Effect of composition and pressure on the nitrogen isoelectronic trap in $GaAs_{1-x}P_x$ [†]

R. J. Nelson, N. Holonyak, Jr., and J. J. Coleman

Department of Electrical Engineering and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

D. Lazarus

Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

W. O. Groves, D. L. Keune, and M. G. Craford Monsanto Company, St. Louis, Missouri 63166

D. J. Wolford and B. G. Streetman

Coordinated Science Laboratory and Department of Electrical Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

(Received 17 February 1976)

The luminescence and absorption behavior of the nitrogen trap in GaAs_{1-x}P_x is investigated as a function of composition and pressure. Luminescence and absorption data support the identification of strong phonon coupling to the broad N_x band (formerly identified as NN-pair recombination transition for $x \le 0.85$). Pressure measurements in the composition range $0.38 \le x \le 0.48$ demonstrate, in a continuous manner, the behavior of the N_{Γ} transition (previously identified as NN_3 for crystal composition $x = 0.37$ and 0.38 and the A line for 0.40 $\le x \le 0.55$). The oscillator strength of this state for an $x = 0.48$ GaAs_{1 x}P_x:N sample is observed to decrease with increase in pressure, disappearing at ~ 6.6 kbar or a simulated composition $x \sim 0.55$ $(E_{\Gamma} - E_{N} \sim 140 \text{ meV}).$

INTRODUCTION

Recently, the GaAs_{1-x} P_x alloy system doped with nitrogen has become important for practical $1 - 3$ and fundamental reasons. $4-8$ For both reasons it is important to establish the position (energy) of the nitrogen states as a function of alloy composition, or in other words with respect to the Γ and X band edges of the system. While the important effect of the N trap on the $300\degree$ K electroluminescence efficiency is relatively well known, $1-3$ recent studies of $In_{1-1}Ga_{\nu}P:N$ and more particularly N-implanted $GaAs_{1-x}P_x$ (Ref. 10) have shown that the luminescence transition originally identified with the nescence transition originally identified with the A line $(x \approx 0.35),$ ¹¹ and later with the A line (Fig. 4 A line $(x \approx 0.35)$,¹¹ and later with the A line (Fi
of Ref. 12) and NN pairs $(0.30 \sim x \le 1)$,¹²⁻¹⁴ is in fact due to recombination at single N impurities (A line) perturbed by the alloy (As-P or In-Ga) disorder. Apart from alloy disorder, the broad nature of this transition (here labeled N_r) is attributed to a strong phonon sideband that is characteristic of an impurity strongly coupled to characteristic of an impurity strongly coupled to
the lattice.^{9,10} In this work we present further data illustrating the "A line" behavior of the broad N_x band in the indirect region $(x \ge x_c)$ of GaAs_{1-x} P_x:N.

Since the N_x band of the present work exhibits A-line properties, 10 the "A line" observed earlier at higher energy near the Γ band edge $\lceil x \rceil$ $= 0.35$ (Ref. 11); $0.40 \le x \le 0.55$ (Ref. 13)], and that $(E_N \leq E_T)$ previously identified as NN_3 in $x=0.37$
-0.38 crystal,¹⁵ are of different origin and char $= 0.38$ crystal,¹⁵ are of different origin and char-

 $\mathrm{acter.}^{16}$ As the data below show, this level is a bound state associated with the Γ conduction band. Pressure measurements are described showing that this state (N_r) follows the Γ minimum for $x \leq 0.45$ and then beyond the direct-indirect transition $(x_c = 0.45, 77^\circ \text{K})$ bends and tends to parallel the X band edge until at $x \sim 0.55$ (where $E_r - E_w$ -140 meV) it disappears.

