative

agreement with the corresponding values from the empirical-pseudopotential matrix elements of Cohen and

Bergstresser. Neglecting other matrix elements allows a Penn-like calculation of the dielectric constant for
polar as well as homopolar semiconductors, but one which in both cases is found to vary as the inverse cube
rather than the inverse square of the gap. The form for homopolar semiconductors is only consistent with the

Penn formula if, as is approximately true, the gap scales inversely with the square of the bond length; in that
case it is also consistent with the bond-orbital formula with the covalent energy V, equal to the [111]
pseudopotential matrix element. The form for heteropolar semiconductors is inconsistent with the direct
extension of the Penn formula, but is consistent with the bond-orbital model. The change in total energy under

lattice shear is computed, again retaining only the [111]matrix elements. The elastic constant is found to be

proportional to the derivative of the pseudopotential matrix element with respect to wave number. Use of
corresponding values from pseudopotential theory gives good estimates of the elastic constants for diamond,

silicon, and germanium, and suggests the correct trend for polar semiconductors, These terms which are found

adequate for understanding the dielectric constant and lattice rigidity lead to a saddle point rather than a
maximum in charge density at the bond center, suggesting that the bond charge should not be thought of as

the origin of structural stability of tetrahedral structures. Extending the theory beyond the four-OPW model

does lead to charge accumulation in the bonds and retains the structural stability, principally through the

kinetic energy of the electrons confined to the Jones zone. The fundamental difference between the

pseudopotential theory of covalent solids and of metals is not the inclusion of higher-order terms in the

pseudopotential, but the different treatment of zero- and first-order terms analogous to degenerate

perturbation theory.

I. INTRODUCTION

The conception of the electronic structure of
diamond- structure crystals based upon corrections
to free-electron behavior has a long history. A

central concept is the Jones zone, given already by
Mott and Jones' in 1936. It is a zone in wave-num-
ber space bounded by Bragg reflection planes and

chosen such that: (a.) It contains precisely the
volume required to accommodate the valence elec-
trons. (b) The structure factor be large so that a
large band gap at the face is to be anticipated.
(c) It be very nearly spherical so that the entire
free-electron Fermi surface may disappear into
the zone face, leaving a nonconducting electronic
structure. The corresponding zone for diamond,
made up of (220) Bragg planes, satisfies these
criteria perfectly: it has precisely the correct
volume; the structure factor is unity corresponding
to all atoms scattering in phase, and as a regular
dodecahedron, it lies very close to a sphere. Thus
one conceives of a free-electron-like electronic
structure dominated by this Jones-zone gap with
the influence of other Bragg planes being quite

secondary.
An important application of this concept was

made by Penn' who used it as the basis for an ap-
proximate calculation of the optical dielectric con-
stant. He replaced the Jones zone by a sphere of
equal volume, took a band gap E at the zone face,
and made a spherical average of the bands within
it; in this way he obtained a dielectric constant,

e, = I+(h(o /E )'[I —E /4E~+ —,'(E /4E~)2].

Here the electron density has been written in
terms of the plasmafrequency, &u~2=4vNe'/m, and

E~ is the free-electron Fermi energy. Cardona'
has subsequently found that a factor —,

' should ap-
pear in front of the (h ~ /E )', but this difference,
as well a.s the correction terms in E /Er which
Penn notes were small, will not concern us here.
An essential point of the model was obtaining the
dielectric constant in terms of the single parame-
ter E,.

This form of the dielectric constant provided the
basis for an ionicity theory of tetrahedral semicon-
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ductors by Phillips. " He assumed that in a polar
semiconductor the gap arose from an even and an
odd part of the pseudopotential (measured from
the bond center) such that the band gap was given
by

(2)

with E„arising from the even part of the pseudopo-
tential and iC arising from the odd part, to first
order in the pseudopotential. ' Second, he assumed
that in the isoelectronic series of semiconductors
(such as Ge, GaAs, ZnSe, and CuBr) only the band

gap in Eq. (l) changes. With these two assump-
tions and the assumption that E„doesnot change
in the isoelectronic series he could use the mea-
sured dielectric constants for the series to deduce
E„andeach of the C values for the series. He
used these to define an ionicity C2/E', for each
compound and sought systematic trends in proper-
ties as a function of this ionieity.

