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A quantum theory using a density matrix for microwave electric conductivity in the presence of a magnetic
field of arbitrary strength, within the effective-mass approximation, is described. No ad hoc introduction of
relaxation time or transition probabilities as in the solution of the Boltzmann transport equation is made. The
frequency-dependent relaxation time is included in the formalism in a natural way by means of a formal
manipulation of Liouville’s equation for the density matrix and then making approximations for the case of
electron scattering via acoustic and optic phonons in the nonpolar model. The components of
magnetoconductivity are obtained in a form suitable for numerical computation.

I. INTRODUCTION

The microwave techniques are being extensively
used because of their potential to give useful in-
formation about the scattering parameters.'”®
For example, the group of Srivastava et al.'"* has
investigated low-field magnetomicrowave effects
in magnetotransmission to estimate the relative
contribution of various scattering mechanisms.
Jain and Srivastaval have estimated the relative
importance of electron scattering via acoustic
and optic phonons, and impurity atoms by making
comparison of the semiclassical theory based on
the solution of the Boltzmann transport equation
with their experimental results on magnetomicro-
wave transmission on n-type germanium. The
intervalley scattering was neglected and the relax-
ation time was assumed to be independent of fre-
quency. The effect of intervalley scattering was
included in a later work® to interpret the magneto-
microwave Faraday effect in n-GaSb to estimate
the value of the intervalley scattering parameter.
The effect of piezoelectric potential scattering on
the microwave Faraday effect in n-CdS was studied
by the same group.?

Recently, Dorschner and Vernon® studied the
Voigt-type microwave Kerr effect in semicon-
ductors with spherical constant-energy surfaces
by using a plane-wave analysis with the Boltz-
mann transport equation. This analysis was then
used for the parabolic model of n-InSb to interpret
experimental results. They claim to be in funda-
mental disagreement with the formulations of
Srivastava and co-workers.*

In a more recent work, Nag and Dutta® have used
an iteration method to solve the Boltzmann equa-
tion to investigate galvanomagnetic and micro-
wave transport coefficients. The effects of non-
parabolicity, overlap integrals, and the effect of
electron scattering were included in their de-
scription. The results obtained are shown to agree
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well with experiments on InSb at 77 °K for an
acoustic-phonon deformation-potential constant of
about 20 eV for magnetic fields of up to 0.1
Wb/m?2.

All the above works are based on the magneto-
conductivity tensor obtained from the semiclassic-
al Boltzmann transport equation, where an ad hoc
introduction of frequency-independent and mag-
netic-field-independent relaxation time is made.

It has been explained by the author”!° that this
semiclassical picture may break down when the
radius of the cyclotron orbit of an electron in a
magnetic field becomes comparable to its mean
free path or de Broglie wavelength. Brodwin

and Burgess!! observed the Faraday rotation in

Ge and Si at room temperature with pulsed mag-
netic fields of up to 15.0 Wb/m?. When compared
with the theoretical model, they found a significant
departure of the experimental results from the
theoretical results at higher fields. Jain and
Srivastava! feel that this anomaly is due to the fact
that impurity scattering was neglected. The

small values of impurity-scattering parameters
obtained by Jain and Srivastava! show that impurity
scattering could not be that important especially

at room temperature in semiconductors. At mag-
netic fields of the order of 15.0 Wb/m? the quantum
effects” !° may become quite important.

In spite of a large amount of theoretical and ex-
perimental work,’~® the quantum theory has not
yet been fully exploited to interpret magnetomicro-
wave experiments. A part of the reason may be
the complexity of the quantum treatments.
Kawabata'? obtains a complex expression for line
shape, which depends upon the frequency and
magnetic field. Ito et al.” obtained expressions
for transverse magnetoconductivity with frequency-
independent relaxation time by using a diagram-
matic technique. They applied these expressions
to estimate the deformation-potential constants.
Since the frequency dependence of the relaxation
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time is not important near the cyclotron reso-
nance,'? their results were in reasonable agree-
ment with those obtained by other means. Argyres
and Sigel!* review and criticize these and other
quantum-mechanical treatments.

A quantum theory for microwave conductivity
with no magnetic field, that of using the density
matrix, was quite recently worked out by the
author.’® No ad hoc introduction of the relaxation
time or transition probabilities was made in this
work. Starting from the formal manipulation of
Liouville’s equation, approximations were made
to obtain expressions for microwave conductivity
with frequency-dependent relaxation time. A shift
in microwave frequency was also observed.