EXPERIMENTAL METHOD

EXPERIMENTAL METHOD
As in previous work,¹² the GaAs_{1-x} P_x:N of the present work has been grown by the now standard
AsH₃-PH₃ vapor-phase epitaxial (VPE) process.¹⁷ AsH₃-PH₃ vapor-phase epitaxial (VPE) process.¹⁷ Nitrogen is introduced into the crystals by adding NH₃ to the gas flow. Thin samples for absorption or photoluminescence experiments are polished and etched from the as-grown crystals. For the pressure measurements of this work N-doped $GaAs_{1-x}P$, substrates are prepared into $In_{1-x}Ga$. $P_{1-x}As_x-GaAs_{1-x}P_x:N$ single heterojunctions¹⁸ that do not absorb the higher-energy side of the electroluminescence spectrum where an "A line" might be observed.

A Cary Model No. 14RI spectrophotometer is used for absorption measurements on thin (~30- μ m) homogeneous samples. For photoluminescence measurements, a Spectra Physics Model No. 165 Ar' laser is used as an excitation source; a Spex Model No. 1702 0.75-m grating monochromator and an RCA 8645 photomultiplier are used to

examine the recombination radiation.

For the pressure measurements described below, a helium-gas pressure system¹⁹ and a pressure vessel with a sapphire optical window²⁰ are used. The pressure vessel is submerged in a liquid-nitrogen bath. Fiber optics are used to collect the diode luminescence and to direct the light to a Jarrell-Ash 0.5-m grating monochromator fitted with an RCA C31034 photomultiplier. A manganin gauge is used for pressure measurements. The pressure coefficients of the Γ and X band gaps of $GaAs_{1-x}P_x$ are known from previous work²¹ and from our own data obtained on N-free diodes, and are $dE_{\rm r}/d\rho \approx +11 \times 10^{-6}$ eV/bar and d $dE_x/dp \approx -1 \times 10^{-6}$ eV/bar. The combined pressure variation of the band gaps simulates a composition change of $dx/dp \sim 1.1\% / kbar$ for GaAs_{1-x} P_x.

EXPERIMENTAL RESULTS

In the indirect region of GaAs_{1-x}P_x:N(x>x_c ≈ 0.45 , 77°K) the N trap exhibits the luminescence spectra (77 \degree K) and A-line behavior shown in Fig. 1. As shown, all the curves are plotted as a function of energy with the high-energy luminescence peaks used as a common reference. The spectrum (a) of GaP:N $(x=1, n_N^2 2 \times 10^{18} \text{ cm}^{-3})$ possesses the sharp A line, NN_3 , NN_1 and associated phonon-

FIG. 1. Photoluminescence spectra (77 °K) of (a) GaP:N, (b) $x = 0.90$ GaAs_{1-x} P_x:N, and (c) $x = 0.84$ GaAs_{1-x}P_x:N. The high-energy side of the A line or N_r peak is taken as the reference for the spectra of the three crystals. Note that as the crystal composition x decreases, the spectra broaden owing to As-P disorder, increased electron binding energy, and stronger electron-phonon interaction.

 $\,$ replica transitions expected. 22 $\,$ For the case of $\,$ the x=0.90 GaAs_{1-x}P_x:N (n_N ~10¹⁸ cm⁻³) sample of Fig. 1(b) the phonon sideband that has recently been shown to be characteristic of the N trap in both $In_{1-x}Ga_xP:N^9$ and $GaAs_{1-x}P:N^{10}$ is clear. We note that in earlier work the LO-phonon replica of the N_x transition has been assigned to NN_3 pairs, and the N_x –2LO peak to NN_1 .^{12, 13} At still lower composition $(x=0.84)$ the luminescence spectrum, as shown in Fig. 2(c) $(n_N^2s 5 \times 10^{17} \text{ cm}^{-3})$, exhibits less structure in the phonon sideband owing to the larger exciton binding energy and the resulting increased electron-phonon interaction. In previous work (x=0.84) the assignment NN_3 for N_x has been
made, and NN_1 for N_x -LO.^{12,13} made, and NN , for N_x -LO.^{12,13}

