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In a previous paper, we described the use of a perturbation technique in conjunction with the modified-plane-

wave method to calculate first-order changes in electronic energy levels for fcc crystals under hydrostatic,

tetragonal, and trigonal strains. In the present paper this approach is applied to changes at the Fermi level of
Cu. We outline the use of these shifts to estimate changes in extremal Fermi-surface areas which may then be

compared with de Haas-van Alphen data. Results for the hydrostatic case compare reasonably well with

other calculations and with observation. For the uniaxial-stress cases comparison is made with the calculation

of Davis and with observation by taking the appropriate linear combination of our hydrostatic and tetragonal

(trigonal) results. Reasonable agreement with the limited experimental values is obtained; agreement with

Davis is reasonably good in two cases but poor in others.

I. INTRODUCTION

In a previous paper, ' hereafter referred to as I,
a perturbation procedure was developed within the
framework of the modified-plane-wave formalism
to calculate first-order shifting and splitting of
electronic energy levels for fcc crystals under
hydrostatic, tetragonal, and trigonal strains. Nu-
merical results for Cu for several high-symmetry
points were given. We have now' applied the pro-
cedure to calculate shifts at the Fermi level of Cu.
From these shifts one may compute the change in
area perpendicular to certain directions and com-
pare with de Haas-van Alphen measurements.

The one-electron potential used is described in
Sec. II. The use of symmetry to simplify the
shear-strain calculations is discussed in Sec. III
while Sec. IV describes some preliminary tests.
Strain-induced energy shifts near the Fermi level
are given in Sec. V; use of these energy shifts to
compute changes in orbital area is outlined in Sec.
VI. In Sec. VII we make some brief comments on
a different Cu potential. Major points are sum-
marized in Sec. VIII.

II. THE POTENTIAL

The Cu potential used is taken from Davis,
Faulkner, and Joy' (DFJ). These authors used the
Lowdin-Mattheiss prescription to generate crystal
potentials for a, 0.995a, and 0.99a, where a is the
normal lattice constant. The DFJ crystal potential
is based on atomic Hartree-Fock wave functions
(calculated by Watson' for a 3d'4s' configuration)
inserted into a 3d"4s configuration. DFJ had pre-
viously calculated Cu band structures for this and
for two other potentials; the potential based on the
Watson functions was chosen as, of the three test-
ed, it gave the most satisfactory agreement with

the experimentally established unperturbed Cu
band structure.

The change in potential associated with hydro-
static strain is obtained from

n, v(~) = v„„&.(~) —v.(~)

for the value within the muffin-tin spheres; the in-
terstitial value is given by

+~= ~(i+e)a ~a ~

DFJ used a radial integration mesh of 272 points;
we interpolated their potential onto a 66-point
mesh. ' As a preliminary test we calculated energy
levels and hydrostatic strain shifts for some se-
lected k points using both meshes; the differences
in E' were appreciable (up to 0.02 Ry) whereas the
differences in energy shifts were small (maximum
of 3 x 10 ' Ry for e = -0.005). Since we are pri-
marily concerned here with energy shifts and since
most of the hydrostatic strain shifts calculated for
e= -0.005 are -10 ' or larger, the discrepancy be-
tween the two mesh values is not particularly im-
portant. All shifts reported in this paper refer to
the 66-point mesh unless explicitly labeled other-
wise. The lattice constant used is 6.83090 Bohr
radii', this is the same as used by DFJ. The ra-
dius of the muffin-tin sphere was chosen as 2.400
Bohr radii; this allows compression to 0.995g
without causing overlap of the spheres.

III. SYMMETRY CONSIDERATIONS

For the hydrostatic case there is, of course, no
change in crystal symmetry. For the shear
strains, however, there is a lowering of the cubic
symmetry. It is well known"' that it is this change
of symmetry which makes the shear strains a par-
ticularly critical test of the original potential. In
the usual shear strain experiment one employs a
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uniaxial stress, applying tension in the z direc-
tion, say, and allowing the elastic constants to
dictate the deformation in the x and y directions.
Such a strain corresponds (to first order) to a
unique combination of hydrostatic and tetragonal
strains (or hydrostatic and trigonal if a, uniaxial
(111)stress is employed).