A relatively simple density-matrix approach for
magnetoconductivity at high frequencies based on
the scattering dynamics of Arora and others” °
was reported earlier.'® In this work, we describe
in detail the quantum theory in the framework of
the Arora-Peterson’® density-matrix formalism
to evaluate the components of magnetomicrowave
conductivity. Since microwave experiments are
usually done at room temperature, we will con-
sider only the electron scattering via the acoustic
and optic phonons in the nonpolar model. Other

refinements such as including the nonparabolicity,*®

multiple valleys, ® polar interactions, etc., could
be done in a straightforward manner when needed
and will not be considered in the present work.
Our aim is simply to present a first-principles
theory for microwave conductivity in a magnetic
field when quantum effects are important.

II. DENSITY MATRIX

The Hamiltonian of the electron-phonon system
in the presence of a magnetic field with magnetic
potential A = (0, Bx,0) in the Landau gauge and a
weak alternating electric field § = §,e**
=(80xs oyy Soo)e’! could be written as a sum of
an unperturbed part and a perturbation:

3e(t) =3¢ +3¢'(2) 1)
with

¥o =3Ce +3C (2)

3, =[P+ (py+m*w x)* + ] /2m* ®3)

3= Y N+ D, @)

JC’=V+Fe(’”‘”)'=Ve30- -I'.e(s+iw)t’ (5)

where w, =eB/m*c is the cyclotron frequency of
the electron of effective mass m* in a magnetic
field of strength B. N, is the occupation number
and w, the angular frequency for phonons of wave
vector . The factor %, where s is a small num-

ber, describes the slow time development of the
switching on of the applied electric field.”™® At
t=—, the electric field is turned on with zero
initial amplitude. Our aim is to describe the
steady-state behavior of the system at t=0, which
could be done by taking the limit s— 0*. The in-
clusion of the electric field interaction in the
perturbation part gives us the convenience of
choosing a uniform initial steady-state density
matrix at t=-«, The eigenvalue solution of 3¢,
of Eq. (3) is well-known’'? with eigenfunctions

|a)=|nk)y=e'*»* 2280 ((x = x,)/1), (6)

where ¢, is the harmonic-oscillator wave function
which in terms of Hermite polynomials is

(¥ =x)/N) = 1/ V72102
xH,((x - xk)/x)e-(x-ka/zxz ,
)
with
%,=-\%k,, X=(fc/eB)'?. (8)

The corresponding eigenvalues of ¢, are Landau
levels:

€0 =€ = (n+ DHw, +H2R2/2m* (9)

where k stands for (k,, k,).

In the absence of perturbation (3¢’ =0), the
quantum-mechanical state of an electron is well
represented by a wave function of the type given
by Eq. (6). The perturbation introduces the un-
certainty in the quantum-mechanical state of the
system, necessitating an expansion of the wave
function y* of the ith electron in terms of an
orthonormal set of Eq. (6):

P)= Y ahd)la). (10)

An ensemble average of the current for », elec-
trons in the system can then be described by

1 - N -
m:an (P Tl ¥ =Tr(pdey) (11)
where
1 .
(alpla’)=— 3" aut)ais ()
e 3
satisfies Liouville’s equation” °' %

m%:[sc, o]. (12)

To solve this equation, we will describe the time
development of the density matrix as

p=po+p'e(“‘w“, (13)

where p, is the uniform density matrix independent
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of an electric field whose diagonal elements are
the Fermi-Dirac distribution functions® f,, and
p'es* ) a time varying part driven by the elec-
tric field. Substitution of Egs. (5) and (13) in Eq.
(12) results in a coupled equation for matrix ele-
ments of p’:

[€ aor —iTi(s +iw) (@] p"| @")
=faarla| V] a'ye "+ (a|[p,, F]l o)
+(allp’, Vlla+(al[o’, Fllae***, (14)
with
€oa’=€q—€qry (15)

foar=fa=FSar- (16)

Since we are not interested in this work in the
generation of higher harmonics, we will neglect
the last term of Eq. (14). In the solution of a
coupled equation such as Eq. (14), a linearization
procedure is usually adopted, where the [p’, V]
term containing higher powers of V is neglected.”
The linearized value of {a|p’| @’) is then used in
the commutator [p’, V] term to generate higher-
order terms. As has been discussed earlier in
detail,”*® this will result in divergent results as
the series expansion does not converge. We,
therefore, solve Eq. (14) formally

(alp’la’= € qor +HRW —ills

faale|V]ane™® 9t +(al[py, Flla+(al[o", Vila®)

amn

This formal solution is then used in the [p’, V] term of Eq. (14) to get
(€ o +Hw — is) (| p'| @'V = faar(a| V] a"de " + (a| [py, F]| a’)