As plausible as this concept of the electronic
structure seems, it runs into serious difficulties
upon closer inspection. The matrix elements
which determine the band gap depend upon a pseu-
dopotential form factor as well as upon the struc-
ture factor. Mott and Jones of course had no way
of estimating the former, but once the pseudopo-
tentials were determined for the semiconductors
they were found to be very near zero for the (220)
Bx agg reflection plane. ' This would at first seem
to invalidate the concept from the start. However,
a way out was noted by Heine and Jones. ' They
indicated that the states on opposite Jones-zone
faces (i'2»„i2-,») are not only coupled by the pseu-
dopotential matrix 8"»„butalso indirectly through
othex states. In particular, if one treats coupling
with the states k«, and k00y by perturbation theory,
the matrix element producing the gap, which might
be written —,'E, becomes

fs)2+2 ~220+ (~lll~llI ill ill)I 0 '

Here Z, is a free-electron kinetic energy g2(2II/a)2/
2m, with a the unit cube edge. Heine and Jones
suggest that the second-order term may be the
dominant one, and the direct term 8'», unimpor-
tant. This is a very appealing suggestion: it im-
plies that the important terms in the covalent
solid are just the higher-order terms which are
generally neglected in the pseudopotential theory
of simple metals. It is of couxse a,iso just the
higher-order terms which produce asymmetries
111 the c11al'ge distribution (deviations fl'OII1 the
superposition of spherical densities) which one
intuitively associates with bond formation.

There remain, however, serious questions con-
cerning the extension of the concept to polar
solids. First, the form taken for the band gap

[Eq. (2)j is not directly consistent with pseudopo-
tential theory, Eq. (3). The fact that the structure
factor at the (220) face is unity means that the
atoms add in phase and only the even part of the
pseudopotential enters; there is no contribution
to 8"», from the odd part of the pseudopotential
associated with C. If, on the other hand, we follow
the suggestion of Heine and Jones and neglect 8'»„
we indeed find that the matrix element products,

for example, are proportional to the
sum of the squares of the even and odd parts.
That, however, gives a gap of a form E, (E2„+-C')/
K„which differs in an important way from Eq.
(2). Cardona. ' explored this point with some care
and found no way of reconciling the use of Eq. (2).

Recently the first a,ssumption of Phillips has
also been drawn into serious question. ' " Any of
a number of ways of learning how the matrix ele-
ments which enter the numerator in the dielectric-
eonstant calculation vary with polarity indicates
that they are not at all constant. In fact, they all
imply that &, —1 should vary inversely with the
cube of E, in an isoeleetronic series rather than
with the inverse square.

Thus we are led to doubt the tmo basic assump-
tions made in basing an ionicity theory upon a
pseudopotential description of the electronic struc-
ture. At the sa,me time we find the conceptual
view of the electronic structure most appealing.
The present study is an attempt at reformulating
the description of the electronic structure and the
dielectric properties, without making the two sus-
pect assumptions.

IL ELECTRONIC STRUCTURE

We will proceed as with a step-by-step calcula. —

tion of the electronic structure using the pseudopo-
tential formalism, making approximations in ac-
cordance with the insight discussed in Sec. I. At
various stages it will be very helpful to substitute
values for the pseudopotential matrix elements
which enter, and for these we will use empirical
pseudopotentials determined by Cohen and Berg-
stresser" by fitting the band structure as revealed
by the experimental optical properties. In the end me

wish to determine the matrix elements from experi-
ment, as Phillips did in developing his ionicity
theory"' and as w'e did in formulating the linear-
combination-of-atomic-orbitals (LCAO) descrip-
tion of covalent bonding, "but it will be useful to
keep the explicit connection with traditional pseu-
dopotentials. In doing this we should recognize
that there is a considerable uncertainty arising ul-
timately from the familiar arbitxariness among
rigorous pseudopotentials. " In more familiar
terms, one can make up for the neglect of one set
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'of terms by modifying another set. We are much
more severely truncating our calculation than did
Cohen and Bergstresser so our matrix elements
should differ from theirs. Nonetheless, it has
frequently happened that pseudopotentials deter-
mined in different ways are similar and that will
turn out to be the case here.

We might imagine expanding the electronic
states in orthogonalized plane waves (OPW's), or
the pseudo-wave-function in plane waves. A Ham-
iltonian Inatrix is constructed and could be dia-
gonalized to obtain the energy bands. However,
we focus only on the salient part of the matrix,
just as Penn focused on the two coupled states at
opposite Jones-zone faces. We consider these
two states kiip and kiip and the two states km& and

kpp1 which are coupled to them by the very large
matrix elements W», . (For reference the pseudo-
potential form factors for silicon are" m„,= —2.8V

eV, Nt», = 0.55 eV, zo3» = 1.09 eV, others zero. )
We may readily construct the Hamiltonian matrix,
based on the states k11p k11p kpp1 and kppp num-
bered 1-4, respectively. In constructing the ma-
trix elements we take our origin of coordinates in
one atom. We write the magnitude of the W
matrix element W, and its phase factor y. (For
homopolar semiconductors W, is the form factor
divided by v 2 and y= exp ,iv )W—ew. rite the matrix
element W»„which is real, as W, . (For homo-
polar semiconductors it equals the form factor. )
We drop W», which couples the lower states. (It
vanishes for homopolar semiconductors. ) The
Hamiltonian matrix becomes

2X, W, Wy* Wy

Wq Wq E, 0

W, y* W, p* 0 E,

(4)

Z, =-', (3W, -K,+[(W,+K,)'+16W',]'"]. (5)

Values of the empirical pseudopotential and the
evaluation of this expression are made in Table I.

