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Values of the optical matrix elements are estimated from experimental values of the dielectric constant and the
energy of the optical reflectivity peak. The matrix elements of the momentum operator are found independent
of polarity, as in studies by Lawaetz and by Cohen. This is found to be consistent with the expectations of the
Penn model of the dielectric constant and with linear-combination-of-atomic-orbitals models. It is also found
to differ from but not nullify the assumptions of the Phillips—Van Vechten ionicity model. The matrix
elements of momentum also vary significantly with bond length (or metallicity), but in such a way that both
the bond-orbital and the pseudopotential descriptions simultaneously retain essential validity. Significant
corrections to the <y values of the bond-orbital model for the heavier elements are suggested by the study.

I. INTRODUCTION

The optical dielectric constant in simple tetra-
hedral solids (measured at frequencies below
interband absorption, but above the absorption
associated with vibrational modes) has gained
particular significance since Phillips! used it to
define an ionicity scale for these sytems. Simi-
larly a recent attempt at a linear-combination-of-
atomic-orbitals (LCAO) theory relating the elec-
tronic structure to the bonding properties of these
systems used optical properties to obtain values
for the parameters of the theory.>® Recently,
attention has been brought*5 to the fact that the
two approaches arrive at different results about
the trends in isoelectronic series of compounds
with varying polarity. The purpose of this paper
is to present an analysis of the assumptions of the
two theories and of the relevant experimental data
which will allow us to conclude that the two ap-
proaches are not in fact inconsistent, but repre-
sent different definitions of parameters, such as
average energy gaps. We will also, however,
show that the trends in parameters predicted by
the tight-binding model are in agreement with the
trends obtained by other workers in unrelated
ways.

II. DIELECTRIC CONSTANT

It is convenient at the outset to write the dielec-
tric constant in three equivalent forms, in all
cases based upon the two types of levels which
both analyses contemplated; we label these levels
a and b for antibonding and bonding, or equivalently
for conduction band and valence band, respective-
ly. One form, which is derivable immediately

14

for localized states by calculating the energy to
second order in a perturbing Hamiltonian —e&8x,
is
b |x|a){a|x|b)
€=1+87Ne? —L—|—Ea7u— (1)
a

Here the sum over bonding states has been re-
placed by N, the density of valence electrons, and
E ,, is the magnitude of the energy difference be-
tween the two types of levels.

A familiar relation® between the matrix elements
of the coordinate and of the momentum

(alx |b) =~ ia|p,|b)/mE ,,, 2)

allows this to be written in the equivalent form

., 87Ne*n® < (b |p,|a)(alp,|b)
Q=1+ —0s Za: EZbl ’ @

which remains applicable when the states |b) and
|a) become Bloch states in the solid.

A third convenient form is in terms of the di-
mensionless oscillator strength

fab = 2<b Ipxlaxa lpx1b>/(mEab)'

Writing the result in terms of the plasma frequency
wi=47nNe?/m gives

€,=1+ ;(%yf”' (4)

These dimensionless oscillator strengths are of
particular significance since they satisfy a rigor-
ous sum rule

3 fw=1, (5)
a
where the sum is over all states, occupied as well
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as unoccupied.

These three expressions for the dielectric con-
stant are equivalent but provide quite different
guides to the intuition. The form in Eq. (1) is
particularly useful in discussions of LCAO models.
Equation (3) is most useful in discussions of the
dielectric constant in terms of pseudopotentials
and Jones zones, and Eq. (4) is most appropriate
to discussions of the Phillips ionicity state.

Let us now assume that one of the excitation
energies E , dominates the sum over a in (1), (3),
or (4). The result may be written

€,=1+(aw,/E ), (6)
where

f= Z’fab; (7)
or as

€, =1+ (iw,/E ) 2p2/E ,, (8)
where

p2=3" 10|l 0l C)
or finally as

€O =1+ (ﬁwp/Eab)z(zm/ﬁz)Eabfzy (10)
where

72=E’|(b|x|a)|2. (11)

In Egs. (7), (9), and (11) the prime on the sum-
mation indicates that only empty states a are to
be included.