In the Appendix we show that for cubic crystals
under a volume-preserving strain, both the Fermi
level and the sum over a, "star of k" of any given
level belonging to any given irreducible represen-
tation remain unchanged to first order. As shown
in I, this allows one to make a number of predic-
tions regarding ratios of shifts from symmetry
considerations alone. If a model is chosen which
constrains the potential to spherical symmetry
within a muffin-tin sphere (after deformation as
well as before) the discussion in the Appendix
shows that the statement above applies to V(r)
also. Since this "muffin-tin condition" on the po-
tential holds in our model, the band-structure
shifts and splittings in the tetragonal and trigonal
strain cases are due solely to the change in sym-
metry and to the explicit change in lattice con-
stant, i.e., there is only a "geometric" effect but
no "potential" effect [change in band structure due

to the change in V(r) caused by the change in lat-
tice constant].

IV. PRELIMINARY TESTS

A. Hydrostatic

As a preliminary test we calculated energy lev-
els and shifts under hydrostatic strain for some
selected high-symmetry points and compared with
the corresponding DFJ values; results are tabu-
lated in Table I. For comparison, this table also
lists: (i) Our perturbation results obtained by
using the Chodorow potentiaV' for V,(r) in con-
junction with the AV(r) of DFJ. (ii) The differ-
ence-calculation results of O'Sullivan et gl." As
far as possible all cubic symmetry states are
labeled in the Bouckaert-Smoluchowski-Vifigner
(BSW) notation. '2 The E values listed in Table I
are higher than those found by DFJ', the d-type
states (I'», I'», ,X„i,,) are as much as 0.02 to 0.03
Ry higher. As noted ea,rlier, we do not feel this
causes appreciable errors in 4E since on going to
the 272-point mesh E' drops to within about 0.01
Ry of the DFJ values without any appreciable
change in 4E; the same effect is noted if one cal-
culates Eo and 4E for a given level and then sim-
ply repeats the calculation using more symme-
trized plane waves in the trial expansion function,
i.e. , AE "converges" much more rapidly than E'.

For most levels agreement between our pertur-
bation results and the DFJ difference calculation

improved, as one would expect, when the pertur-
bation calculation used the DFJ Vo(r); note parti-
cularly I'„X,, and L,, The X, and I.", discrepan-
cies remain the same. " [The one level with an
increased discrepancy (L",)differs only slightly be-
tween all three calculations. ] We note that for the
p-type states (X...I, ) the Chodorow-based pertur-
bation calculation agrees very well with the Her-
man-Skillman-based difference calculation (col-
umn 6); we have not pursued the reasons for this
agreement.

B. Tetragonal

Our perturbation program for tetragonal (and
trigonal) shear strains has been tested in I by
comparing our results with those of Juras and

Segall"; the Chodorow potential was used. Agree-
ment was reasonably good.

As a further test, we compared our results for
some selected high-symmetry points with the uni-
axial (001) results of Davis. " To first order one
may represent the Davis uniaxial (001) tension
(e„=0.02500, e„„=e„„=-0.010372)" by a linear
combination of our hydrostatic and tetragonal
strains (assuming linearity for the hydrostatic
case in this range). The combination required is

&E(ooy ) 0 2838&Eg+ 23»58 1AEg (3)

where &E~ is our hydrostatic ~E for e = -0.005
and &E, is our tetragonal &E for 8„=0.001. This
comparison is given in Table II; considering the
uncertainties a,nd the linear approximation made,
agreement is reasonably good.

C. Trigonal

Proceeding as above one may represent the
Davis" uniaxial (ill) tension (e = e = e„
= 0.01000, e„„=e„,= e„=0.02605) by the linear
combina, tion

4E& )
= -2.0bE„+26.0514E,

where &E„ is again our hydrostatic 4E for 8
= -0.005 and ~„ is our trigonal &E for e„,=e„,
= e„=0.001. This comparison is given in Table III.
Agreement here is not as good as in the tetragonal
ease.

O. Discussion of energy shifts

For hydrostatic compression one expects a gen-
eral broadening of the electronic energy bands.
For shear strains, however, some pairs of atoms
move closer together while other pairs move
apart; one thus expects a mixed effect on the elec-
tronic bands. This is indicated in our results if
one considers W~(X) ~X, X, and W~(l, ) = L", —-L', as—
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TABLE I. Shif'ts in energy for some high-symmetry states of Cu for hydrostatic com-
pression (e = Aa/a =-0.005). All energies are in Ry.