This corresponds to a four-OPW calculation of the
bands at X in the Brillouin zone. The eigenvectors
and eigenvalues are obtained analytically and ean
readily be verified. The four eigenvalues are 2E„
—W2, E'p, and

—(W +3K s [(W, +K ) +16W',] ~ ] .

Note that they do not depend on the phase factor
The values corresponding to the top of the

valence band and the bottom of the conduction band
(see Fig. 1) are, respectively,

2KO —W, and —,
' (W, + 3K,+ [(W,+ K,)'+ 16W,']'i']

corresponding to a gap of

L

h' k,'„
2m

FREE Willi~ WZ20
Lp

FIG. 1. Electronic structure of silicon. On the left
are shown the two doubly degenerate free-electron lev-
els, split by the inclusion of W&f f a11d ~220 in the solution
of Eq. (4). To the right are the true energy bands of
silicon as given by F. Herman, R. L. Kortum, C. D.
Kuglin [Int. J. Quantum Chem. Suppl. 1, 533 (1966)).
Identification is made with dashed lines between the
four levels calculated here and the values at X. Note
that there are twelve states of &f fo type, but only six
of &&00-type. That is why the 4 X4 submatrix only lowers
oIle of the ~f00 states, while the full calculation lowers
both.

Note in particular that 16W2, is generally con-
siderably larger than K,' [or (K,+ W,)']. This is in
remarkable contrast to the typical situation in
simple metals where the relevant kinetic energies
are generally much larger than the pseudopoten-
tial; that is the basis of the usual pseudopotential
perturbation theory used in simple metals. Here
the pseudopotential is the large term and the

TABLZ I. Pseudopotential parameters and band gaps
(eV) for the homopolar semiconductors.

Si

w&
~

w, b

Ko
Z, [Eq. (5)]
X( -X4e
2w
E2
Yp

-7.80
4.58

11.88
18.57

15.60
12.2 ~

0.52

-2.03
+0.55

5.10
3.22
2.7
4.1
4.5 '
0.52

2,23
0.15
4.73
2.94
2,8
4.5

0.64

-2.44
0
3.59
3.40
2.2
4.9
3 7'
0.86

' 2 'f times the (111) pseudopotential form factor,
given in Ref. 11.

b Reference 11.
'F.Herm~FI, R. C. KortuIn, C.O. Kuglin, J.P.VanDyke,

and S. Skillm!~, Methods Comput. Phys. 8, 193 (1968).
~ R. A. Roberts and W. A. %'alker, Phys. Rev. 161, 730

(1967).
R. E. Lindquist and A. W. Ewald, Phys. Rev. 135,

A191 (1964).
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kinetic energies are the small corrections. This
is also consistent with the LCAO picture of the
electronic structure. " The pseudopotential corre-
sponds to the bonding-antibonding splitting in the
solid while the kinetic energy (or bandwidth) cor-
responds to the s-p splitting in the atom. (We
will make the connection quantitative later. ) Thus
the fact that the band gap occurs between the
bonding and antibonding state, rather than between
s and p bands, also reflects the dominance of the
pseudopotential. We note also that the contribu-
tion of W, is very much smaller than that of W„
as suggested by Heine and Jones. '

The agreement of the calculated E with values
of the splitting X, -X, from a band calculation is
not bad. The discrepancies are hardly surprising
for reasons discussed at the beginning of this sec-
tion, and for a four-OPW calculation; even full-
scale band calculations differ from each other by
amounts comparable to this. Also listed in Table
I is the energy of the peak in the optical reflectivi-
ty, E„anumber frequently associated with
Jones-zone gaps. These have similar magnitudes
but are systematically larger than the splitting at
X. The variations among these numbers suggest
that for semiquantitative considerations we might
neglect the small corrections to E due to W, and

Kp, in which case E becomes simply 2W„and
then obtain W, by fitting experimental E, values.

It is indeed remarkable that 2W', is just the ex-
pected splitting at the (111}Bragg plane, the
splitting L] L2 seen in Fig. I. Indeed the mag-
nitudes of the splittings are similar in that figure
and this is true also for diamond, germanium,
and tin; however, again the variation from source
to source for values of the splitting is large enough
to make any detailed comparison questionable.

