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By using the method of orthogonalized linear combinations of atomic orbitals (OLCAO), a first-principles

calculation of the electronic energy of amorphous silicon has been performed. The lattice model used is

Henderson's quasiperiodic continuous random tetrahedral network (CRTN) with 61 atoms per unit cell. The
potential function is contructed from a superposition of the atomic potentials of Si at each site with a Slater-

type exchange approximation. The basis functions consist of the 3s- and 3p-type Bloch sums for each atom in

the unit cell orthogonalized to all the 1s, 2s, 2p Bloch sums so that the latter can be deleted from the basis

set. All the multicenter integrals occurring in the Hamiltonian matrix elements are evaluated exactly by means

of the Gaussian technique and the summation of the multicenter integrals over the lattice is carried to
convergence. The calculated density of states (DOS) of the valence band is in good agreement with the

experimental data. No intrinsic gap is found in this calculation but the DOS near the Fermi level is very

small. Local maxima in the DOS are found to be present both above and below the Fermi level. As an

alternative scheme, we have also performed OLCAO calculations based on configurational average of clusters
generated from Henderson's CRTN instead of covering the entire quasicrystal as done by using Bloch-sum

functions. The undesirable surface effect in cluster calculations is circumvented by taking the Hamiltonian as
that of the infinite solid. The resulting DOS are compared with that obtained from the quasicrystal
calculations in order to assess the accuracy of the cluster approach.

I. INTRODUCTION

In recent years the study of amorphous semi-
conductors has attracted considerable attention. ' '
This is partly due to the potential technological
applications of this class of materials and partly
due to the new challenge to acquire a basic under-
standing of disorder solids. Experimental mea-
surements of radial distribution functions (RDF)
have furnished important information about the
structural aspects of amorphous semiconductors. '
Much of the recent studies seem to favor the con-
tinuous random-tetrahedral-network (CRTN) mod-
el which well accounts for the experimental RDF
of amorphous Si(a-Si) and a-Ge." Several CRTN
have been built and refined. ' " They have differ-
ent topological properties as to the number of odd-
numbered rings, bond-length and bond-angle dis-
tortions, but one common feature among them is
the approximate local tetrahedral coordination.
The availability of structural models makes it
possible to perform detailed studies of the elec-
tronic structures of a-Si and a-Ge. However,
most of the previous calculations on this subject
either are based on simple model Hamiltonians
with various approximations or resort to empirical
or semiempirical means. '' " Discussions of en-
ergy spectra of a-Si and a-Ge based on the ener-
gy-band structure of crystalline polytypes have
also been given. " " The results of these works
have provided a great deal of insight to the prob-
lems of amorphous systems on a qualitative level ~

However, to delineate the finer details of elec-

tronic properties of amorphous semiconductors
such as band tailing and band gap and to help in-
terpreting experimental data, accurate fir st-prin-
ciples calculations of the electronic energies
based on realistic structural models are desir-
able.

The method of linear combinations of atomic
orbitals (LCAO), or the method of tight binding,
has been used very successfully for energy-band
calculations for crystals in the past few years. " ~
The difficulty of evaluating multicenter integrals
which had been the barrier of quantitative applica-
tion of this method, has been resolved by the in-
troduction of the technique of Gaussian-type orbi-
tals" (GTO). As a. result the Hamiltonian matrix
elements can be computed accurately and effi-
ciently. The I CAO method has been applied to
crystals of different varieties" " and has been
demonstrated as an effective and accurate means
of calculating energy bands.

The concept of using LCAO to represent elec-
tronic wave functions in polyatomic systems is,
of course, not limited to crystals and therefore
should be applicable to amorphous solids. In par-
ticular, if we adopt Henderson's CRTN which con-
sists of a quasiperiodic lattice with 61 atoms per
unit cell, the problem of a-Si becomes formally
identical to that of band structure of a very com-
plex crystal ~ The periodicity of this model en-
ables one to deal with a truly infinite array, there-
by elimiriating the surface states. The Henderson
model' has larger bond-angle and bond-length dis-
tortion than some of the other CRTN models;
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nevertheless it reproduces quite well the experi-
mental RDF and is found to be quite successful in

lattice-vibration calculations. Although theoret-
ically the basic principles behind an LCAO calcu-
lation for a crystal of 61 atoms per unit cell are no
different from those for simpler crystals, in prac-
tice the computational procedure must be care-
fully economized so that the numerical work does
not become unduly excessive. A brief report of
our efforts on a first-principles LCAO calculation
of the electronic structure of a-Si based on Hen-
derson's CRTN model has been published. " The
potential for the one-electron Hamiltonian is ob-
tained by the usual overlapping-atomic-potential
(OAP) approximation, i.e. , a superposition of the
individual free-atom potentials (with a Slater-type
approximation for exchange) at the appropriate
sites. With the Bloch sums of the atomic orbitals
as basis functions, all the Hamiltonian matrix
elements can be readily computed by means of the
Gaussian technique. The limiting factor, however,
was the size of the secular equations as even a
minimal set of 1s, 2s, 2P, 3s, 3P orbitals for each
atom would lead to 549 basis functions. Thus in