State

AE
Perturbation

[Chodorom Vo(r)] "

AE AE bE
Perturbation by differences by differences
tDFZ V, (~) l

' DFZ' OSSS d

r„
25r

r,
X4~

X5
LQ

1

L2~
LQ

3

Ll

-0.600
-0.658
-1.141
-0.345
-0.546
-0.162
-0.553
-0.554
-0.660
-0.811

-0.0020
—0.0035
-0.0109
-0.0032
-0.0010

0.0045
-0.0058
-0.0013
-0.0037
-0.0075

-0.0023
-0.0038
-0.0095
-0,0018
-0.0010

0.0048
-0.0046
-0.0013
-0.0040
-0.0068

-0.0028
-0.0042
-0.0097
-0.0018
-0.0016

0.0046
-0.0046
-0.0019
-0.0043
-0.0071

-0.0032
-0.0047
-0.0155
-0.0030
-0.0019

0.0040
-0.0058
-0.0022
-0.0049
-0.0079

' B8% labels (Ref. 12). The superscripts u and/ indicate upper and lower levels, respec-
tively. The Eo values listed are for the DFJ potential (our calculation) are are primarily for
identification. The corresponding E values for the Chodoropv potential are considerably
higher.

Both perturbation calculations used the 4 V(r) of DFJ.' Reference 3.
d Reference 11. Table I of this reference lists Cu shifts corresponding to e =-0.024; for

incorporation into our table me have adjusted their results by multiplying by 0.005/0. 024,
i.e., ere have assumed linearity arith e.

"width" of the d band at X and I., respectively;
similarly we take W~(I'X) —=X,, —I', and W~(I'L)
—=I-~- I', as "width" of the "sp-band" in the I'X
and I'I. directions, respectively. Values for the
changes in these "widths" are given in Table IV.
As expected, the widths are increased under hy-

TABLE II. Energy shifts for some high-symmetry
states of Cu for uniaxial (001) tension (e« =0.02500,
e~ = e» = -0.010372). Column 2 is a linear combination
of our hydrostatic and tetragonal strains chosen to match
the uniaxial case [see Eq. (3) of text). All shifts are in

Ry.

AE
Uniaxial (001)

drostatic compression. For the sp-band under
shear there is broadening for k-space directions
(tetragonal (100), trigonal (111))corresponding to
directions which are compressed in real space
and narrowing for directions (tetragonal (001),
trigonal (111))corresponding to directions which
are stretched in real space. For the d band ) 4%I
under shear is relatively small; the expected
broadening for the compressed real space direc-

TABLE III. Energy shifts for some high-symmetry
states of Cu for uniaxial (iii) tension (e„„=e = e«
= 0.0i 000, e„=e„=e ~

= 0.02 605). Coluxnn 2 is a
linear combination of our hydrostatic and trigonal strains
chosen to match the uniaxial case [see Eq. (4) of textj.
All shifts are in Ry.

Fg
X4i (001)

(100)
X5 (00 1)

(100)
(100)

Xg (001)
(100)

' Reference 15.

0.0066
-0.0053

0.0048
-0.0064

0.0027
-0.0388

0.0202
-0.0004

0.0051
-0.0037

0.0006
0.0029
0.0031

-0.0024
0.0019

0.0069
-Q.005Q
0.0053

-0.0056
0.0025

-0.0380
0.0206

-0.0001
0.0055

-0.0032
0.0009
0.0029
0.0032

-0.0015
0.0021

State

Fpp

Fg
X4i

X3

LQ (ill)
Ll (111)

'Reference i5.

0.0047
0.0i80

-0.0i33
0.0i9i
0.0037
0.0i25

-0.0545

0.0304

-0.0039

0.0 f 44

Uniaxial (iii)

0.0060
0.0i35

-O.Oi25
0.0i43
0.0022
0.0099

—0.0535

O.Q264

-0.002i

O.oi i7
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TABLE IV. d and "sp" bandwidth changes for hydrostatic, tetragonal, and trigonal strains.
See text for definition of column headings. A positive entry indicates broadening; a negative
entry, narrowing. All width changes are in Ry.

hydrostatic '
tetragonal ~

trigonal ~

6S~~(I'X )