The same analysis may be applied to the polar
semiconductors. This is particularly simple when

W, and Kp are neglected. The pseudopotential
form factor in this case is replaced by the square
root of the average of the squared form factors
for the components, since the two atoms in the
cell scatter 90 out of phase. This is equal to the
square root of the average and difference form
factors squared and summed so that it in fact is
equivalent to the form [Eq. (2)] assumed by
Phillips. The pseudopotential which enters is not
that for the Jones zone, but that for a lower gap
which from the point of view we described in Sec.
I would have been of only secondary importance.
There is also a change in the phase factor y, but
that does not affect any of our results.

We may calculate the corresponding pseudopo-
tential matrix elements again using empirical
pseudopotentials. The values of W, for the series
Ge, GaAs, and ZnSe are given in Table II. The

average pseudopotential also varies somewhat in
this series, so an ionicity theory defined in terms
of these empirical pseudopotentials would be quite
different depending upon whether one based it upon
the average or upon the homopolar value. Again,
for our empirical fit we will use W, = &E„also
given in Table II.

e, = 1+2(K+~}'5'(1
~

% ~2)'/m&~ (6}

neglecting, as we did with the Penn formula,
small corrections of order E /Ez. The matrix
element of the gradient should be taken between
two states at the Jones-zone face and averaged
over the angle. In order to estimate this matrix
element we must construct the states, as well
as the energies, from the solution of Eq. (4).
Initially we again retain the full matrix. Written
as normalized four vectors, the upper valence-
band state is simply (2 ' ', -2 ' ', 0, 0) and the
lower conduction band state is (a, a, by, by* ) with
a and b real and a given by 2a'= [s'+ 1 —s(s'
+ 1}' ] ', the expression for b is of the same form
with the minus sign before the square root changed
to a plus. s is the quantity (K, + W, )/(4W, ) which
we have regarded as small. Only a enters the
matrix element and for the parameters for silicon
in Table I it takes the value 0.88. Thus for this
discussion it is reasonable to neglect s or absorb
it in a scale factor, consistent with the use of
E = 2W, . Using plane-wave pseudo-wave-functions
in the evaluation of the matrix element of the
gradient would lead to i times the component of
kyyp along the direction of the gradient. We may
at this point insert a scale factor y~ in the matrix

TABLE II. Pseudopotential parameters and E2 for an
isoelectronic series, in eV.

Ge GaAs

V2= W& (even) '
V3= Wg (odd)
Wg= v'V~+V2

2
spa

-2.23
0
2.23
2.2 b

-2.40
2.55
3.50
2.5b

—1.98
2.73
3.37
3.2 '

' Reference 11,
R. E. Lindquist and A. W. Ewald, Phys. Rev. 135,

A191 (1964).' F. H. Pollack, in Proceedings of the International Con-
ference on II-VI Semiconducting Compounds, Providence,
1967, edited by D. G. Thomas (Benjamin, New York,
1968), p. 552.

III. DIELECTRIC CONSTANT

For the purposes of this discussion the dielectric
constant is written most conveniently in terms of
the matrix elements of the gradient"'
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elements to allow for corrections such as the ef-
fect of s. We substitute the resulting matrix ele-
ment in Eq. (6); the angular average gives a fac-
tor of —,, and noting that if'k2», /2m is 2K„weob-
talll

eo = 1+ 8yq(K (o~)2K, /3E3 .

W', q= V2+zVS,

with

V2 = (sv, + u, )/(2&2),

V, = (u), —xu, )/(2&2),

(8)

In the simplest model y~ could be taken as being
equal to one. Neither the matrix elements nor the
gaps depend upon the phase q, so the result is ap-
propriate for polar as well as homopolar semicon-
ductors. However, substitution of E = E, from
Table I gives a value for silicon too high by a fac-
tor of 4 for silicon if y~ is taken as unity.

This situation is not significantly worse than in
the LCAO theory of the dielectric constant. "
There the simplest model for the matrix elements
and use of E, for the gap gave discrepancies up to
a factor of 3 in the dielectric constant so that a
scaling factor y fox' the matrix elements was in-
troduced in order to bring the dielectric constant
into accord with experiment'""; that value (1.06,
1.22, 1.43, and 1.74 for C, Si, Ge, and Sn, re-
spectively) also turned out to depend significantly
upon their placement in row in the periodic table,
but remained constant in any isoelectronic series.
This scaling of matrix elements was also required
in Phillips s ionicity theory where empirical cor-
rections associated with d states were required.
Corrections are presumably made for a number
of the approximations which enter each treatment
by the introduction of this scaling para, meter and
its fitting to experiment. The factor y~ may be
evaluated by taking the E, equal to E, (from Table
I) in Eq. (7) and fitting the experimental values of
the dielectric constant. The results are given in

Table I; they are taken constant in any isoelec-
tronic series.