Ref. 28 the 1s, 2s, 2P core-state Bloch sums were
deleted from the basis set. The omission of core
states inan LCAO expansion of the electronic wave
functions may at times cause a serious collapse
of the energy levels because the eigenvalues of the
secular equations would tend to converge toward
the core states instead of the valence states. For
the specific case of Ref. 28, this approximation
has little effect on the states near the top of the
valence band, but does produce a much larger
downward shift for the lower-energy levels in the
valence band. The results of Ref. 28 compare
favorably with the experimental data and also re-
veal some interesting features of the density of
states (DOS) near the Fermi level.

In this paper we improve our previous calcula-
tions by orthogonalizing the 3s and 3P Bloch sums
to all the core Bloch sums and using these 3s and

3P orthogonalized Bloch sums in place of the un-
orthogonalized ones as the basis functions to set
up the 244&244 secular equations. The scheme
of orthogonalized linear combinations of atomic
orbitals (OLCAO) has been recently applied to
study the band structure of Si III." In that work
the band energies of Si III were calculated by using
the OLCAO method and by using the usual LCAO
method with all the core states included. The two
sets of energies differ by no more than 0.0008 a.u. ,
confirming the accuracy of the OLCAO method.
For the a-Si problem, the OLCAO calculation does
lift the energies of the valence-band levels, es-
pecially the lower ones, upward as compared to
Ref. 28 (see Sec III), resulting in a better agree-

ment with experiment. Details of this calculation
are described in Sec. II and the results are dis-
cussed in Sec III ~

As the validity of the LCAO method does not de-
pend on the periodicity of the structural model, it
is interesting to explore also its application to the
cases in which no quasiperiodicity is assumed. In

the absence of periodicity, we can no longer in-
clude the entire infinite array of atoms in our
basis functions, and a practical alternative is to
treat only finite clusters out of the infinite solid.
One can voice a reservation about the cluster ap-
proach because the artificial surface of the cluster
introduces a number of surface states which are
not present in the infinite (nearly) CRTN. The dif-
ficulty with the surface states has been resolved
in a recent study of cluster calculations for the
perfect silicon crystal. " It is pointed out there
that the surface. states would not appear if in the
cluster calculation the basis functions are limited
to localized orbitals centered at atomic sites within
a cluster, but the potential term in the one-elec-
tron Hamiltonian includes the contribution of all
the atoms in the infinite solid so that no real phys-
ical surface is present in the Hamiltonian. Indeed
the energy spectrum of the perfect Si crystal ob-
tained by such a cluster calculation agrees well
with the results of the LCAO Bloch-sum calcula-
tion. We shall, therefore, apply this technique
of cluster calculation to a- Si. Specifically from
Henderson's CRTN we select a cluster of atoms
and calculate the energy levels using the atomic
orbitals associated with this cluster as the basis,
and the calculation is then repeated for a number
of clusters from the same CRTN. The average
DOS of these clusters is compared with the one
determined from the quasicrystal calculation to
assess the accuracy of the cluster approach. Sec-
tion IV of this paper is devoted to this aspect of
the work.

II. METHOD OF CALCULATIONS

With the Henderson CRTN model, the problem
of amorphous silicon is reduced to that of the band
structure of a crystal (simple cubic) with 61 atoms
in a unit cell. To start an LCAO calculation one
must have available a set of basis functions and a
potential. For the present work, they are chosen
in a manner similar to that described in our ear-
lier papers"''; thus only a brief account is given
here.

In the conventional LCAO method, the basis
functions consist of the Bloch sums of the atomic
orbitals corresponding to the core and valence
shells. To simplify the numerical computation,
these orbitals are expanded by GTO's. " Such a
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basis set is quite adequate for the valence band
and the lower conduction band. However, it is
not necessary to confine oneself to the true wave
functions of the free atom. In fact more accurate
energy-band results can be obtained if the true
orbitals of the free atoms were replaced by some
localized functions P; which are qualitatively sim-
ilar to the true atomic wave functions but include
to some extent the distortion of the electron cloud
by the other atoms in the crystal. Such a set of
optimized orbitals can be obtained by the tech-
nique of contracted Gaussian described by Sim-
mons et a/'. " Based on their procedure we have
constructed a set of ls, 2s, 2P, Ss, SP optimized
orbitals for Si which are given in Ref. 29 and are
used here. Returning to the quasicrystal, let us
denote the position of the eth atom in the unit cell
by p~ and a translation vector of the lattice by H, .
Associated with each atom in the unit cell one can
form nine Bloch sums as

where i = ls, 2s, 2p, Ss, Sp and n ranges from 1 to
61. This set of 549 basis functions is too large
to handle; hence we seek to orthogonalize the Ss
and 3P Bloch sums to the core states so that the
latter can be excluded. Following the procedure
of Ref. 29, we introduce the orthogonalized Bloch
sums as

(2)

where g is restricted to Ss and SP only. The co-
efficients a, &y are determined by the orthogon-
ality c.onditions. %'ith only the valence orbitals
for each atom, we have 244 orthogonalized Bloch
sums which are used as the basis functions for
our calculations.