0.0077
(ooi) -o.oo84
(1oo) o.oo42
(all X) 0.0 d

a w„(rL, )

0.0050
(all L, ) O.od

(111)-0.0122
(111) 0.0040

ae„(x)

0.0063
(001) 0.0002
(100) 0.0009
(all X)0.0000(4)

0.0055
(all I.) 0.0006

(1.11) -0.0003
(111) 0.0019

' e= -0.005.
"e = 0.005, e„„=e = —0.0025.

dThese values are zero by symmetry.

tions shows up a,nd W~(l ) for the stretched (111)
direction shows a very slight narrowing; W~(X),
however, actually shows a very small broadening
for the stretched (001) direction.

and P' to be small. Energy shifts for tetragonal
strain (e„=0.001, e„„=e„=-0.0005) are given in
Table VII. The small value for Q confirms the
expectation above (we did not calculate P').

V. ENERGY SHIFTS NEAR E

A. Hydrostatic

Rather than calculate energy levels for the large
number of k points required to obtain a realistic
value of E„, we have simply used the E& of the DFJ
calculation (Table III of Bef. 2 gives E„=-0.46'I8

By). We also take kr from DFJ; values for the
(100), (110) directions and the [111]necks are
given in Table V.

Energy shifts for a hydrostatic strain of e
= -0.005 are given in Table VI for the k~ values
listed in Table V. The DFJ values axe given for
comparison. Considering that a graphical inter-
polation has been made to extract the ~E values
from Ref. 3, agreement is quite good except for
the neck. It is noted that the 4, shift and the neck
shifts are of comparable size while the Z, shift is
much smaller. It is also noted that the neck shifts
for Q and P symmetry are identical.

C. Trigonal

For a trigonal strain which singles out the (111)
axis AE for Z, given by (5, b, 0), (b, 0, b), (0, 5, b),
(K, K, O), (K, 0, 5), and (0,5, 5) will be identical;~ for the other six Z directions will be -4E of
the first set. 4E for all 4, levels must be zero
from symmetry. The two hexagonal faces perpen-
dicular to the (111)axis behave differently from
the other six hexagonal faces which behave identi-
cally. All six Q lines in the face containing I at
(—,', —,, —,') behave identically; we designate any one of
them as Q . For the "other type" hexagonal faces
there will be two different-behavior Q lines; we
designate these as Qz and Q„(see Fig. 2). Symme-
try considerations lead to the relation

TABLE V. kz values for the unperturbed crystal in
units of 2n/ao for certain symmetry directions. These
values are taken from Table III of Ref. 3.

B. Tetragonal

We choose a tetragonal strain which singles out
the z axis. For this choice &E for 4, in the (100)
and (010) directions will be --,' SE of the (001) di-
rection; similarly, &E for Z, directions in the xz
and yz planes will be -&4E for Z, in the xy plane.
For tetragonal strain all hexagonal faces will have
identical &E behavior. Qn a given hexagonal face,
however, AE for Q along Q directions labeled P
(see Fig. 1) will be ——,'&E of the n directions; eE
for P' along P directions labeled co will be -&&E
of the 7' directions. The Q and P' lines which
cross E~ each connect to I, . Since symmetry
dictates that L, must have 4E= 0 for tetragonal
strain, one expects the 4E values at k~ for Q

kz h
fad JU s

k~ (001)
k+ (11o)
k~Q
(111)"neck"
k~ I'~
(111)"neck"

0.0 0.0
0.52095 0.52095
0.6186 0.3814

0.83302 0.83302
0.0 0.73673
0.5 0.16773

0.43153 0.43153 0.63694 0.16773

~To convert the DFJ values to ours multiply the DFJ
value by (3j2m)~ ~3 =0.78$ 593.

~ For (001) and (iio), k„d;„,is the distance from the
origin of k —space toke. For the ne k kradius
distance from the L point to k+.

This is a line from U (or K) to L; it may be expressed
as (0.25+ b, 0.25+6, 1 —2b) with 0 &b &0.25. There is no
BSW label.
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TABLE VI. Hydrostatic compression: Energy shifts at the Fermi level for e= —0.005 in
a =ap(i+ e). All energy shifts are in Ry.