+ Zfaoz”<al Viame 9 4 (a|[p’, V]l @”)+(a|[p,, FlI 2D (a"|V]a)

a’

€qa” +7w - ilis

nfarala”| V] @Ye 19 + (a”| [p’, V]I @) +(a"|[py F]| &’
- (alvliam

This is an exact equation in the Ohmic limit. The
iteration could be continued further, but we stop
here to make some approximations. At this point,
we will assume that V describes an electron-
phonon interaction in the nonpolar model.®*!® All
the first-order terms in V will then drop out in
the ensemble average.” Moreover, all the second-
order terms will also drop out unless they can be
reduced® to the form |{a|V|a”)|%. Now, we take
the limit s— 0 and use the identity

1 1
i =P(=)+in6
iuf)x ; P( )Hn (%), (19)

to get the steady-state equation for (a|p’| a’)

(€ qor +Aw) | p’| @”)
=(a| [po’ F]l a'>+<0£|P'I a’) (7Y yo +iﬁ/7ua’)’

(20)

which can be easily solved to give

(allpy, Fll @)
! =
(alpla’y € qot AV oot — AL/ T g o +iw)’ @1

with

1/Tqor =1/274,+1/27,, (22)

1 - 1”_ ’ ny|2

T = (; l(a lVla )l 6(€aa"+ﬁwiﬁwa)’
(23)

€ nor +HW —1AS :
o o (18)

r

1 27 , -
T Zl(a |V]a”) |2 6(eqrqn —Biw + Hiw, ),
o a”s
(24)
1 e |V]a")|?
Voa! = P; ( €or = €Eqn =MW thW,
[{a'[V]a")|?
- ) e
€q— €Eqn+Hwt Rw,

+ on the summation stands for phonon absorption
and emission, respectively. Equation (21) has
built in it a Breit-Wigner type of collision broad-
ening which could not be obtained if the iteration
procedure of other workers!” were followed. The
presence of the last term in Eq. (20) is thus quite
important. This has been described by Arora and
Peterson® as the scattering dynamics which goes
beyond the strict Born approximation and is equiv-~
alent to Van Hove’s “V2¢limit” technique.!®* More-
over, the energy levels are shifted by an amount
proportional to the square of the scattering inter-
action.

1II. MAGNETOCONDUCTIVITY TENSOR

The matrix elements of the one-electron cur-
rent operator J, as obtained from the Heisenberg
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equation of motion,

I)P=—evop =-(ie/h’)[3€, F]’ o
are given by

(@' opx @) == (e NZ XM *) [(n+1)72 8,1 1y =172 8,0 1y Oy, o

(a’ ,Jepyla> == (ﬁe/ﬁ)\m *)[(n +1)1/2 6n',n+1+n /2 6ﬂ’,n-l] Gk'!’ (28)

(a,'Jonz|a>=—(ehkx/m*)6""‘ 6"”" (29)

The ensemble average of the current (J,,) cant then be obtained from Eq. (11). The complex magneto -
microwave conductivity tensor T defined by () = R é,’ e'“! is then obtained as

g, =0, 0
E:(az o, o), (30)
0 0 o,
with
_iz_ Tn,nﬂ (k) [1 +iw7n,n+1(k )]
w2 S ) ) T e+ 1 i, T ey
[w +Vn+1 n(k)] nn+1(k)
S YT ()L O FET NN ) L 2
Tan (R) af  (nk,\?
03=_622 1 +iwTy, (B) dep, (-771*_) ’ (33)

nks

where s stands for two-spin states of the electron.
When the zero-frequency limit is taken (w - 0),
the conductivity tensor of Eq. (28) reduces to that
obtained earlier.® When zero magnetic field limit
is taken the results reduce to those obtained for
zero-field microwave conductivity.!> For the
model in which 7 is assumed to be constant, in-
dependent of quantum numbers »n and »#, the com-
plex conductivity components of Eqs. (29)-(31)
assume a simple form

nee: T(l+iwT)

AT T Wi+ (1+iwT)?’ (34)

_nee? w,T?
02= % FrEr(LFiwr?’ (35)
0= nee® T 36)

m* 1+iwr’

where 7, is the electronic density per unit volume.
In the works of Srivastava and others'~5 an aver-
aging of the expressions (34)-(36) was performed,
where energy dependence of the relaxation time
was included to analyze experimental results. Our
results Egs. (31)-(33) do reduce to their expres-
sions in the limit of low magnetic field, when 7
can be taken to be approximately independent of the
magnetic field and the microwave frequency. It is
interesting to note that in the experiments of Ken-

r

nedy et al.'® a frequency dependence of the cyclo-
tron resonance in silicon inversion layers has in-
deed been observed. They also had to assume B'/?
temperature dependence of the linewidth to fit
their data. Both these features are included in ex-
pressions (31)-(33).

