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Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and
zinc-blende semiconductors*
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An empirical nonlocal pseudopotential scheme is employed to calculate the electronic structure of eleven

semiconductors: Si, Ge, a-Sn, GaP, GaAs, GaSb, InP, InAs, InSb, ZnSe, and CdTe. Band structures,
reflectivity spectra, electronic densities of states, and valence charge densities are presented and compared to
experimental results. Improved optical gaps, optical critical-point topologies, valence-band widths, and valence

charge distributions are obtained as compared to previous local pseudopotential results.

I. INTRODUCTION

While the empirical-pseudopotential method

(EPM) has been extensively applied to the diamond
and zinc-blende semiconductors, studies on these
materials have been based, until recently, on a
simplified "local" approximation. ' In this ap-
proach, ref lectivity experiments have played a
prominent role in determining the theoretical
parameters that enter EPM calculations. The
local approximation has proven sufficient to ex-
plain most of the optical data available for semi-
conductor compounds. However, if we extend the
early calculations, which have invoked the local
pseudopotential approximation to the valence bands
and compare the results to experiment, discrep-
anc ies arise. ' ' Specifically, high-resolution
photoemission results, i.e., x-ray photoemission
spectroscopy' ' (XPS) and ultraviolet photoemis-
sion spectroscopy" (UPS) have demonstrated that
local EPM calculations obtain incorrect valence
band widths, in the majority of cases, as compared
with experiment.

In addition to the discrepancies which exist for
the valence-band widths, local EPM calculations
have produced optical response functions in dis-
cord with recent optical-modulation techniques. "
Specifically, band topologies and optical critical-
point symmetries as calculated by a local pseudo-
potential for Ge and GaAs have been found to be in

error. ' Also a consistent assignment of structure
in the ref lectivity spectra using local potentials
has yet to be achieved.

Recent experimental advances using x rays have
permitted an assessment of the pseudopotential
charge densities. ' ' While the experimental data
for Si indicated that the local pseudopotential
yielded a correct bonding-charge maximum, the
bond shape was found to be incorrect. ' Also recent
x-ray data on InSb indicated the local pseudopoten-
tial approach overestimates the ionicity of the

crystal, i.e., it yields a greater charge transfer
from In to Sb than indicated by experiment. "

Owing to the nature of these discrepancies, it
was speculated that a purely local pseudopotential
technique could not yield satisfactory results, and
an energy dependent and nonlocal pseudopotential
should be considered. "'" The evidence for this
reasoning was reinforced particularly by the
valence-band-width discrepancy, because other
one-electron approaches (which corresponded to
energy-dependent nonlocal pseudopotentials) tend-
ed to yield more accurate valence bands than the
local EPM approach. '

As a consequence of the increased amount of
experimental information (e.g. , XPS and UPS
data) and the aforementioned failings of the local
EPM, it was felt that refined nonlocal pseudopo-
tential calculations be performed to supplement
and extend the earlier local EPM calculations. "
Therefore, an attempt to recalculate the band
structures of a number of diamond and zinc-blende
semiconductors has been undertaken. Using an
empirical nonlocal pseudopotential scheme we have
calculated the electronic properties of Si, Ge,
GaAs, ZnSe, e-Sn, InSb, CdTe, GaP, GaSb, InP,
and InAs.

In Sec. II the calculation techniques are outlined;
in Sec. III the results of our calculations, the band
structure, ref lectivity spectrum, electronic den-
sity of states, and pseudo-charge-density for each
compound, are presented; and in Sec. IV, some
conclusions are given.

II. CALCULATION TECHNIQUES

A. Nonlocal pseudopotentials

The fundamental concept involved in a pseudo-
potential calculation is that the ion core can be
omitted. Computationally this is crucial for it
means that the deep core potential has been re-
moved and a simple plane wave basis will yield
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rapid convergence.
Simply stated, we rewrite the one-electron

Hamiltonian as

H = p'/2m+ V~(r),

where

V,()=V() P(E;-E,)l&,&{&,l. (2)

V(r) is the true crystal potential and
~ b, ) is a.

core state with eigenvalue E, ." This new potential
has the same eigenvalues F&, but because the real
potential has been cancelled in the core region by
the second term in (2)," the resulting eigenfunc-
tions of (1) are smoothly varying in the core region
in contrast to the true eigenfunctions. While this
permits the pseudoeigenfunctions to be expressed
in terms of plane waves, the pseudopotential in

(2) is dependent not only on the energy eigenvalues
E„, but on the L angular-momentum components
present in the core states.