This completes a description of the assumptions
and the parameters of the model. We may now

state it explicitly and compare it with earlier
treatments.

IV. FOUR-ORTHOGONALIZED-PLANE-%AVE (OPÃ) MODEL

The electronic states are based upon free elec-
trons with a gap introduced at the Jones zone. The
gap arises fx'om the lifting of the conduction-band
edge [Eq. (5)with Wm and Ko neglected] rather than the
more common splitting up and down, a point which
will be important when we consider the total en-
ergy. The magnitude of the gap is twice the [111]
matrix element of the pseudopotential. In a polar
system, with pseudopotential form factors for the
two constituents of so, and se, we may write the
pseudopotential

and the gap is given by

Z =2(V'+ V')'" (10)

[Strictly speaking the phase of each term in Eq.
(9) should be rotated 45' for our choice of origin
but it doesn't affect any results. ] The notation
was of course used to fit an identification with

LCAO theory which me make later.
In the model, the gap in the homopolar sernicon-

ductors is taken to be equal to the optical absorp-
tion peak E» giving values of V, for each rom in
the periodic table, since V, vanishes for the homo-
polar semiconductors. Folloming Phillips, the
odd pseudopotential is obtained from the dielectric
constant assuming that the even part is unchanged.
However, the appropriate formula is taken to be
Eq. (7) rather than Eq. (1). In any isoelectronic
series the scale factors y~ canceL out and explicit
experimental values of the even and odd pseudopo-
tentials are obtained which are in rough agreement
with the empirical pseudopotential matrix elements
of Cohen and Bergstresser (compare E, and 2W,
in Tables I and II). Values of y~ are obtained for
each row from the experimental dielectric con-
stant and geometric means of both y and V, are
used in skew compounds.

A. Comparison with ionicity theory

Phillips4&' used the dielectric constant and con-
siderations based on a sum rule to obtain gaps
E, so oux' values for the homopolar semiconduc-
tors inevitably differ from his; however, not so
greatly. His values of E for C, Si, Ge, and Sn
are 13.5, 4.77, 4.31, and 3.06 eV, respectively,
to be compared with E, in Table I. However, his
principal interest was in the isoelectronic series
and there the difference is important. He defined
his ionicity as f,.= C'/E' and obtained it upon the
assumption that z,' varied as E '. If me instead
use Eq. (8), we obtain values f,' related to his by

f &
=1- (1 f()'"~-

f', is roughly linear in f, ov.er the range of values
which occur in the tetrahedral structure, as was
noted earlier, ' but about —,

' as large.
We could of course use the new values of ionicity

to interpolate properties but it is much more fruit-
ful, since there is nom a clear relation with the
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underlying electronic structure, to use that model
electronic structure to predict the properties
themselves.

B. Comparison with the bond-orbital model

my'Ne'd'V2 w'y'(5 &u~)'V,'
0 3(V2+ V2)3/2 4K E3 (12)

The last form has been written as close as possi-
ble to the pseudopotential form [Eq. (7)] but re-
mains fundamentally different. However, V, was
taken as half the E, energy (as we have here} and
Harrison and Ciraci" found empirically that E,
varies approximately as d ' from material to
material. This is only an approximate relation,
as may be seen from their curve or from a com-
parison of E, and K, (which varies exa,ctly as
d ') in Table I here. In fact, the average E,
equals the average K, within a few percent; with
that approximate equality Eqs. (12}and (7) become
equivalent with y~-0. 5y. As we noted earlier" it
is only the approximate proportionality of E, and

K, which makes the nearly-free-electron and
LCAO models simultaneously tenable.

As we have chosen to obtain parameters from
experiment the two theories lead to identical V, 's,
but we now have alternative interpretations of
V, as the matrix element between two hybrids in
a bond or the [111]pseudopotential matrix ele-
ment. Similarly since the V, are obtained from
the dielectric constants in an isoelectronic series,
and y, y~, V„Sco~, and K, remain constant in
such a series (for this we do not need the propor-
tionality of V, and K,), the V, values are the
same.