Agreeing with the photoluminescence data of Fig. 1, Fig. 2 shows the expected sharp A -line absorption peak of GaP:N (a}, and the broadened absorption (b) and luminescence (c) spectra of an $x=0.75$ GaAs_{1-x} P_x:N sample. The Stokes shift between the absorption and luminescence peaks, which is characteristic of an impurity level strongwhich is characteristic of an impurity level str
ly coupled to the lattice,^{23,24} has been previousl demonstrated in⁹ $In_{1-x}Ga_xP:N$ and, although not recognized as such, in $GaAs_{1-x}P_x:N^{12}$ All the spectra of Fig. 2 are plotted as a function of energy with the X band edge used as a reference. Because the absorption and recombination at an isoelectronic center are dominated by exciton ef-

FIG. 2. Absorption spectra (77°K) of (a) GaP:N and (b) $x = 0.75$ GaAs_{1-x} P_x:N. Curve c shows the luminescence spectrum of the aHoy. The broader absorption and emission spectra of the alloy, and the Stokes shift between them (b) and (c), are characteristic of an impurity strongly coupled to the lattice.

 $-$ fects, \real^{22} the initial and final states can be treated as discrete, and the conventional configurationcoordinate model can be applied to determine the spectral half-width. $23,24$ This gives for the temperature variation of the N_x absorption-emission bandwidth the expression

$$
W_{1/2} = \alpha \hbar \, \omega [0.693 \coth(\hbar \, \omega/2k)]^{1/2} \,, \tag{1}
$$

where $\hbar \omega$ is the energy of the lattice mode and α indicates the strength of the impurity-lattice coupling. Figure 3 shows the measured values of the half-width of the N_x luminescence band as a function of temperature for $x=0.75$ GaAs_{1-x} P_x:N. For convenience, we define an effective half-width as $W_{1/2} = E_{\rho} - E_{1/2}$ where E_{ρ} is the photon energy at the maximum of the band and $E_{1/2}$ is the photon energy at the half-power point on the low-energy side of the luminescence band. As shown in Fig. 3, the data are well described by Eq. (1) with $\hbar \omega$ $=21$ meV.

The peak of the N_x luminescence band (Fig. 4) decreases rapidly with respect to the X band edge as the crystal composition x decreases^{12, 13, 15} and clearly is of different origin than the higher-energy curve labeled $N_{\rm r}$. The circular data points of Fig. 4 (see Table l) represent N-trap luminescence transitions that have been identified as the A line for^{12, 13} 0.40 $\leq x \leq 0.53$ and NN₃ pairs for the A line for^{12,13} $0.40 \le x \le 0.53$ and $NN₃$ pair $0.37 \le x \le 0.38$.¹⁵ In Fig. 5 we have reproduce data from Ref. 15 showing the emission spectra (77°K) of N-doped and N-free GaAs_{1-x}P_x:N at composition $x=0.37$. While the N-free sample exhibits the expected band-to-band luminescence, two additional transitions, N_x and N_r , are observed

FIG. 3. Effective half-width $W_{1/2}$ (as defined in the text) for the N-trap luminescence $(x=0.75 \text{ GaAs}_{1-x} P_x : N)$ as a function of the square root of temperature. The solid curve is Eq. (1) adjusted to fit the experimental data $(\hslash \omega =21$ meV).

for the N-doped sample. The transition labeled N_x corresponds to the N_x band of Figs. 1, 2, and 4. As mentioned above, previous work has at-
tributed the $N_{\rm T}$ peak of Fig. 5 to $N N_{\rm s}$ pairs.¹⁵ 1 tributed the $N_{\bf r}$ peak of Fig. 5 to $N N_{\bf 3}$ pairs.¹⁵ Recent photoluminescence studies on N-implanted GaAs_{1-x}P_x indicate, however, that the transition labeled N_{Γ} in Fig. 5 is due to an additional nitrogen bound state with a smaller binding energy than gen bound state with a smaller binding energy than
that of N_x .¹⁶ We label this transition N_r in both the direct and indirect composition regions although its character changes beyond the direct-indirect transition where $E_x \le E_r$.