It is customary and convenient for the analysis of
the microwave experiments to split a linearly pol-
arized wave into two circularly polarized waves.!
The propagation constants for the two senses of
polarization are determined by the conductivity
terms

o =01;ticrz

(B)n+1)

Tn,n +1(R)
1+z{w$[w +Vn bl,n(k)]} nyn +1(k) ’

(37)
whose real (in-phase component) and imaginary
(out- of-phase component) parts are given by

=L S @+ )
nks

Tn,n#l.(k)
1+{wq=[w +V;| +1, n(k) }2 nyn bl(k) ’

(38)

nyn +1
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0.::_%—; Zfﬂ.(n+1)(k)(n+1)
nks
{w;[w + Vp +1,n(R) JT,,,,, *1(k)
1+{wx[w +V"”_."(k)]}2 . ner(®)’

(39)

Investigation of resonance and microwave effects
in the transverse configuration involves these
terms. The mode with positive sign (o,) is char-
acterized as the cyclotron-resonance active mode.
At this point, it may be worthwhile to make com-
parison with the results obtained by Kawabata'?
using the generalized form of the Langevin equa-
tion of Brownian motion. The motivation behind
Kawabata’s work was to explain the line shift and
linewidth in cyclotron-resonance absorption, where
the power absorbed in the cyclotron-resonance
active mode is proportional to o® [Reo, .(w) in no-
tation of Ref. 12]. When properties of the scat-
tering interaction of electrons via acoustic and
optic phonons in the nonpolar model® are used, the
anisotropic terms involving the ratio of J%’s in Eq.
(3.6) of Ref. 12 will drop out. Then, the real part
of I',(w) used by Kawabata is equivalent to 1/7,.,
of Eq. (22) above when o =(n,k,,%,) and
a’=(n+1,k,,k,), whereas the imaginary part of
I',(w) is equivalent to v . of Eq. (25). However,
Kawabata approximates these components of I' (w)
by those at w=w_ near the cyclotron-resonance
frequencies.

The in-phase (0F) and out-of-phase (¢]) compon-
ents of o, are given by

. o (w0
eZ1+wT(kdnk x)

nks

_ w-r,,,, k) af (h'_k, 2
o5=e Z 1+w272 (k) de,, m*) : (41)

The numerlcal computation of the above expres-
sions can be facilitated by using the transformation
and resummation technique described earlier.”
The effect of multiple valleys and nonparabolicity
can be included in a straightforward manner®:° if
needed. The theory thus can be used to describe
microwave experiments at high frequencies in a
strong magnetic field. Some applications of this
work will be published in future works.

IV. CONCLUSION

A quantum theory, that of using the density ma-
trix, where no ad hoc insertion of the relaxation
time has been made, is described. The semi-
classical Boltzmann transport equation for micro-
wave conductivity has been fairly well successful
for problems involving none or at most a low mag-
netic field, because the de Broglie wavelength
(1p) of the electron has always been smaller than
the mean free path (:,) and the radius of the cyclo-
tron orbit (1), i.e., A, <x,<A. For such fields, an
electron can be treated like a classical particle and
the effect of a magnetic field on its motion can be
treated as a perturbation. But, for strong mag-
netic fields, this semiclassical situation may
change when A~ (or equivalently w_ 7~1). In this
case the effect of a magnetic field cannot be treat-
ed as a perturbation. The curvature in the mean
free path of an electron introduces nondiagonal
matrix elements of the velocity operator in any
quantum-mechanical representation, and gives
zero expectation value for the current if its aver-
aging is attempted with the Boltzmann transport
function. It is at this point that the quantum-me-
chanical treatment has a distinct advantage over
Boltzmann-type techniques. This technique has
further advantage when A~ or 7w _~ ¢, the Fermi
energy (k,T, for nondegenerate electrons); then
the Landau quantization also plays a prominent
role. A review paper by Dresden® does an excell-
ent job in explaining why the semiclassical Boltz-
mann transport equation cannot be used for mag-
netic field of arbitrary strength.

With the advent of an era of strong magnetic
fields available from superconducting magnets, it
is hoped that the present work will help others to
interpret microwave experiments in terms of more
meaningful results.
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