The identification may be made more plausible
by imagining the pseudopotential to be a sum of
5 functions on the two atoms, of the form
(-V, + V~)W20, 5(r —r, ), with 0, the atomic volume.
(The root two is artificial, as is the use of a 5
function. ) This corresponds to form factors,

0' w r —r. e "~' '&'d7',
i

of W2(-V, + V,), consistent with Eq. (10). As V,
may be thought of as the energy gained in putting
an electron on the site, 2V, is the energy differ-

In spite of the very much different conceptual
basis, the four-OP% model leads to results very
close to those of the LCAQ theory. Part of this
similarity is simply by choice; we chose similar
notation and used the same experiments to define
parameters. However, part of the similarity is
fundamental and, we believe, important.

The dielectric constant in the bond-orbital model
is given by

ence between two sites, which was its definition
in the bond-orbital model.

Of course, since U, and V, are numerically the
same in both models, n, defined by V, /(V22

+ V', )' ', is the same in both. We do not wish to
emphasize this aspect since the theory can go far
beyond simple scaling of properties.

V. TOTAL ENERGY

We next take a preliminary look at the theory of
bonding properties in the four-OPW model. We
consider first the total energy. An important con-
tribution, and the one central to the discussion
here, is the sum of one-electron energies. This
term is in fact thought to dominate the angular
rigidity of covalent lattices. " This is relevant to
the stability of the tetrahedral structure as well
as the elastic shear constants. We will return to
the other contributions in Sec. VIII.

The estimate of the change in total energy in
terms of the four-OPW calculation is not com-
pletely straightforward. In particular, some care
must be taken if one is to get the factors of 2 cor-
rect. We return to the 4 &4 matrix of Eq. (4),
based on the states kyyp kjypp kppyy and kppy* In
the end we neglected W2 and Kp so we may drop
them here. We may then diagonalize the off-dia-
gonal 2 & 2 blocks, leaving only two nonzero ma-
trix elements for example Hy3 2W jp Hgy
= 2W, y. This raises the unoccupied conduction-
band state by 2W, and lowers one of the lower
va.lence states by the same amount (see Fig. 1,
though there W, and K, were retained). Similarly
the treatment of the upper states k,» and kyyp will
lower the other k~, state, so they are degenerate
(again, see the bands in Fig. 1). Thus two of the
four valence bands are lowered by 2W, each at the
Jones-zone face. The dominance of the matrix
element over the energy denominator and the high
density of Jones-zone planes (when translated into
the reduced Brillouin zone) both suggest that the
X point be considered representative, correspond-
ing to a lowering in energy of W, per electron. It
is interesting and satisfying that this gain in ener-
gy, V, per electron for homopolar semiconductors,
is the same as in LCAO theory. It is also remark-
able that it comes from the lowering of deep
states, not states at the Jones-zone faces.

Now let us see how this energy changes under a
shear distortion. To be specific, we imagine ex-
panding the crystal along the z axis by a factor
(1+e), and contracting it in the two lateral dimen-
sions by (1+a) '~'. Then the wave-number lattice
is contracted in the e direction by a factor (1+e) '
and expanded in the lateral directions by (1+c}'~'.
This increases the length of each [111]wave num-
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ber by a factor of (1+ —,'e') to order c', and we may
estimate the resulting change in W, as

1keW
2 ek ek 2'~'

for a homopolar solid. A new parameter has
entered, Bw, /Bk, which may be estimated from
known pseudopotentials. Those of Animalu and
Heine" give kszo, /8k=0. 56Ez at the appropriate
q/k~=1. 10 for silicon, germanium, and tin within

a percent. (The universality of n, /E~ as a func-
tion of q/k~ which this suggests is exactly the
counterpart of scaling of V, with d ' noted ea.rlier. )
This yields an energy per electron of 0.20E„&'.
We may relate this to the elastic constants by
multiplying by the electron density and equating
it to the energy density in terms of the elastic
constants for the same distortion, —,'(c„—c»)e'.
This gives estimates immediately of c„—c» for
diamond, silicon, germanium, and tin of 8.7, 1.1,
0.87, and 0.44, respectively (in units of 10"
ergs/cm'). These are in remarkable agreement
with the experimental values for the first three of
9.5, 1.0, 0.80 (Sn has not been measured). This
predicts (as of course the LCAO theory does) a
variation from material to material with d ',
which is well satisfied by experiment. In this
pseudopotential theory it is not necessary to intro-
duce a scaling parameter as it was in the LCAO
theory.

In order to treat polar semiconductors we must
make some assumption as to how the odd part of
the pseudopotential, V„varies with distortion.
The assumption that it is independent of shear
which was used in the LCAO theory gives a polar
value different from the homopolar value by a fac-
tor V, /(V,'+ V,')' '= a„orvalues for the isoelec
tronic series, Ge, GaAs, and ZnSe of 0.87, 0.75,
and 0.60, compared to the experimental 0.80, 0.65,
and 0.32. The trend is right though it is not quan-
titatively as accurate as the LCAO theory which
gave" a proportionality to a, —0.5.