The potential in the one-electron Hamiltonian
can be expressed as a superposition of some atomic-
like potential V, centered at each Si site. In our
calculation V, is approximated by the potential
(spherical) of a free Si atom computed from the
atomic Hartree-Fock wave function (using a
Slater-type local exchange withe = —,)—sometimes
referred to as the overlapping-atomic-potential
(GAP) approximation. To test this potential we
employ the same V, along with the QAP approxi-
mation to calculate the band structure of crystal-
line Si and the results are in good agreement with
those of Stukel and Euwema. " For the ease of
computation, the atomic potential (including both
the Coulomb and exchange parts) is fitted to the

following form:

(3)

The first term in the above equation simulates
the small-x behavior of the Coulomb potential.
Usually eight or nine Gaussians are sufficient to
provide a good fit up to a radial distance of 6-V
a.u. %ith the Bloch sums as basis functions, a
typical potential-energy matrix element can be
decomposed into a series of three-center integrals
containing a Gaussian centered at point A, an-
other one at B, and the atomic potential V, around
C. The integrals associated with the first term
of Eq. (3) can be expressed in terms of the error
function and those associated with the second mem-
ber can be evaluated analytically. An outline of the
computational procedures involved is presented
in the Appendix. For energy-band calculations
the very long-range component of the atomic po-
tential can be suppressed with virtually no change
in the band structure. This procedure has the
advantage of a substantial reduction of the com-
putation work and is adopted here. Theparameters
of the Gaussian fit are given in Ref. 29.

A typical Hamiltonian matrix element is expanded
as a lattice-point summation of multicenter inte-
grals. This lattice summation must be carried
out to full convergence. To illustrate the rate of
convergence, we cite a typical case as follows:
(P~,(r —A) (P( P„(r—8))= —0.5939, —0.1809,
—0.0224, —0.0045, —0.0004 a.u. , respectively, for
~A —8

~

= 0, 4.443 (first nearest neighbor), 7.255
(second nearest neighbor), 8.508 (third nearest
neighbor), 10.258 a.u. (fourth nearest neighbor).
For an amorphous solid, the neighbor distances
are not constant; thus the above numbers merely
give a rough indication of the magnitude of the
integrals between various neighbor pairs. Upon
computing all the Hamiltonian (H;~) and overlap
(S;,) matrix elements, the energy spectrum is ob-
tained by solving the secular equations (H;& —FS;& j
=0 for various k points. Because of the truncation
errors involved in solving secular equations of
dimension as large as 244, the matrix elements
must be computed to a much higher degree of pre-
cision than the desired accuracy of the eigenval-
ues. In the present work the lattice summation is
carried out to typically the eighth neighbors. The
Hamiltonian matrix elements themselves typically
reach their ultimate values to within about O. I/g
when the contributions of the atoms within a dis-
tance less than or equal to the fourth neighbors of the
corresponding crystal are included. One can prob-
ably get satisfactory results for the coarse fea-
tures of the energy spectrum of the occupied states
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by retaining up the fourth-neighbor terms in the
lattice summation, although we have not made any
quantitative test.

E(k) = E, + EP + k4(E~+ E4K~, )

+ k (E~+ ESK~, + E6 K6,),

HI. RESULTS AND COMPARISON VfITH EXPERIMENTS

We obtain the energy levels by solving the 244
&244 secular equations for four high-symmetry
k points [w(0, 0, 0)/a, w(1, 0, 0)/a, w(1, 1, 0)/a,
w(l, 1, 1)/a j and seven other k points: w(-,', 0, 0)/a,
w(-', 4, o)/&, w(k, k, k)/n, w(1, -', 0)/s, w(1, 2, k)/s,
w(l, 1, &)/a, and w( —,', a4, 4)/a. The energy matrices
are real for the first group of k points but are
complex for the second group. The top of the
valence band is found to be at k =0 and the bottom
of the conduction band at k = w(l, 1, 1)/a. The latter
is lower than the former by 0.11 eV and this is the
only point (out of the 11 k points calculated) where
the conduction band falls below the top of the val-
ence band. However, one should bear in mind that
this band gap is obtained by using a minimal basis-
function set. An augmentation of the basis set,
such as addition of single-Gaussian Bloch sums,
may shift the conduction-band and valence-band
edges differently. Improvement of the crystal
potential to self-consistency could also change the
band gap. Furthermore, the uncertainty in the
CRTN model may well exceed the accuracy of a
fraction of an eV. Taking all these into considera-
tion, we conclude that for a void-free and impurity-
free a-Si, the band gap, if it exists, is very small
and a negative intrinsic gap is a distinct possibil-
ity.