We will later make use of all of these various
expressions, but at this point we find it convenient
to discuss both the ionicity model and the bond-
orbital model in terms of Eq. (6). In the simplest
version of the ionicity model (see, e.g., the dis-
cussion by Phillips in Ref. 4), the basic equation
for €,, namely,

=1+ (1w, /E (12)

is obtained from (6) by invoking the sum rule (5)
whereby f=1. In Ref. 4 the satisfaction of the sum
rule is presented as a theoretical necessity. Com-
parison of Eq. (5) with Eq. (7), however, reveals
that /=1 only if there are no occupied states con-
tributing to the sum in (5). Since all crystals of
interest do have occupied core states lying below
the valence bands, we conclude that /=1 is always
an approximation. In fact, this had been recog-
nized by Van Vechten,” who set f=D>1 for ma-
terials having occupied d levels immediately below
the valence bands.?

In view of the above remarks, the two models

in question may be described in a systematic way
as follows: The ionicity model starts with Eq.
(6). It then prescribes that 7=1 for C and Si and
in all compounds isoelectronic with them. [Com-
bined with Eq. (6) and experiment this provides

a definition of E ,, in this model.] It further pre-
scribes that 7=D>1 for materials containing at
least one element from the Ge, Sn, and Pb rows,
which have high-lying occupied d levels. An
empirical prescription is postulated to fix D
for each material; that prescription yields an

F which decreases only very slowly in an isoelec-
tronic series. Having fixed 7, the experimental
value of €, is then used, from which a value for
the energy gap E ,=E, is immediately obtained.
Chemical trends and the definition of ionicity are
then based solely on these energy gaps by breaking
them up into two terms:

E2=E%+C" (13)

This is a prescription defining C, not a result de-
rived from a detailed theory. An additional pre-
scription to fix E, for each material®'” is supplied.
The entire procedure is legitimate, but we wish
to point out an important observation regarding
the meaning of the gap E,, namely, that E, is an
average gap which simulates the entire excitation
spectrum of the crystal, not only those excitations
which may be viewed as bonding-antibonding in
nature. One should therefore be cautious about
identifying E, as the bonding-antibonding gap or
as the Jones-zone gap of pseudopotential theory,*®
or in identifying the prescription (13) with either
theory.

We have just seen that the ionicity model starts
with Eq. (6), makes an assumption about 7, and
extracts energy gaps from the experimental value
for €,. The approach used in the bond-orbital mod-
el is quite different. There, a detailed, though
approximate, model was specified and various
properties, including the dielectric constant, were
calculated in terms of the parameters of the mod-
el. A form for the gap, analogous to Eq. (13),
followed from the model rather than appearing as
a separate postulate. The gap itself, the bonding-
antibonding splitting, was identified with the prin-
cipal peak in the reflectivity spectrum, usually
denoted by E,. With E , fixed at E,, Eq. (6) can
be used to extract experimental values for 7 from
the observed values of €,. One can then study the
trends of 7 and, equivalently, from Egs. (8) and
(10), the trends of the momentum and position
matrix elements in an isoelectronic series. We
will do this in the remainder of the paper. Note
that similar results are not obtainable from the
ionicity model, which postulates a prescription
for 7, with an energy gap chosen to be consistent
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with that prescription.

Before we proceed, a word of caution is neces-
sary. The choice of the reflectivity peak for E
is not the only possibility. It is, however, a
natural one both from the point of view of LCAO
theory and the bond-orbital model® and from the
point of view of pseudopotential theory'® and the
Penn model,® in which the energy denominator
may be associated with the Jones-zone gap. Fur-
thermore, it is known for a number of tetrahedral

semiconductors and provides a consistent standard.

Finally, we will find trends which are the same

as for matrix elements obtained in unrelated ways.
The two trends of interest are variations with
increasing atomic number (increasing metallicity)
and with increasing polarity. It is convenient
therefore to consider the series C, Si, Ge, Sn

and the compounds isoelectronic with them. Table
I lists the appropriate experimental values for
these systems, which comprise about a third of
the elemental and binary tetrahedral compounds.