To investigate the behavior of this state, we have made pressure measurements on $In_{1-x}Ga_y$ $P_{1-x}As_x-GaAs_{1-x}P_x:N$ heterojunction diodes (the diode active region is p type and lies in the GaAs_{1-x}P_x substrate) in the composition range $0.38 \le x \le 0.48$. Figure 6 shows the pressure variation of the N_x , N_r , and the band edge (Γ) to acceptor (Zn) luminescence peaks of an $x=0.42$ ceptor (Zn) luminescence peaks of an $x=0.42$
diode.^{18,25} The F-Zn transition shows the char acteristic pressure behavior of the direct band acteristic pressure behavior of the direct band
gap.²¹ Above ~4.5 kbar, the crystal is indirect as

FIG. 4. Energies (77°K) of the N_X band ('A line'') and higher energy N_{Γ} state in GaAs_{1-x}P_x:N. Energies of the Γ and X conduction band minima are also shown. For $x \ge 0.90$ NN₁ and NN₃ pairs are still distinguishable. Below $x \sim 0.90$, the NN pairs are not distinguishable and the A line of GaP: N becomes a broadened N_X band. The circular data points represent the photoluminescence peaks of a second N-trap level observed for $x \leq 0.55$.

TABLE I. Position of the N trap in GaAs_{1-x}P_x near the Γ and X band edges for crystal composition $0.35 \le x \le 0.53$. For reference the Γ and X band edges at 77°K vary as (Ref. 12 and 26) $E_{\Gamma}(x)=1.514+1.174x+0.186x^2E_{x}(x)=1.977+0.144x+0.211x^2$ and if the point at $x=0.35$ is ignored or is actually of lower composition $E_{N}(x) \approx 0.993 + 3.934x - 3.613x^{2}$, $0.35 < x < 0.55$.

Crystal					
composition $x = 0.35$ 0.37 0.385 0.40				0.42 0.425 0.435 0.48	0.53
N -trap					
energy (eV)	1.918 1.951 1.968 1.990 2.010 2.015 2.019 2.040				2.065

indicated by the small negative pressure coefficient of the X transition; i.e., in the pressur range ≥ 4.5 kbar E_x is lower in energy than E_x . The N_r transition follows Γ for $p \leq 3$ kbar (corresponding to $x \leq 0.45 \approx x_c$) and bends and follows X for $p \ge 5$ kbar. Also shown in Fig. 6 is the energy of the N_x band, which increases slightly for pressures to ~3 kbar, then decreases for $p \ge 3$ kbar. We note that the pressure behavior of $N_{\rm r}$ and $N_{\rm x}$ of Fig. 6 (and also of diodes of composition $x=0.38$ and 0.40) verifies, in a continuous manner, the position of the discrete data points of Fig. 4 $(x \le 0.49)$.

The behavior of the N trap (in GaAs_{1-x}P_x) at higher compositions $(x > x_c)$ is revealed by the spectral behavior of the $x=0.48$ diode of Fig. 7 as pressure is increased. Note that at composition $\overline{x} \approx 0.48$ and 77° K the diode active region is beyond
the direct-indirect transition ($x_c \approx 0.45$, 77° K),²⁶ the direct-indirect transition $(x_c \approx 0.45, 77^\circ \text{K})$, and recombination from the Γ valley ($E_T - E_{Zn} \sim 2.086$ eV) is not observed. Rather, at lower pressures recombination involving N_x and N_r (cf.

FIG. 5. Photoluminescence spectra (77 K) of N-free and N-doped GaAs $_{1-x}$ P_x (x = 0.37). Band-to-band recombination is observed in the N-free sample. The Ndoped sample shows the N_X and N_{Γ} states expected for $x < 0.55$.