Instead of focusing our attention to the band gap,
it is more informative to examine the DOS. Since
the Brillouin zone (BZ) for the 61-atom quasiperi-
odic lattice has no point-group symmetry, in prin-
ciple one has to calculate the energy levels for k
points over the entire zone. However, in view of
the small deviation from the perfect diamond lat-
tice and of the large number of atoms in the unit
cell, we assume an effective cubic symmetry for
the BZ, insofar as the overall energy-level dis-
tribution is concerned, so that we can confine our
calculation to a fundamental wedge of the BZ in
order to reduce the computation work. This as-
sumption is sgpported by test calculations which
show that the DOS associated with the w (1,0, 0)/a
and w (1,1,0) points is indeed quite similar to that
associated with w(1, 0, 0)/g, w(0, 1,0)/a, w(0, 0, 1)/a,
w(1, 1,0)/a, w(1, 0, 1)/a, and w(0, 1, 1,)/a. Accord-
ingly we take the calculated energy levels of the
eleven k points mentioned above and use an inter-
polation px'ocedure to obtain energy levels for 35
regularly spaced k points in the fundamental wedge
of the BZ. Here we expand the energy of a k point
as

-14 -5 0
ENERGY (eV)

FIG. 1. Comparison of the calculated DOS of the con.-
duction and valence bands of a-Si (the rapidly varying
curve) with the experimental valence-band DOS tthe
smooth curve) of Ref. 34. The experimental curve is
normalized to match the leading peak of the theoretical
curve-

where E„and E„are, xespectively, the fourth-
and sixth-Kubic harmonics" which transform ac-
cording to the identity representation. The coef-
ficients E„E„etc.are determined by a least-
square fit to the calculated energies of the eleven
k points. The rms deviation of this fit is about
0.000V a.u. With the energy values deduced for the
35 k points, a simple histogram counting proce-
dure is used to obtain the DOS which is shown in
Fig. 1. The general shape is similar to the one
reported in Ref. 28 except that the energies of the
lower part of the valence band shown in Fig. 1(b)
of Ref. 28 are shifted upward as a result of the
proper treatment of the core states. This im-
proves the agreement of the calculated DOS of the
valence band with the measurement of Ley eI; al. '~

which is represented in Fig. 1 by a smooth curve
normalized to match the height of the leading peak
of the theoretical DOS. The huge peak in the upper
portion of the valence band is retained, while the
lower one is on the verge of evolving into two sub-
peaks. Small structures are seen all over the
valence band as well as the conduction band. The
positions of these small structures would undoub-
tedly vax'y from model to model. If one were to
x'epresent u-Si as a certain distribution of different
models, these small structures may be broadened
or in some cases merge. Aside from the small
structures, the envelope of the conduction-band
DOS shows only one clear-cut peak. This is con-
sistent with the observation of Brown and Bustgi. "
The calculated energies of the levels at the upper
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FIG. 2. Theoretical DOS of the conduction and valence
bands of Si III calculated by the OLCAO method (Ref. 29).

-12

part of the conduction band are less accurate than
the lower states because the basis set contains
only the minimal 3s and 3P orbitals with no single-
Gaussian supplements.

As a reference point for comparison let us turn
our attention to the DOS of Si III given in Ref. 29,
which is reproduced in Fig. 2 here. While there
is little resemblance with a-Si as far as the gen-
eral shape is concerned, one does find many small
structures in the DOS of Si III (eight atoms per
unit cell), though not as numerous as in a-Si. This
leads us to believe that the small structures are
related to the distortion from perfect tetrahedral
coordination in the lattice. One point of special

interest is the presence of small peaks in the DOS
immediately below and above the Fermi surface
for a-Si but not for Si III even under very detailed
examination. This feature clearly distinguishes
the a-Si from the polytype crystalline forms. Ex
perimental evidence for the presence of local max-
ima in the DOS near the Fermi level has been
found from optical and electrical measurements;" "
these maxima are usually interpreted as being con-
nected with localized states. In principle, we
can determine whether or not the small peaks near
the Fermi level in Fig. 1 are due to localized
states by inspecting the corresponding wave func-
tions. However, for secular equations of dimen-
sionality as large as 244, we are able to obtain
only the eigenvalues but not the eigenvectors with
the local computing facilities.