TABLE I. Experimental optical constants for the
homopolar semiconductors and the isoelectronic com-
pounds.

Material  d (&) € E, V) d’Egn/n?
c 1.54 5.72 12.28 4.0
Si 2.35 12.02 4501 34
Ge 2.44 16.0 2 44h 3.6
Sn 2.80 24 3.7h 4.0
AlP 2.34 8¢ 5.5°¢
GaAs 2.45 10.0 d+e 5.0 P
Insb 2.81 1574 4.1h
ZnSe 2.45 5.9f 6.47
cdTe 2.81 7.2f 5.0

2N. A. Goryunova, Chemistry of Diamond-Like Semi-
conductors (Chapman and Hall, London, 1965).

PR. E. Lindquist and A. W. Ewald, Phys. Rev. 135,
A191 (1964).

€Y. F. Tsay, A. J. Corey, and S. S. Mitra, Phys. Rev.
B12, 1354 (1975).

TE. Burstein, M. H. Brodsky, and G. Lucovsky, Int.
J. Quant. Chem. 15, 759 (1967).

¢M. Hass and B. W. Henvis, J. Phys. Chem. Solids 23,
1099 (1962).

fD.T. F. Marple, J. Appl. Phys. 35, 539 (1964).

8R. A. Roberts and W. A, Walker, Phys. Rev. 161, 730
(1967).

hM. Cardona, K. L. Shaklee, and F. H. Pollak, Phys.
Rev. 154, 696 (1967).

1 The peak, observed in footnote h, shifted between 4.3
and 4.5, depending on the polarization of the light. We
select the value which lies between the C and Ge values.

iF, H. Pollak, in Proceedings of the International Con-
ference on II-VI Semiconducting Compounds, Providence,
1967, edited by D. G. Thomas (Benjamin, New York,
1968), p. 552.

The remaining compounds are “skew, ” containing
atoms from different rows of the periodic table.
The data for these systems are scattered, but
they follow similar trends. An adequate analysis
is possible by studying only the materials listed.

III. DIMENSIONLESS OSCILLATOR STRENGTHS

We look first at the dimensionless oscillator
strengths 7, which are obtainable immediately
from Eq. (6) and Table I. The results are shown
in Table II. Looking first at the variation with
increasing metallicity, we see that there is a
steady increase as we move downward in the table.
We note values less than unity, indicating that
oscillator strength exists at high-energy excita-
tions which do not participate™ significantly in
the determination of €,. For the materials of the
Ge and Sn rows we note values greater than unity,
which are possible, as discussed earlier, because
of the presence of the occupied d levels just below
the valence bands.

It is important to note that the need for explicit-
ly including a d-state correction’ is a result of the
use of the sum rule; the additional terms in the
dielectric constant due to the matrix elements
between d states and conduction-band states (these
correspond physically to the polarization of the
d states by the field) are small, particularly for
Ge, Sn, and the group-II-V compounds. Thus, al-
though it was correct and necessary to make these
corrections in Van Vechten’s” study, we now be-
lieve that they should not have been made in the
analysis by Harrison and Ciraci® in which the
sum rule was not used. We will return to this
question shortly and see that this has the effect
of modifying the values of the parameter y (for
the heavy elements) which they introduced, but
otherwise does not affect the analysis.

We see also from Table II that there is a con-
spicuous decrease in the dimensionless oscillator
strength with increasing polarity in each isoelec-
tronic series. We will see that this decrease in
the dimensionless oscillator strength with polarity

TABLE II. Dimensionless oscillator strengths for the
semiconductors listed on the left-hand side as determined
in the present work by the bond-orbital model (BOM) and
in the Phillips-Van Vechten (PV) ionicity model.