In spite of the fact that (2) is inherently nonlocal
and energy dependent many of the optical spectra
for semiconductors can be explained by ignoring
this. ' If we assume the pseudopotential is a
simple function of position, then

V, (r) = g V(G)e"',

The local empirical pseudopotential method is
based upon the above simplification. If we take
the pseudopotentials to be spherical so that V~(r)
= V~{~ r~), the form factors depend upon the mag-
nitude of 0, with a corresponding reduction in the
number of required form factors. These form
factors are the empirically determined parameters
fit to experimental data such as optical gaps.

The validity of this approach rests upon two
arguments: (i) E&»E, so that (Ek —E,) can be
replaced by a mean energy in (2) suck as Ez (pro-
viding one is interested in only a limited energy
range), and (ii) the cancellation is equal for all /

(or at least the I components of the valence wave
functions which are significant). Until recently as
mentioned in Sec. I, these assumptions have been
found to be satisfactory.

If we wish to include the effects of nonlocality
or energy dependence we may proceed in a manner
discussed extensively elsewhere. " ' In order to
briefly summarize the method and clarify the no-
tation to be incorporated for the required parame-
ters, we outline the technique below.

We may write a nonlocal (Ni ) correction term to
the local atomic potential term of the form'

V'„„(r,E) = Q A, (E)f,(r)t, ,
1=0

where

V(G) = g S.(G)V.{G),

~.(G) =

cell j

v (G)= ~ f ' 'v;( )d'r,
a

where the G are reciprocal-lattice vectors and

V (G) are the atomic form factors. In this approx-
imation we are assuming the crystalline potential
is a sum of local atomic pseudopotentials V~(r).
0, is the atomic volume, N is the number of
atomic species z present, and |lt'&" is the position
of the jth atom of the ath species. These equations
may be specialized in the case of the diamond or
zinc-blende compounds, A"8' " to

V(G) = V (G) cos(G ~ 7) + IV"(G) sin(G ~ 7),
where

where A, (E) is an energy-dependent well depth,

f, (r) is a function simulating the effect of core
states with / symmetry, and 6', is a projection
operator for the jtth angular momentum compo-
nent.

Only i= 0, 1, or 2 components are significant
for the case at hand, therefore, we may write
(symbolically)

TABLE I. Pseudopotential parameters for the dia-
mond-structure semiconductors.

Si~
Si
Ge
e-Sn

—0.224
-0.257
—0.22i
-O.i90

0.055
-0.040

0.0i9
-0.008

0.072
0.033
0.056
0.040

5.43
5.43
5.65
6.49

Nonlocal parameters Radii (A)
Compound ep (Ry) Pp A 2 (Ry) Ap A2

Form factors (Ry) Lattice
Compound V(W3) V(v 8 ) V(~ii) constant (A)

V' (G) = 2[Vz(G) + Vs(G) 1

V" (G) = —.'[V.(G) —V.(G)].

r = Ba(l, 1, 1), where a is the lattice constant. V~

and V" are the symmetric and antisymmetric form
factors, respectively.

Si
Ge~
n-Sn

0.55
0
0

0.32 0
0 0.275
0.40 0.70

~ Purely local pseudopotential.
Gaussian nonlocal well.

i.06 0
0 1.22
i.06 i.4i
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and need consider, for example, s and d terms in

(6). Model-potential calculations indicate a weak
energy dependence for the A, (E}, where l=1 or
2 17

To choose a form for f, (x) we employ a square
well, a form which has the advantage of simplicity
and wide applicability. ' " Hence,

(8)

With a plane-wave basis the required matrix
ele ments are of the for m

V„„(K,K') = —g A,'(E)(2 l+ 1)P, (cos(8«.))0, ,

x S'(K —K')F'(K, K'),

where K= k+ G, K' =k+ G', and

(9)

(1/2R')[[j, (KR)]' —j, ,(KR)j „,(KR)), K =K',
l

[R'/(K' K")][-Kj„,(KRj), (K'R) Kj'„,—(K'R)j,(KR)], K X K'.
(10}

The j,(x) are spherical Bessel functions, P, (x) are
Legendre polynomials, and i is a sum over the
atomic species present. '

To simulate energy dependence for the s states
we make the approximation for the matrix elements
between K and K' as follows:

det(Hp o (k) —E(k)6o p ~

=0.