To compare our results with the experimental
optical band gap, it is necessary to recast the
former in the context of the latter. The negative
gap obtained in our calculation is not in contradic-
tion with the observation of an optical band gap
inasmuch as the DOS is very small near the Fermi
level. In Fig. 3(a) is shown our calculated joint
density of states (JDOS) up to 14 eV. The part of
the JDOS between 0 and 2.5 eV is magnified and
given in Fig. 3(b). Although in principle the k se-
lection rule holds for a true 61-atom periodic lat-
tice, we do not apply it to our calculation of JDOS
as any deviation from exact quasiperiodicity in
reality would remove this restriction. Below 0.6

20
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FIG. 3. (a) Comparison
of the calculated JDOS of
f2-Si from 0-14 eV (solid
curve) with the experiment-
al optical-transition
strength from Ref. 40 (dot-
ted curve) ~ The two curves
are adjusted to have the
same maximum height.
(b) The portion of the cal-
culated JDOS enclosed in-
side the rectangle in (a) is
magniQed in part (b) to il-
lustrate the small peak at
0.9 eV. Extrapolation of
the linear part of the curve
about 1.7 eV to lower ener-
gies is shown by the dotted
line.

10

ENERG Y (eV)
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eV the JDOS becomes very small. If one were to
perform measurements between, say, 1.7 and 2.5
eV and extrapolate to lower energies, one would
arrive at a band gap of about 1.1 eV. The small
peak at 0.9 eV in Fig. 3(b) originates from the
local maxima in the DOS (Fig. 1). It may be point-
ed out that a peak at 1.1 eV in the experimental
data of absorptance" has been reported. Quanti-
tative comparison, however, will not be attempted
because of the absence of a detailed knowledge
of the transition matrix elements. Likewise, in-
cluded in Fig. 3(a) is the experimental optical-
transition curve" normalized to the same maxi-
mum height as the theoretical JDOS for the pur-
pose of illustrating the similar qualitative trend.

IV. CLUSTER-TYPE CALCULATIONS

If the CRTN model is not quasiperiodic, the
formalism described in Sec. II in which the basis
functions are the Bloch sums corresponding to the
quasiperiodic structure, is no longer applicable.
For a nonperiodic CRTN, one may resort to a
cluster approach. A number of theoretical cal-
culations for amorphous semiconductors based
on cluster models have been published. " In par-
ticular the LCAO scheme has been used in con-
junction with a cluster calculation in which the
matrix elements are determined by empirical
means. 4'

In approximating an infinite solid by a finite
polyatomic cluster, the presence of the surface
of the cluster produces some surface states which
have no counterparts in the infinite solid. In prin-
ciple, the number of surface atoms relative to
bulk atoms decreases with increasing cluster
size, yet even a 600-atom cluster generated from
the Henderson model has 127 atoms with one dan-
gling bond, 72 atoms with two dangling bonds, and
10 atoms with three dangling bonds. Only 65% of
the atoms are "interior" ones. The difficulty with
the surface states has been circumvented in a re-
cent study by Menzel et al." In their version of
cluster calculation for crystalline Si, these auth-
ors used the potential of the entire infinite crystal,
but their basis functions consist of localized orbi-
tals confined within a finite cluster. In other
words, they solve the one-electron Hamiltonian
of an infinite crystal by means of a special trun-
cated LCAO basis set. There is no physical sur-
face present in the Hamiltonian; indeed their re-
sults show no surface states. However, as ex-
plained in Ref. 30, a precaution must be observed
in using a finite cluster-type basis set in conjunc-
tion with a Hamiltonian of the infinite crystal ~

This is due to the fact that the Hamiltonian used
in that work is capable of yielding an infinite num-

ber of core-state eigenvalues, but with a cluster-
type basis set, one expects the eigenvalues to in-
clude the core states of only the atoms inside the
cluster. If the Ss and SP basis functions inside
the cluster penetrate appreciably into the sites
outside, the minimum-seeking nature of the lin-
ear variational scheme would attempt to repro-
duce the core states of the exterior atoms giving
rise to some spurious roots. To ensure against
this complication, Menzel et al."supplement
their basis functions inside the cluster with the
1s, 2s, 2P core orbitals around the sites in the
next few exterior shells. With such a core-state
cushion, they find no spurious roots and are able
to reproduce quite well the density of states of the
infinite crystal by a cluster-type treatment.

In this paper we follow the technique of Menzel
et at."to perform cluster-type calculations using
Henderson's model. The Hamiltonian is that of
the infinite CRTN. The individual atomic orbitals
within a cluster are chosen as the basis functions.
Instead of adding cushion core orbitals of the
sites immediately outside the cluster as is done
in Ref. 30, we orthogonalize the basis orbitals to
the exterior core states. The latter serves the
same purpose as the core cushion but does not
entail an augmentation of the basis set. We also
orthogonalize the basis functions to the 1s, 2s, 2P
core states of the atoms inside the cluster so that
these core functions can be deleted. The basis set
then consists of exclusively such orthogonalized
Ss, SP orbitals of all the atoms inside the cluster.
With the potential functions expressed as a super-
position of Eq. (3), a matrix element is composed
of the same kind of multicenter integrals as de-
scribed in Sec. II and may be evaluated by the
procedure outlined in the Appendix. In an amorph-
ous solid, clusters taken from different parts of
the CRTN are not equivalent, thus for a given
cluster size we perform DOS calculations for
several clusters and take the average.