7 (BOM) 7 ®v)
C 0.71 1.00
Si AlP 0.81 0.75 1.00 1.00

Ge GaAS ZnSe 1.17 1.01 0.82 1.26 1.24 1.17
Sn InSb CdTe 1.92 1.53 0.95 146 1.43 1.30
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is just what is expected, on the basis both of
LCAO and of pseudopotential theory. This is an
important point but does not nullify the assump-
tions of the ionicity model in which 7 is taken

to be only slowly decreasing with polarity in an
isoelectronic series (see Table I). The difference
is that 7 in the ionicity is the totality of oscillator
strength for the valence electrons, whereas f in
the present discussion is the amount of oscillator
strength contained in the bonding-antibonding ex-
citations, which are assumed to determine ¢,
completely.

IV. POLARITY DEPENDENCE

We turn next to the matrix elements of x and of
p,. It is convenient to give them in dimensionless
form. In the case of the matrix elements of x we
note that if Ia) and lb) were simple symmetric
and antisymmetric combinations of §-function-like
localized states separated by bond length d, the
matrix element would be 3d if x was measured
along the bond. The angular average which enters
the calculation of the dielectric constant reduces
the 7ms matrix element by a factor of 3"*/2, so
we divide the experimental matrix elements by
d/2V3 before tabulating. Similarly for the matrix
elements of p,, if lb) and |a) were a simple sine
and cosine with wave number equal to that at the
center of a Jones-zone face [k =(110)(27/a)], the
matrix element of p along that wave number would
be 23/27/a=(3)*/21/d. The angular factor 371/2
arises again and we tabulate the matrix element
normalized to the ideal value; the two sets of
matrix elements are given in Tables III and IV.

We look first at the variation of the matrix ele-
ments with polarity; this comparison is unaffected
by our normalization of the matrix elements, since
the bond lengths do not vary appreciably in an
isoelectronic series. We see that it is the matrix
elements of p_ which are independent of polarity.
This independence would be immediately predicted
on the basis of simple pseudopotential theory,
such as the Penn® model of the dielectric constant.
The states above and below the Jones-zone gap
(or any other gap) are sinelike and cosinelike;
they may shift in phase with polarity but cannot
shift in relative phase (they must remain orthog-
onal), and so the matrix element is not expected

TABLE III. “Normalized” matrix elements of x,
namely 2vV3 {a|x|b)/d, as determined in the present
work. Compounds are arranged as in Table II.

1.06
1.22 1.07
1.43 1.24 0.99

1.74 1.47 1.05

TABLE IV. “Normalized” matrix elements of p,
namely v2d{a|p,|b)/(7%), as determined in the present
work. Compounds are arranged as in Table II.

0.52

0.52 0.55

0.64 0.64 0.65
0.86 0.81 0.71

to change. Also the calculation of the matrix ele-
ment of x is found®:? in the LCAO theory to vary
with polarity as (1- a2)*/2=V,/(V3+V3)!/2, or
inversely with the band gap. This, combined with
Eq. (2), similarly predicts the matrix elements
of p. to be independent of polarity.

A similar conclusion was reached by Lawaetz,'?
who determined momentum matrix elements in
connection with a study of the conduction-band ef-
fective masses in terms of the k *$ formula. The
same matrix element enters, but between different
states, so the absolute values differ. However,
the trends in his values, given in Table V, are
seen to be the same. Similarly, Cohen'? has
calculated such matrix elements for the series
Ge, GaAs, and ZnSe using empirical nonlocal
pseudopotentials. He obtained for our normalized
momentum matrix elements 1.07, 1.03, and 0.99,
respectively, for one point on the Jones zone and
1.54, 1.53, and 1.50 for another. It is striking that
all of these different approaches lead to the same
qualitative conclusion: The matrix elements of
p,, and not the dimensionless oscillator strengths,
are independent of polarity.

V. METALLICITY DEPENDENCE

We next turn to the absolute values of the matrix
elements and the trends with metallicity or bond
length. For this we need consider only the homo-
polar semiconductors. Note first that since the
band gaps vary inversely with the square of bond
length (this was noted by Harrison and Ciraci® and
is demonstrated in the final column of Table I
here), Eq. (2) suggests that the matrix elements
of x will have the same variation as the matrix
elements of p_. The simplest Penn model,® assum-
ing pure sinelike and cosinelike states and all
states contributing equally, would suggest a univer-
sal value of unity for the normalized matrix ele-

TABLE V. Normalized momentum matrix elements
obtained by Lawaetz, Ref. 12, using V2d (X|p, |T')/7 .
Compounds are arranged as in Table II.