There is always a temptation to stop when the
prediction agrees this well with experiment, but
in the pseudopotential theory it seems particularly
clear that there are many other terms in the ener-
gy which have not been considered, and it is not
clear that they cancel each other. We will return
to a more complete description in Sec. VII.

VI. CHARGE DENSITY

Next we may consider the charge density in
terms of the four-QPW model. The result was
quite unanticipated but informative. A good way
to carry out the calculation is to note that the sum
of the charge densities from the four states enter-

ing Eq. (4) is uniform. When the lower three are
occupied and the upper left empty the charge den-
sity becomes nonuniform and the ratio may be
taken as a correction factor for the total density
due to the corresponding Jones-zone face. We may
then multiply by the factors for each plane. A

simpler, and less accurate, way is to take the
charge density to be a superposition of that due to
occupied states at each X point in the Brillouin
zone. We have done it both ways and the results
are qualitatively the same.

First, the omitted wave functions are propor-
tional to cosk», r (neglecting the effects of W,
and ff,), with a charge density proportional to 1
+ co sk22p r. Thus the wave -number lattice for the
expansion has [220] primitive lattice vectors cor
responding to the lattice in real space as body-
centered cubic. Each atom sits on a bcc site,
but the other half of the sites are empty. It is
other Fourier components which we have not in-
cluded (principally [111]components) which must
pull the charge density onto the atomic sites.

Second, since it is a cosine-like wave which is
eliminated, the affect is to remove charge from
the atomic sites and put it in the interstices.
(This is in turn because the interaction through
levels of lower energy is repulsive. ) The net ef-
fect is a depressed charge density near the atoms,
a pileup in the octahedral interstices (of the bcc
lattice), and a saddle-point at the bond center.
The charge density in this model is quite metal-
like and does not show the familiar concentration
of charge in the bonds.

This, of course, does not mean that the charge
is not piled up in the bonds, but it indicates that
the terms which cause that concentration are quite
distinct from the terms which cause the structural
stability. The distinction is best made as we turn
finally to a more complete description of the elec-
tronic structure in terms of pseudopotential theory
in Sec. VII.

VH. BEYOND THE
FOUR-ORTHOGONALIZED-PLANE-WAVE MODEL

We have succeeded in formulating a theory of the
dielectric properties and the structural stability
of tetrahedral solids through a model which
focuses on a single band gap arising from a single
pseudopotential matrix element. The success
came from taking the pseudopotential as the domi-
nant term rather than the more usual assumption
that the kinetic energy is dominant. This did not
correspond, as might have been anticipated, to
taking the pseudopotential to higher order, but to
a first-order shift W, in the energy per electron
rather than the second-order shift which arises in



14 PSEUDOPOTENTIAL THEORY OF COVALENT BONDING 709

the perturbation expansion in the theory of metals.
The difference is more analogous to the use of de-
generate perturbation theory in contrast to nonde-
generate theory.

In basing the theory on the single gap, many
terms have been neglected, as we noted in the dis-
cussion of the angular rigidity and of the charge
distribution. This neglect has been justified on

the basis of the success of the model, but it is
useful also to consider the neglected terms; this
will help also bring the model into perspective.
A most convenient way of doing this is to start with

the pseudopotential theory of metals. We earlier,
in fact, made a quantitative study of silicon treat-
ing it as a simple metal. " That calculation in-
cluded all Fourier components of the pseudopoten-
tial and all electrostatic and self-energy terms,
but in the context of the perturbation expansion to
second order in the pseudopotential. The present
study indicates that we should correct this for a
more careful treatment of the [111]Fourier com-
ponent of the pseudopotential. The other terms in
the simple metal theory are just those neglected
in the four-OPW model.

In the simple-metal theory, the zero-order state
of the system is a free-electron gas, with all
wave numbers occupied within the Fermi sphere,
of radius kz. There is a shift (k

~

w
~

k) of each
level of first order in the pseudopotential and
second-order terms and appropriate self-energy
and electrostatic terms. e We now seek the con-
sequences of a more careful treatment of the
Jones-zone gap.

The zero-order kinetic energy should of course
be obtained as a summation over the Jones zone
rather than a sphere, but the spirit of the Jones-
zone approach is consistent with the replacement
of the zone by a sphere. The difference comes
only when we shear the lattice. Then the distor-
tion given in Sec. V deforms the zone and the cor-
responding sphere becomes an ellipsoid. The cor-
responding change in the zero-order energy is
absent in the metal where the Bragg planes move
through the Fermi sphere like a sieve, but is very
important in the covalent solid. The average
kinetic energy (ff'k'/2m) in the ellipsoid can be
calculated exactly and is given by (k 'kz'/10m)[2
+2&+ (1+e} '], and the change in energy is obtained
immediately as Sh'kz'e'/10m = 1.4 "/Ko&'. Note
that the value is independent of the magnitude of
the pseudopotential matrix element as long as it
is sufficiently large to contain the electrons within
the zone. This term contributes 3.2 x 10" ergs/
cm to cyy cy2 a value three times the experi-
mental value.