The computational procedure may be summar-
ized as follows: In the CRTN we take a volume
containing some 200 atoms which is schematical-
ly represented in Fig. 4 as region A and ortho-
gonize the Ss and Sp optimized orbitals at each
site therein to all the 1s, 2s, 2P core states within
that region. Inside region A a number of clusters
(shown in Fig. 4 as C„C„etc.) are selected, and
for each one we perform a cluster-type calcula-
tion of the energy levels. To ensure cushion pro-
tection, no part of the boundary of a cluster should
come too close to the edge of region A. The poten-
tial-energy term in the one-electron Hamiltonian
covers contribution from all atoms in the infinite
CRTN. In our calculation we find that inclusion
of the individual atomic potentials of all atoms in-
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Fig. 4. Schematic diagram for region A and the
various clusters Cg, C2, etc.

side region A and of some 400 atoms outside is
sufficient to represent the infinite CRTN as far as
the Hamiltonian matrix elements are concerned.
It is, of course, not necessary to limit region A
to 200 atoms. A larger volume for region A would
be even better, although it would involve more
computational work.

We start with a cluster size of 17 atoms. With a
given atom as the center, we include in the cluster
the 16 atoms which are closest to it. In the limit-
ing case of a perfect crystal, this corresponds to
a central atom plus its first- and second-nearest
neighbors. By placing the center at different
atoms, we form a total of 38 clusters of the same
size inside region A. The energy levels of all
these 38 cluster configurations are calculated
and the average DOS is shown in Fig. 5(a). The
valence-band DOS does show a leading peak fol-
lowed by a weaker secondary peak, but a much
larger disparity in the two peaks is seen here as
compared to the curve in Fig. 1 which is also re-
produced in Fig. 5(d) for visual juxtaposition. The

0 5

'h

-1 0 -5 0

FIG. 5. Density of states
of the conduction and va-
lence bands of a-Si calcu-
lated by using the average
of (a) 38 17-atom clusters,
(b) 18 35-atom cluster,
and (c) 10 60-atom clusters.
The DOS calculated by
treating the entire quasi-
crystal (Fig 1) is repro-
duced in (d) for compari-
son.

-10 -5 -1 0 -5 0
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conduction part of Fig. 5(a), however, shows much
less similarity to Fig. 5(d). This is because a
cluster covering up to only the second-nearest
neighbors is not capable of giving a satisfactory
over -all representation of the conduction-band
levels, especially the higher ones. A detailed
study of this point for crystalline Si has been dis-
cussed in Ref. 30. Furthermore, in a cluster cal-
culation one always obtains more valence-band
states than conduction-band states because of the
dangling orbitals of the boundary atoms. ' '" This
is indeed reflected in Fig. 5(a) as the area under
the conduction branch of the DOS curve is distinct-
ly smaller than the area associated with the val-
ence states. For a given 17-atom cluster, we
find a finite energy difference of typically 1.6 eV
between the uppermost occupied level and the
lowest empty one. Upon taking an ensemble of
38 clusters, the gap between the occupied and un-
occupied states is reduced to 0.27 eV. We also
performed similar calculations for 18 clusters
with 35 atoms in each cluster and for 10 clusters
with 60 atoms in each. The resulting DOS are in-
cluded in Fig. 5. The improvement in going from
17-atom to 60-atom clusters is apparent. How-

ever, even the 60-atom-cluster calculation still
tends to accentuate the leading peak relative to the
second one in the valence band. Also the upper
part of the conduction band is not well represented.

One point worth remarking is the presence of the
small local peaks near the Fermi level in the clus-
ter results for all three cluster sizes.

To illustrate how the energy levels evolve with
increasing cluster size, we start with a central
atom and build around it a series of clusters con-
taining 1, 5, 17, 29, 35, 47 atoms. In the limiting
case of a perfect crystal, these clusters would
correspond to inclusion of the central atoms only,
the first-nearest neighbors, the second-nearest
neighbors, and so on. The valence-type levels
and the lower part of the conduction-type levels
resulting from this series of cluster calculations
are shown in Fig. 6. We wish to emphasize once
again that the Hamiltonian is that of the infinite
CRTN in all these cluster calculations. Of special
interest is the case of the one-atom cluster which,
in the case of a perfect crystal, would give an s-
type level and a triply degenerate P-type level.
The splitting of the upper three levels for the one-
atom cluster in Fig. 7 reflects the departure of
the potential in the proximity of the central atom
from perfect tetrahedral coordination. For this
specific case the distances to the four neighbor
atoms relative to the nearest-neighbor separation
in the perfect crystal are 0.934, 1.019, 1.03'7,
and 1.036 and the six angles between these four
bonds are 95.3, 131.3, 132.0', 129.0, 79.8', and
88.5', differing substantially from the perfect

lg=- -.2-
FIG. 6. Energy levels of

the valence-band states and
the lower conduction-band
states of a-Si for clusters
contairiing 1, 5, 17, 29,
35, 47 atoms. The zero of
the energy scale is arbi-
trary.