1.25

1.26 1.14

144 1.43 1.39
1.58 1.56 1.48
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ments of p_. This is, in fact, not too far from the
truth, but misses the trend with increasing metal-
licity. Similarly, the simplest LCAO model based
upon hybrids localized at the ends of the bonds
would suggest a universal value of unity for the
homopolar semiconductors for the normalized
matrix elements of x. This again is semiquanti-
tatively correct, but misses the trend. It is re-
markable that if we take both of these models to be
simultaneously correct, the two matrix elements
may be inserted into Eq. (2) to give a prediction
that the band gaps would be inversely proportional
to d” and that the product md?E ,,/%? would have
the universal value 6'/27~17.7, a prediction with
no quantitative experimental input. The values
listed in the final column in Table I indicate that
this is not far from the truth either. This suggests
that the stable semiconductors are such that both
of these extreme views of the electronic structure
have essential validity. In particular, the extreme
tight-binding limit is best for C (for which the
normalized matrix element of x is closest to 1) and
must be refined as we move down the column,
whereas the extreme plane-wave limit is best for
Sn (for which the normalized momentum matrix
element is closest to 1) and must be refined as we
move up the column.

The trend with metallicity arises, as does the
difference in the Table I values from the predicted
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FIG. 1. Experimental macroscopic transverse charges
[compiled by G. Lucovsky, R. M. Martin, and E. Bur-
stein, Phys. Rev. B4, 1367 (1971)] (points) and experi-
mental piezoelectric charges [compiled by R. M. Martin,
Phys. Rev. B 5, 1607 (1972)] (crosses) plotted against
the values predicted by the bond-orbital model, using
new values for vy.

6!/27, from the deviations in the wave functions
from pure plane waves and from the deviations of
the bond orbitals from the idealized form. From
the pseudopotential point of view, it could well be
that the orthogonality to d states is responsible for
the trend in the heavy elements, consistent with
the d-state corrections used by Van Vechten.” The
values in Tables IV and V suggest this more than
the values in Table III. (The difference in the two
sets would not occur if the final values in Table I
were exactly constant.) However, if the sum rule is
not used, this becomes inconsequential. If we are
to incorporate this trend in the description of the
electronic structure, we must include a param-
eter which varies with metallicity. The param-
eter used by Harrison and Ciraci was defined such
that the matrix element of x, with x measured
along the bond, was {(a |x [b) =4vyd. Its value should
be taken as 1.06, 1.22, 1.43, and 1.74 for the four
rows in the Periodic Table, the four values from
the first column in Table III. Similarly, matrix
elements of p, could be scaled from their ideal
values using the first column of Table IV; how-
ever, Table V would suggest that different scaling
factors may be appropriate for different proper-
ties.

VI. EFFECTS OF MODIFYING

We note again that the use of values of 1.43 and
1.74 for y for Ge and Sn corrects what we believe
was an error in the Harrison-Ciraci treatment.
We should check to see how this affects the cor-
relations which they found. The parameter y did
not enter many properties, but did enter the ef-
fective transverse and piezoelectric charges. We
have recalculated those charges (using the formu-
las of Ref. 3) with values of y corresponding to
the first column in Table III, using again geo-
metric means for skew compounds. We also be-
came aware that for some 30% of the 38 tetra-
hedral semiconductors which were studied with
the LCAO theory as well as with ionicity theory,
there were no published experimental values for
the dielectric constants; values for most of these
had been chosen by Van Vechten” to fit chemical
trends. These, of course, do not add information
about chemical trends reflected in either theory,
so we have eliminated them. The resulting plot,
shown in Fig. 1, shows a slightly better accord
with experiment that the earlier study,® but not
significantly so. Since only y is affected, the
other correlations are unchanged.
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