Fig. 4) is observed as shown in Fig. 7(a). We mention that this emission agrees with Zn-diffused mention that this emission agrees with Zn-diffus
junctions prepared on the same substrate.¹² The \sim +16 meV shift to higher energy observed between curves (a) and (b) for both the $N_{\rm x}$ and $N_{\rm r}$ transitions (Fig. 7) may be attributed to the decreasing effect of the Zn acceptor in the recombination process as the crystal becomes more increasing effect of the Zn acceptor in the recom-
bination process as the crystal becomes more in-
direct with increasing pressure.^{4,5} This is an interesting impurity effect in its own right that is sensitive to the crossover from direct to indirect $gap.^{4,5}$

Of primary interest here, however, is the variation in intensity of the state labeled N_r as pressure

FIG. 6. Pressure variation of N_X , N_{Γ} , and Γ -Zn transitions of an In_{1-x} Ga_y P_{1-z} As_z-GaAs_{1-x} P_x:N (x=0.42) single heterojunction. For $p \ge 4.5$ kbar the crystal becomes indirect and the I-Zn transition is replaced by that involving the X band edge (and its associated pressure behavior). The N_{Γ} state follows the Γ band edge to $p \sim 3$ kbar $(x \sim 0.45)$ and the X-band edge for $p \ge 5$ kbar $(x \ge 0.47)$. The energy of the N_X band is observed to increase slightly as the direct-indirect crossover is approached.

FIG. 7. Spectral behavior (77°K) and N_{Γ} -level intensity variation with pressure (inset) of an $In_{1-y}Ga_yP_{1-z}As_z$ -GaAs₁- $_{x}$ P_x:N (x=0.48) single heterojunction (constant current density, $J = 6 \times 10^3$ A/cm²). The N_r-level luminescence intensity (inset) decreases with pressure owing to the rapid increase in energy of the Γ band edge, and increase in E_T-E_N , and thus decrease of the $k=0$ wavefunction component of the N_{Γ} -level bound electron. Curve b is shifted $(\sim 16 \text{ meV})$ to higher energy because of the decreased effect of the Zn acceptor as the crystal becomes more indirect with increased pressure.

is increased (see inset of Fig. 7, diode current constant at $J=6\times10^3$ A/cm²). At low pressures, $E_{\Gamma} - E_{N} \approx 70$ meV, and the N_{Γ} transition is clearly observed. As the pressure is increased and $E_{\rm r}-E_{\rm w}$ increases (to ~140 meV at 6.57 kb), the intensity of the N_r transition is observed to decrease relative to that of N_x . This is in agreement with the circular data points of Fig. 4 which indicate that the transition labeled N_r has not been
observed at crystal compositions $x > 0.53$.²⁷ observed at crystal compositions $x > 0.53$.²⁷

DISCUSSION

The pressure data described here for GaAs_{1-x}P_x:N (0.38 $\le x \le 0.48$) have demonstrated in a continuous manner the behavior of the two nitrogen states $N_{\rm r}$ and $N_{\rm x}$ in the vicinity of the direct-
indirect crossover $(x = x_{\rm r} \approx 0.45, 77^{\circ} \text{ K})$.²⁶ This indirect crossover $\hat{x} = x_c \approx 0.45$, 77°K).²⁶ This work agrees with recent photoluminescence studies on N-implanted GaAs_{1-x}P_x (Refs. 10 and 16) which indicate that the states previously identified as NN_3 at composition $0.37 \le x \le 0.38^{15}$ and the A line in the range $0.40 \le x \le 0.53^{12}$, ¹³ are

actually the same N-impurity level, a mixture of Γ and X components near crossover. The decreased oscillator strength observed here for this state (N_r) as $E_r - E_g$ increases with pressure may be attributed to a lessening of the $k=0$ component of the bound-electron wave function as the crystal becomes more indirect. Although not shown in the data of Fig. 7, we note that the original experimental data indicate that as the N_r -state transition decreases in intensity, it becomes indistinguishable from the Te₀ – LA (or $E_{\kappa x}$ – LA)¹² transition for $p \ge 5$ kbar $(x \ge 0.54)$.