-.6-
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FIG. 7. Relations between the various points and vec-
tors relevant for the reduction of Ynulticenter integrals.

tetrahedral angle. (This point has larger local
distortion than most of the others in the CRTN. )

For each of the six clusters in Fig. 6, one finds
a region near the top of the valence band corre-
sponding to the leading peak in the DOS. Also
clear in Fig. 6 is the gradual rise of the top of
the valence group and descent of the lower bound-

ary of the conduction group as the cluster size
increases. %ith a 47-atom cluster, the gap be-
tween these two groups of levels is not significant-
ly larger than some of the gaps w'ithin the valence
band.

V. DISCUSSION

The electronic energy level spectrum of a-Si
has been calculated by means of the method of
LCAQ, The Henderson quasiperiodic CRTN model
with 62 atoms per unit cell is used to describe the
structure of a-Si. The potential function is ap-
proximated by the OAP model. As the basis func-
tions we form Bloch sums of Ss and 3P orbitals
(optimized) associated with each of the 61 atoms
in the unit cell and orthogonalize them to all 62
sets of 1s, 2s, and 2P Bloch sums. This makes
a total of 244 functions constituting what is nor-
mally regarded as a minimal set. For perfect
crystals such a minimal basis set generally gives
quite satisfactory results. To give some perspec-
tives of our calculations in the framework of band-
strueture theory, we may point out some possible
refinements which can be incorporated into the
present scheme. For a given one-electron Ham-
iltonian one ean add Bloch sums of single Gauss-
ians or contracted Gaussians to the basis set to

strengthen the variational freedom thereby im-
proving the accuracy of the eigenvalues. " An-
other direction of improvement is to proceed to
a self-consistent-field calculation. Furthermore
one may get a more realistic representation of
a-Si by taking a superposition of a number of
quasiperiodic CRTN's instead of just one. Par-
ticularly it should be interesting to study a quasi-
periodie CRTN with smaller bond-length and
bond-angle distortions than the Henderson model.

Our calculated valence-band DOS is in good
agreement with the experimental data of Ley
et al." The general feature of two peaks in the
valence band is in agreement with the previous
suggestion that the leading peak found in crystal-
line Si should persist whereas the middle sharp
peak and the bottom peak associated with the crys-
tal valence band tend to merge into a broader
peak. ' However, the local maxima in the DOS
immediately below and above the Fermi level
found in our calculations have not been previously
predicted from purely theoretical considerations.
On the other hand, existence of such local maxima
has been inferred from experiments, and they are
traditionally attributed to voids or dangling bonds
in the sample. The present calculations show that
such structures in the DOS may be present even
for a void-free, pure sample if there exist ap-
preciably distortions of bond length and bond

angles from the perfect tetrahedral configuration.
Our results show no absolute band gap for a-Si

but the overlap of the two bands is very small and
the DOS in this overlap region is extremely low.
The precise question of whether an absolute band

gap exists or not for the Henderson model cannot
be settled here since the refinements of augment-
ing the basis set and iterating to self-consistency
may well shift the edges of the bands differently
resulting in a quite different gap value. Neverthe-
less, our results are not in conflict with those of
the optical experiments as the optical gap may be
considerably larger than the absolute band gap
(if exists) when the DOS is very low near the Fermi
level. The JDOS calculated from the DOS curve
is in qualitative agreement with optical experi-
ments, although the peak of the calculated JDOS
seems to shift to the higher-energy side as com-
pared to the experimental data of optical absorp-
tion strength. This discrepancy may be due to the
energy dependence of the optical matrix elements.

%e have also calculated the DOS by using a
cluster approach. By taking the Hamiltonian as
that of the infinite CRTN, we circumvented the
difficulty associated with the presence of an arti-
ficial surface. The basis functions are confined
to orbitals of those atoms within a cluster. Since
different clusters of the same size are not equiv-
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alent in an amorphous solid, we take the average
DOS of a number of clusters. Our LCAO cluster
study differs from the earlier work of Tong" in
that our matrix elements are calculated by using
first principles instead of empirical methods and
that our Hamiltonian corresponds to an infinite
CRTN with no surface present. By comparing the
calculated DOS using clusters of three different
sizes (17, 35, and 60 atoms) with the results
based on the Bloch-sum basis functions, we find
that the general shape for the valence band is
adequately reproduced by the cluster works. The
quantitative features do improve as the cluster
size is increased; the 60-atom clusters give a
moderately good representation of the valence-
band DOS.