The first-order term may also change because
of the repopulation of states, but that change van-

ishes if a local pseudopotential is used, and would
be only a small correction if the energy depen-
dence of the pseudopotential were included. " Some
estimate of the four-OPW energy, W„is included
in the second-order simple-metal calculation,
though it is proportional to W', /K, rather than W, ~

thus we cannot add that contribution directly. It
is a rather small part of the [111]contributions to
the energy in any case. In the elastic constant cal-
culation for the four.-OPW model the shift in en-
ergy per electron was —,'(kBW, /Bk}&' = 0.20E~&'.
The contribution of the [111]matrix elements in
the simple-metal theory is 8(—,'qc')S*S BF/Bq per
atom, where q is the [111]wave number and F is
tabulated in Ref. 6; this contribution is 0.78E~&'
per electron, four times the four-OPW value.
Thus the total pseudopotential contribution is ap-
proximately given by the simple-metal calcula-
tion.

Unfortunately, the earlier simple-metal treat-
ment" did not include a calculation of the shear
constants, but a subsequent calculation by Mar-
tin" did and gave negative values corresponding
to an unstable lattice. Although he used a different
pseudopotential (a local model potential), we may
assume that ours also would have led to large
negative contributions which combine with the
zero-order kinetic energy term (not included by
Martin) to give the stable structure. The calcula
tion has not been carried out, but comparison of
the kinetic term and the experimental value indi-
cates that a cancellation of —', of the kinetic term
by the pseudopotential terms is required. This
negative value arises from contributions to the
band-structure energy from wave numbers greater
than the [111]wave number; for many of these
qdE/dq is negative.

It is remarkable that in this context the stability
of the tetrahedral structure arises from the
kinetic energy which, in some sense, blows the
Jones zone up like a balloon. The net effect of the
changes in pseudopotential under distortion is to
reduce the corresponding rigidity. This descrip-
tion of the entirety of contributions makes the
rigidity understandable, in spite of the instability
of the metallic model, and suggests that the stabili-
ty arises from terms of lower order than second,
not from the effects of higher-order terms. The
description does not explain why the cancellation
is so complete; that is better understood from the
identification of terms with the LCAO theory where
the reduction in bond energy under distortion is
the plausible source of stability.

We may also consider the charge distribution in
terms of the more complete description of the
electronic structure. In zero order each state is
a, plane wave (or OPW), and occupying states in
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which are responsible for the concentration of
charge density in the bonds.

We have addressed here only one aspect of the
structural stability question, the stability under
shear distortion. There are other distortions
which may have equal relevance, an important one
being the motion of the second atom in each cell
with respect to the first. A convenient procedure
for treating this has been described by Schiferl. "
One can follow the change in pseudopotential ma-
trix elements as one continuously moves from a
zinc-blende to a sodium-chloride structure. Note
that the kinetic-energy term does not change in the
process. The present approach would suggest
focusing in particular on the [111]matrix element
but this term favors the zinc-blende structure
over the sodium-chloride structure at all polari-
ties. It in fact favors internal displacements in
which the two atoms in the cell coalesce. Clearly
a complete discussion of the stability cannot be
made without the inclusion of radial interactions
and the other contributions discussed in Sec. VII.

The identification of the LCAO and the pseudopo-
tential approaches could be carried much further.
LCAO fits have been made to pseudopotential

bands and interatomic s —s, s -p, etc. , matrix
elements obtained. " It also must be possible to
identify these matrix elements with pseudopoten-
tial counterparts.

This formulation has provided a correspondence
between the free-electron and LCAO bases for an
understanding of the bonding, even to the point of
relating the fundamental parameters of the two
theories and seeing why both approaches can give
reasonable estimates. It seems possible that the
LCAO basis may remain the most versatile and

simple for treating bonding properties, but it is
valuable to have this complementary point of view.
We noted, for example, that the pseudopotential
theory directly gives a prediction of the decrease
in the matrix element V, upon distortion of the
lattice, while this required a scaling parameter
in the LCAO theory. On the other hand, the LCAO
theory leads directly to the suggestion that V,
should be independent of shear (there should be no
term linear in e}, while that is not obvious from
the pseudopotential theory. Such complementary
insights greatly enrich the understanding of co-
valent bonding.
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