It is interesting to note that the N_r state and transition described here has sufficient oscillator strength in the range $x=0.37-0.38$ so that it can be photopumped on the N_r state itself (i.e., E_N be photopumped on the N_{Γ} state itself (i.e., E_N
 $\langle E_{\rho} \times E_{\Gamma} \rangle$ and be operated in stimulated emission.²⁸ This is now understandable. In the range 0.38 $\leq x \leq 0.43$ this state has been operated in stimulated emission in heterojunctions but at higher current thresholds than in the same diode structures free thresholds than in the same diode structures free
of N doping.^{8,25} That is, the N_{Γ} state to some extent hinders band-to-band recombination. Nevertheless, in the even more difficult range $x, \leq x$ <0.47 (in accord with the N_r emission of Fig. 7), this state has operated in stimulated emission by either photopumping²⁹ or electron beam pump ing^{27} (but not in diodes). In view of the present work (Fig. 7), probably the upper composition limit for laser emission in GaAs_{1-x}P_x:N has not yet been attained (but most likely does not exceed $x \sim 0.55$).

Of further interest, and now understandable in view of Refs. 10, 16, and the present work, the N_x state (transition) has recently been extended in laser operation from¹¹ $x=0.35$ to $x=0.37$,³⁰ i.e., to laser operation from $x=0.35$ to $x=0.37$, $x=0.3$, to a region of weaker band-structure enhancement' (but still direct-gap crystal). Just as for the case of the N_r state, in heterojunctions the N_x state has been observed to hinder or weaken radiative recombination in comparison with band-to-band recombination in otherwise similar N-free direcombination in otherwise similar N-free di-
odes.³¹ Note that the results we have describe here do not speak well for the case for stimulated emission in GaP:N. Finally, we remark that for the N_x state the extension of stimulated emission to higher crystal composition is not nearly as important as the use of this state in light-emitting diodes, which are optimum at $x \sim 0.65 > x_c$.¹⁻³

ACKNOWLEDGMENTS

We are grateful to M. J. Ludowise, P. D. Wright, and P. C. Allen for help with this work. We thank Y. S. Moroz, R. I. Gladin, J. A. Gray, K. A. Kuehl, B. L. Marshall, and M. Runyon for technical assistance.

-)Work supported by NSF Grant No. DMR-72-03045-A01; ARPA (DoD), Contract No. F44620-75-C-0091 (monitored by AFOSR); ERDA, Contract No. AT-11-1-1198, and the Joint Services Electronics Program U.S. Army, U. S. Navy, U. S. Air Force), Contract DAAB-07-72- C-0259.
- ¹W. O. Groves, A. H. Herzog, and M. G. Craford, Appl. Phys. Lett. 19, 184 (1971).
- 2° M. G. Craford, D. L. Keune, W. O. Groves, and A. H. Herzog, J. Electron. Mater. 2, 137 (1973).
- 3J. C. Campbell, N. Holonyak, Jr., M. G. Craford, and D. L. Keune, J. Appl. Phys. 45, ⁴⁵⁴³ (1974).
- ⁴J. C. Campbell, N. Holonyak, Jr., A. B. Kunz, and
- M. G. Craford, Phys. Rev. B 9, 4314 (1974).
- 5J. C. Campbell, N. Holonyak, Jr., M. H. Lee, and A. B. Kunz, Phys. Rev. B 10, 1755 (1974).
- 8J. J. Coleman, N. Holonyak, Jr., M. J. Ludowise, A. B. Kunz, M. Altarelli, W. O. Groves, and D. L. Keune, Phys. Rev. Lett. 33, 1566 (1974).
- YM. Altarelli, Phys. Rev. B 11, 5031 (1975).
- 8J.J. Coleman, N. Holonyak, Jr., A. B. Kunz, W. O. Groves, D. L. Keune, and M. G. Craford, Solid State Commun. 16, 319 (1975).
- ${}^{9}R.$ J. Nelson and N. Holonyak, Jr., J. Phys. Chem. Solids (to be published).
- ¹⁰D. J. Wolford, B. G. Streetman, R. J. Nelson, and N. Holonyak, Jr., Solid State Commun. (to be published).
- 11N. Holonyak, Jr., D. R. Scifres, R. D. Burnham, M. G. Craford, W. O. Groves, and A. H. Herzog, Appl. Phys. Lett. 19, 254 (1971).
- 12M. G. Craford, R. W. Shaw, A. H. Herzog, and W. O. Groves, J. Appl. Phys. 43, ⁴⁰⁷⁵ (1972).
- $13N.$ Holonyak, Jr., R. D. Dupuis, H. M. Macksey, M. G. Craford, and W. O. Groves, J. Appl. Phys. 43, ⁴¹⁴⁸ (1972).
- 14 H. M. Macksey, N. Holonyak, Jr., R. D. Dupuis, J. C. Campbell, and G. W. Zack, J. Appl. Phys. 44, 1333 (1973).
- ¹⁵R. D. Dupuis, N. Holonyak, Jr., M. G. Craford,
- D. Finn, and W. O. Groves, Solid State Commun. 12,