Dir ec tion State ak„~;„, Per turbation by Differences

&ioo&

&iio&
(iii) neck
(i i i) neck

Zg

Q
p+

0.83302
0.73673
O. i 6773
O. i 6773

-0.0020
0.000i
0 00i9 c

0 00i9 c

-0.0022
-0.0003
-0.0024

' Same meaning as in Table V; units of 2m/ap.
"Computed graphically from Table III of Ref. 3.

The 272-point mesh was used. Q run with the 66-point mesh gave a s™~r~ICE value
(-0.0017).

'E(P;)+ ~E(P'„)+2'E(P', ) = 0, (6)

with g and f directions as given in Fig. 2. Energy
shifts for trigonal strain" (e„=e„,= e„,= 0.001) are
given in Table VIII.

VI. AkF and ~
In this section we describe the determination of

the change in k~ and the change in the associated
orbital area.

A. Hydrostatic strain

Given &E for kF and for one or two values near
k~ and a value for ~EF one may compute 4k~
graphically. To a fair approximation, one may

'E(Q.)+ ~(Qi)+»E(Q, ) = o

A similar relationship holds for P lines; designat-
ing any P line in the face containing L at (,', —,', —,')-
as P(,

also obtain the unscaled &k~ from

&k~"'= —— (4E —bE.) .
dE

Here (dE/dk)s is the slope of E vs k near Ez inE
the unperturbed situation. When the change in
scale on going from 2m/a, to 2w/[a, (1+e)] is taken
into account one has (to first order),

&k„=&k~"'- ek~ .
Using (dE/dk)s and ~Ez from DFJ and our valuesF
for 4E we obtain Table IX. These values enable
us to obtain a rough estimate of (~A/A)/AP which
may then be compared" with de Haas-van Alphen
data. '"" It must be emphasized that we are esti-
mating changes in extremal areas from a very
small number of k directions; this is probably
valid for the neck orbit which appears to be cir-
cular to a high degree but can only be roughly cor-
rect for the [001] belly. It is noted that a large
number of k points and directions were used by
DFJ. Resultant values are given in Table X. Con-
sidering the noncircularity of the belly orbit and
the fact that only two symmetry directions in the
orbit plane were used, our agreement with ex-
periment may be partially fortuitous. The large

( I,O, —

TABLE VII ~ Tetragonal strain: Energy shifts at the
Fermi level for e=0.00i in a~ =ap(i+ e); a„=a~ =ap
(i —2e). See text to determine the symmetry-related
shifts from those listed. All energy shifts are in Ry.

Dir ection State ' b
radius

AE
Per turbation

( I, I,O)

FIG. 1. Labeling of Q and P directions in a hexagonal
face for (001) tetragonal. strain. The L point at (2, 2, 2)
is at the center of the hexagon. O', P designate Q lines;
~, ~ designate P lines. All symmetry points are in units
of 2~/a.

(Ooi)
&iio&
(iii) neck

Z(
Qn

0.83302
0.73673
O. i 6773

-0.00i3
0.0004

-0.0000 (2)

For (00i) tetragonal strain, the various directions in
the hexagonal face normal to (iii) are shown in Fig. i.

"Same meaning as in Table V; units of 2~/ap.
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TABLE IX. Hydrostatic compression (e = -0.005);
selected Qk+. The units for Akz are 2n/ao. In the (001)
and (110) directions k& is measured from the origin
(I ); the neck kz is measured from L.

Dir ection

(0 I—
(001)
(110)
(111) neck

0.00490
0.00237
0.00226

FIG. 2. Labeling of Q and P directions in an "off-axis"
hexagonal face for (111) trigonal strain. The L point at
(2, 2, 2) is at the center of the hexagon. P, p designate

Q lines; p, & designate P lines. All symmetry points are
in units of 27t'/a.

discrepancy between our neck value and that ob-
served is probably associated with the fact that
the curvature of E vs k is quite high in this re-
gion.