For a first-principles calculation of a system as
complex as a-Si, it is useful to include a few
comments concerning the computer time required.
In the case of the quasicrystal approach (Sec. II),
it takes about 60 min on a Univac 1110 machine to
compute all the necessary matrix elements. De-
termination of the roots of a 244X244 secular
equation (including the orthogonalization process)
generally requires 7 min if the matrix is real and
25 min for a complex matrix. Thus for the cal-
culation of DOS in which we solved four real secu-
lar equations and seven complex ones, the major
computer-time expenditure is on the diagonaliza-
tion of matrices rather than the computation of
matrix elements. This indicates that the technique
for evaluating multicenter integrals has advanced
to the point that the computation of matrix elements
is no longer a very time-consuming task. If we
were to use some empirical methods to obtain the
matrix elements, we would still have to diagonalize
the matrices and no major saving in computer time
is accomplished. Moreover, because in an amor-
phous solid the "nearest-neighbor" distance varies
over a wide range with different degrees of bond-
angle distortion, a realistic parametrization of
the matrix elements is more complicated as
compared to the case of a perfect crystal, making
it difficult to obtain reliable results from empiri-
cal LCAO calculations for a-Si. Considering the
amount of computation involved as well as the
question of accuracy, we feel that the use of a
first-principles approach for quantitative calcula-
tions of electronic energies of a-Si is both prac-
tical and essential.

In conclusion we have demonstrated that based
on the quasiperiodic CRTN model of Henderson, a
first-principles calculation of the electronic ener-
gy states of a-Si can be performed quite efficiently
by means of the orthogonalized LCAO method. The
quasiperiodic model is particularly suitable as it
enables us to adopt the techniques developed for

APPENDIX

Since the atomic wave functions are expanded
by GTO's and the potential function is taken as a
superposition of atomiclike potentials which in
turn are expressed in Gaussian form, a potential-
energy matrix element between two s-type Bloch
sums can be decomposed into two kinds of three-
center integrals around three sites A, B, and C,
l.e.)

(s„ I
e "3'c

I ss) =—(e ~ ""
I e ~"c

I
e & s), (A 1)

[s„~ (I/rc)e ~c
~
ss-]

=—[e "~"&~ (1/rc}e 3'c( e 2's], (A2}

where r„ is the distance between the electron and
site A, etc. We define

a~-a, + n, +n»
E = (a,A+ a,B+ a,C}/ar,
AE = I&EI= IE —A" I,

(AS)

(A4}

(A5)

where A is the vector from the origin to site A.
The relation between the various points and vectors
is illustrated in Fig. 7. It follows that

r„=r~+AE, etc. ,

n~AE+ a2BE+ n3CE = 0,
which, when combined with Eq. (A1), give

(A6)

(A7)

band-structure calculations for crystals to amor-
phous systems. All the multicenter integrals are
computed exactly and the lattice-summation of
these integrals (to form matrix elements) is
carried out to convergenc. Although the OAP
approximation used in constructing the potential
in this work can be improved upon by iterating the
solution to self-consistency, this step would in-
volve a great deal more computational efforts and
is not deemed worthwhile at this moment consid-
ering the uncertainty of the CRTN model involved.
It would be desirable to have other quasiperiodic
models available for a comprehensive comparison.
For nonperiodic CRTN one can still apply the
LCAO method by adopting the cluster approach.
However, care must be taken to ensure that the
clusters are large enough to reproduce the salient
features of the whole network. Besides pure amor-
phous systems, this LCAO scheme can be readily
extended to study the problems of impurity and
void effects in amorphous solids.
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(e„~le
' '

l
)=exp[-a,AE' —,BE' —,CE )f e ' 'lde

=(&/ar) ' exp[-a,M' —a,BE' —a, CE j. (A8)

To evaluate (A2) we introduce

D = (a,A+ a2B)/( a, + a, ),
and take the z axis along CD so that

(A9)

s„—e &"& s~ = exp —a,CA' —e,CB ' e &"&r~'e ' '&' d7
&c

1 2
=2xexp(-a, CA' —a,CB') e "T"cree'( l' 2)c 'c "'ed(cos&) drc

0 -1

Upon letting

exp( a Cg2 a CB2) e-arr (e2(ala a2)cDr e-2(al+ a2)cDr)(f2e (Ala)(a, + a2)CD

P = (a, + a, ) CD/aT,

f =WZ (a, + a,)CD/~n„

the above integral reduces to

(A11)

(A12)

(
" 'd = —— e p a, CA' —a, CB' -~ ' ' e ' " dp — e r" dr)" rc (a, +a2)CD ' ' ar

exp -a,CA' —a,CB'+ ' ' t ' ~'dz (A13)

The matrix elements involvin(r p-type Bloch sums can be deduced from Eqs. (A8) and (A13) by an appro-
priate differentiation since a P-type GTO is related to an s-type Gaussian as

n„2 1 8 ar1"A = 2, eW„
1 A

vrhere x„and A.„are the x component of r„and A. The procedures for calculating overlap and kinetic-
energy matrix elements are much simpler and have been given in Ref. 17.
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