489 (1973).

- ¹⁶D. J. Wolford, B. G. Streetman, W. Y. Hsu, J. D. Dow, R. J. Nelson, and N. Holonyak, Jr., Phys. Rev. Lett. (to be published).
- ¹⁷M. G. Craford and W. O. Groves, Proc. Inst. Electr. Eng. 61, 862 (1973).
- 18J. J. Coleman, W. R. Hitchens, N. Holonyak, Jr., M. J. Ludowise, W. O. Groves, and D. L. Keune, Appl. Phys. Lett. 25, 725 (1974).
- 19 J. D. Weiss and D. Lazarus, Phys. Rev. B 10, 456 (1974).
- 20 D. B. Fitchen, Rev. Sci. Instrum. 34 , 673 (1963).
- 21 T. A. Fulton, D. B. Fitchen, and G. E. Fenner, Appl. Phys. Lett. $4, 9$ (1964).
- 22 D. G. Thomas and J. J. Hopfield, Phys. Rev. 150, 680 (1966).
- ²³T. H. Keil, Phys. Rev. 140 , A601 (1965).
- 24 J. M. Dishman and M. DiDomenico, Jr., Phys. Rev. B 4, 2621 (1971).
- 25 J. J. Coleman, N. Holonyak, Jr., M. J. Ludowise, P. D. Wright, W. O. Groves, D. L. Keune, and M. G. Craford, J. Appl. Phys. 46, 3556 (1975).
- 26 R. J. Nelson, N. Holonyak, Jr., and W. O. Groves,
- Phys. Rev. B <u>13</u>, 5415 (1976).
²⁷N. Holonyak, Jr., J. C. Campbell, M. H. Lee, J. T. Verdeyen, W. L. Johnson, M. G. Craford, and D. Finn, J. Appl. Phys. 44, 5517 (1973).
- 28 R. D. Dupuis, N. Holonyak, Jr., M. H. Lee, J. C. Campbell, M. G. Craford, D. Finn, and D. L. Keune, Appl. Phys. Lett. 22, 369 (1973).
- $29N.$ Holonyak, Jr., R. D. Dupuis, H. M. Macksey, G. W. Zack, M. G. Craford, and D. Finn, IEEE J. Quantum Electron. QE-9, 379 (1973).
- 30D. J. Wolford, B. G. Streetman, R. J. Nelson, and N. Holonyak, Jr., Appl. Phys. Lett. 28, 711 (1976).
- 31 J. J. Coleman, N. Holonyak, Jr., M. J. Ludowise, R. J. Nelson, P. D. Wright, W. O. Groves, D. L. Keune, and M. G. Craford, J. Appl. Phys. 46, 4835 (1975).