B. Tetragonal strain

We may compare our results with uniaxial (001)
tension by using Eq. (7) with nE and ATE+ deter-
mined from Eq. (3). (As shown in the Appendix,
nE~=0 for tetragonal strain. ) The scaling term
analagous to the second term in Eq. (8) is now

-k,e„for k components in the z direction and

-k„e„„for k components in the xy plane. " Using
4E values from Tables VI and VII and e„and e„„
from Table II we obtain the 'hniaxial" (001) &kz
values given in Table XI. The &k~ values in Table
XI allow us to obta. in a rough estimate of d(lnA)/
d(lnA, )," results are given in Table XII. Agree-

ment with Davis" is not as good as in the hydro-
static case. Our better agreement with the ob-
served [001] belly value may well be fortuitous.
Again, we emphasize that our areas are based on a
very small number of k points as contrasted to the
large number of points used by Davis. " It should
also be noted that Davis's calculation enables him
to give several other values such as the [001]
rosette, [111]belly, etc.; these entities would be
quite difficult for us to obtain due to the very-low-
symmetry k points required.

C. Trigonal strain

As in the tetragonal case, we may compare our
results with uniaxial (111) tension by using Eq. (7)
with nE and &Ez now determined from Eq. (4).
(Again, &E~ = 0 for trigonal strain. ) The scaling
term is somewhat more involved than that for the
tetragonal case. Using ~E values from Tables VI
and VIII and e and e„, from Table III we obtain
the "uniaxial" (111)4k+ values given in Table
XIII. These &k~ values allow us to obtain a rough
estimate of d(lnA)/d(In', ); this estimate is given
in Table XIV. There appears to be qualitative
agreement with the observed [111]neck value and
with the calculated values of Davis" (except for the
[001]belly).

Direction State a k radius

AE
Per turbation

(110)
(111) neck
(111) neck
(111) neck
(111) neck

Z(

@a
P+

K

Qg
P~

0.73673
0.16773
0.16773
0.16773
0.16773

-0.0008
-0.0014
-0.0014

0.0008
0.0001

~ For (111)trigonal strain, Q~, P& are any Q, P direc-
tions, respectively, in the hexagonal face normal to
(111). The various Q, P directions in the hexagonal face
normal to(111)are shown in Fig. 2.

Same meaning as in Table V; units of 27'/ao.

TABLE VIII. Trigonal strain: Energy shifts at the
Fermi level for e=0.001 in a„=ao[i+ e(j+k)], etc. See
text to determine the symmetry-related shifts from those
listed. All energy shifts are in Ry.

VII. CHODOROW POTENTIAL

Table I shows that the perturbation &E's calcu-
lated with the Chodorow potential differ consider-
ably from those calculated using the DFJ potential
in a number of cases. Table XV shows that there
is also considerable difference in 4E near E~.
(Burdick's22 Ez is used. ) Similar comparisons
for the tetragonal and trigonal cases are shown in
Tables XVI and XVII, respectively. As shown by
these three tables, the two potentials lead to vir-
tually the same energy shifts in some cases (e.g. ,
Z, both shears, Qz trigonal) and to somewhat dif-
ferent results for other cases.

VIII. DISCUSSION AND SUMMARY

For high-symmetry points (I',X,L) Table I indi-
cates that energy shifts for hydrostatic compres-
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sos b

(obs. )

sos"
(cale. )

Templeton ~

(obs. )This work

4.53
15.0

4.20
12.3

4.51
20.1

[100] belly
[iii] neck

4.5 +0.2
17.(7) + 2.

4.33 +0.03
19.4 +0.5

~ Reference 3.
"Reference 18 ~

'Reference 19.

sion with e = -0.005 are within about 0.001 Ry of
each other for a given level for the various com-
binations of three different potentials and two dif-
ferent methods. [I', is an exception; the O'Sulli-
van-Switendick-Schirber (OSSS) shift is some
0.005 Ry larger than the others. ] The magnitude
of these high-symmetry shifts varies from about
0.001 to 0.010 Ry; all levels except L", are lowered.
Table VI shows that near E~ the hydrostatic shifts
calculated by perturbation and by differences (us-
ing the DFJ potential in both cases) agree within
about 0.0005 Ry for e= -0.005. Inspection of Ta-
bles XV-XVII shows that near EF the energy shifts
for the Chodorow and DFJ potentials (using the
perturbation approach for both potentials) are
within about 0.002 Ry of each other in the worst
hydrostatic and trigonal cases and well within
0.001 Ry for the tetragonal case.

Table IV shows that the band "widths" are in-
creased under hydrostatic compression as ex-
pected and that the "sp" band undergoes the ex-
pected broadening and narrowing in the appropri-
ate directions for the shear cases. The change in
the d-bandwidth under shear is relatively small;
the direction of these small changes cannot always
be predicted on the simple basis of change in
atomic distance along various directions.

Comparison of Tables II and III shows that the
linear combination of hydrostatic and pure shear

matches the uniaxial stress results considerably
better in the (001) case than in the (111) case.
Since the (111)case requires a hydrostatic com-
ponent approximately seven times that required in
the (001) case [see Eqs. (3) and (4)], this may be
an indication that the assumption of hydrostatic
linearity with e is not particularly good in this
range.

For the orbital area changes (Tables X, XII,
and XIV) we appear to get reasonably good agree-
ment with experiment for the [100] belly in the hy-
drostatic case and the [001] belly in the uniaxial
(001) tension case. Our calculated neck orbital
changes in the hydrostatic and uniaxial (111)ten-
sion cases differ considerably from the observed
values. The circularity of the neck orbit should
offset our use of a very limited number of k points
in determining these orbital changes; we suspect
the discrepancy is associated with the small size
of the neck orbit and with the high curvature of
E vs k in this region. Agreement between our cal-
culated values and the calculated values of DFJ
(hydrostatic) and Davis (uniaxial) is relatively
good for the hydrostatic case (Table X); poor for
the tetragonal case (Table XII); and, for the tri-
gonal case (Table XIV), reasonably good for the
[111]neck but poor for the [171]neck and the [001]
belly (for the latter case we agree with Davis in
magnitude but have opposite sign).

TABLE XI. Selected Akz for uniaxial (001) tension
{e«=0.02500, e»=eyy 0 010372) using Eq (3) of text.
kz is given in Table V. The units for Akz are 2~/ao. TABLE XII. d(ink)/d(lnA, ) for uniaxial (001) tension

(based on calculations for e„=0.02500, e = e»
= -0.010372).Direction AkF

SW'
(obs.)

Davis '
(cale. )

(00 1)
(100)
(110)
(011)
(111)neck '
(111)neck

This
work

-0.00179
-0.00172
-0.00364

0.00071
0.00217

-0.00202

[001] belly
[100] belly
[111]neck

2.7
0.5
2.9

2.4+ 0.53.6
-0.3

5.1

'Radius from L in Q~ direction of Fig. 1.
Radius from L in Q& direction of Fig. 1.

' Reference 15.
b Reference 8.

TABLE X. Hydrostatic case: selected (AA/A)/DP values in units of 10 cm /kg.
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TABLE XIII. Selected M~ for uniaxial (111)tension
(e»= e„=e =Q.01000, e = e„=e =0.02605) using Eg.
(4) of text. kz is given in Table V. The units for ~z
are 27f/l2 p.

TABLE XV. Hydrostatic case: (e =-0.005). Comparison
of AE at Ez using two different potentials. All entries
are in Ry.

Direction State
DE

Chodorow Vp(x}
a

AE
DFJ Vp(x)

(1QQ)

(110)
(110)
(111)neck '
(111)neck "
(111)neck c

-0.00982
0.00278

-0.01369
0.05369

-0.03094
-0.02051

a Radius from I, For the (111)neck symmetry dic-
tates that all Q directions behave identically.

Radius from I, in the Q& direction of Fig. 2.
Radius from L in the Q& direction of Fig. 2.
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%'e have shown that the modified-plane-wave
method combined with a perturbation technique is
a feasible approach to determining energy shifts
at the Fermi level for small distortions of fcc
crystals although there is some ambiguity in the
shear cases due to the very limited amount of ex-
perimental values for these cases. The relatively
slow convergence of the modified-plane-wave
method is offset considerably by the fact that the
energy shifts "converge" much more rapidly than
the unperturbed energy levels. The perturbation
approach is particularly appropriate for very
small distortions. Thus, the best approach may
be that of Juras and Segall" who have combined a
perturbation technique with the relatively rapid
Korringa-Kohn-Rostoker method.

-Q.0031
-0.0003
-0.0038
-0.0038

-0.0020
0.0001

-0.0019
—0.0019

' Both calculations used the & V (r) of DFJ.
The 272-point mesh was used. (Q run with the 66-

point mesh gave a similar value. )

APPKNMX A: SYMMETRY CONSIDERATIDNS

A. Cubic crystals

%'e first give a simple proof" that, for cubic
crystals, a volume-preserving tetragonal" strain
produces no change (to first order) in Er and that

Z Wa =0.
star of k (Al)

Proof. Consider simultaneously applying three
tetragonal strains which single out the x, y, and z
axes, respectively. The combination preserves
both volume and shape (to first order) so neither
Er, any specific E, , or Z„„„f E, changes.
Since any one of the three strains may be obtained
from any of the others by an operation of the cubic
group, egch strain must affect a quantity like Ez
or Z„„;E~,identically; therefore the changes
in these two quantities must be zero for each of
the three strains separately. A similar argument
applies for trigonal strains by simultaneously tak-
ing strains along (111), (Tl1), (1T1), and (11K).

This argument also applies to the change in po-
tential if we restrict our model to one in which the
potential V(r) stays spherically symmetric within
a muffin-tin sphere. '4 Again, the change in V(r)
for the combination of three tetragonal strains

TABLE XlV. d(EnA)/d(lnA, ) for uniaxial (111) tension
(based on calculations for e~ = eyy ezz 0 01000& e»= e„,
= e,=0.02605}.

TABLE XVI. Tetragonal case (e«=0.0050, e» = e»
=-0.0025). Comparison of 4E at E+ using two different
potentials. All energies are in Ry.

This
work

Davis '
(cale.)

SW'
(obs.)

AE
Direction State a Chodorow Vp(~) DFJ Vp(x)

[001] belly
[111]neck
[111]neck

1.0
-32

14

-1.2
-28

19

(001)
(110)
(111)neck

-0.0059(0)
0.0021(5)

~0 0

-0.0064 (5)
0.0019(0)

-0.0001(2)

' Reference 15.
Shoenberg and Watts, Ref. 8.

' For (001) tetragonal strain, the various directions
in the hexagonal face normal to (111)are shown in Fig. 1.
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TABLE XVII. Trigonal case (e„, = e„,= e„=0.005).
Comparison of 4 E at Ez using two different potentials.
All energies are in Ry.

AE AE
Direction State s Chodorow Yp('v) DFJ Vp('Y)

where D' (R) is the o.n element of the matrix rep-
resenting R in the ith irreducible representation,
l, is the dimensionality of the representation and

I G I is the number of members in the covering
group of the crystal. We may write an arbitrary
strain tensor e as

(110)
(111)neck
(111)neck

-0.0043 (5)
-0.0089 (5)

0.0040 (0)

-0.0041(0)
-0.0073 (5)

0.0039(5)

e= II'e= c, e' (A3)

' For (111)trigonal strain, Q~ is any Q direction in
the hexagonal face normal to (111). The various direc-
tions in the hexagonal face normal to (111)are shown in
Fig. 2.

i.e., decomposition of the desired strain e into a
linear sum of components, each transforming like
one partner of one irreducible representation, is
always possible; further, each e' may be written

ei+ IIi gioi (A4)

must be zero. For spherically symmetric V(r)
the change due to each strain must be identical, so
that n. V(r) = 0 for each.

It should be noted that no more information can
be obtained from the Wigner-Eckart theorem than
from standard compatibility tables combined with
the "star-of-k" theorem above. (The Wigner-
Eckart theorem merely corroborates the informa-
tion that some shifts are probably not equal to
zero. )

B. General

It is of interest to extend the arguments in the
previous section to all classes of crystals and to
determine which strains result in preservation of

Ez and Z„„fE, . One is led to the following
theorem: For any crystal, &Ez and Z, ~ „ghE„
equal zero (to first order) for any strain which
does not contain a I', component.

Proof. Define

(A2)

Applying II', to both sides of Eq. (A3) gives

since II',lI' = 6„6,II', .
Thus

Ilge= 0 for c» 0

40 for c„0 . (A5)

Since D'„(R)= 1 for all R in G, II', applied to e is
equivalent to applying all the operations of G to e
(times a factor I/I G I ). Since each operation
merely rotates the strain, DER (and Z„„„-4E~)
is the same for each such rotated strain as for e;
thus, from Eq. (A5), these quantities are zero
when c» = 0, i.e. , when the original strain e does
not contain a l, component.

As a corollary it follows that: (i) For cubic
crystals 4V= 0, where V is the volume, is the
necessary and sufficient condition to have 4E~
and Z„„~aE~.= 0. (ii) For noncubic crystals
b,V= 0 is only a necessary condition.
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