For the local approximation, we have

2

H~~ -, =
2

(k+G)'6p p +V(~G —G'~) .

(13)
Ao(E) =ao+Po[[E (K)E (K')]'~' —E (Kr)), (11)

where E (K}=h'K'/2m. This approximation works
quite well compared to more rigorous techniques. "

The parameters required by our potential were
fixed by detailed comparisons with experimental
ref lectivity and photoemission data. Unfor tunately,
the addition of a nonlocal correction term increases
the number of parameters rather dramatically.
We have attempted to circumvent this by constrain-
ing the local part of the pseudopotential to resemble
the Cohen-Bergstresser values. " The nonlocal
radii required were fixed by model potential cal-
culations" and by physical considerations. In
particular, the s radius was taken from the Heine-
Animalu-model calculations, "and the d-well
radius fixed by "touching spheres" as suggested
elsewhere. " With the radii thus fixed, the well
depths are the only adjustable nonlocal input pa-
rameters.

We govern our choice for the nonlocal well
depths by inspection of nonlocality in the ion core
potential. " It is expected that screening could
reduce the size of the nonlocality present in the
core potential, but the trends are expected to be
correct.

The form factors and structure factors are defined
as in (5) for diamond and zinc-blende semicon-
ductors.

For nonlocal corrections we may take

NL 4p
Ho o =Ho p, + —gA, (2l+1) P, (cos8xx )

a ~u

x F, (K&K')S"(G —G'),

(14)

where the sum over o. refers to the atomic species
present. The F, (K,K') are defined as in (10). An
"energy dependence" may be included in the A,
as in (11).

To evaluate the optical response functions or
electronic density of states it is necessary to
perform a summation over wave vector k. Thus
(12) is solved for a grid of 308 points in the irre-
ducible Brillouin zone.

To achieve satisfactory convergence, typically
50 plane waves are included in the wave-function
expansion with another 50 wave treated in an ap-
proximate fashion using a scheme due to LOwdin. '

C. Optical response functions

B. Band structure

Once the potential is determined, it is a straight-
forward calculation to solve for the energy-band
spectrum. The eigenvalues and eigenvectors are
found by solving the secular equation

(15)

The optical spectrum can be calculated as fol-
lows. First the imaginary part of the dielectric
function is evaluated using the expression'

'h' f„„(k)dS

mm
C 0
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where

z„„(k)=z„(k) —z„(k)

X) r2s

a' f&~„k[V[s„k&J'

is the interband oscillator strength. The sum is
over the initial valence-band index n„and the final

conduction-band states n, . 8 is a surface in k
space of constant interband energy. Four valence
bands and six conduction bands were included in
the sum. The Gilat-Raubheimer scheme" was
used to evaluate the integral. The expression for
e,((a) is based upon several assumptions such as
neglecting excitonic effects, but has been quite
satisfactory for the purpose of analyzing reflec-
tivities.

Once an imaginary part of the dielectric function
has been evaluated, the real part and the reflectiv-
ity may be calculated from a Kramers-Kronig
transformation. To compare the theoretical re-
sults to the experimental derivative spectra, the
logarithmic derivative of the ref lectivity is
computed by numerical means.

D. Electronic density of states

—10

The density of states is given by

L A r X U,K X

where the sum is over wave vector and ba.nd index.

0-
TABLE II. Eigenvalues for diamond-structure semi-

conductors at I', X, andL. Energies are in eV.

Point Level
Compound

Ge

Local Nonlocal

-12.53 -12.36 -12.66 -11.34

-0.29 -0.80
—10

—12 pC

0.00

4.17

0.00

4.10

0.00

0.90 —0.42

3.43 3.22 2.66

-8.27

-2.99

-7.69

-2.86

-8.65 —7.88

-3.29 —2.75

1.22 1.17 1.16 0.90

—10

r Z X U, K X

WAVE VECTOR k

-10.17

-7.24

2.15

-9.55

-6.96

2.23

-10~ 39 -9.44

-7.61 -6.60

-1.63 -1.68

-1.43 -1.20

0.76

FIG. 1. Band structures for Si, Ge, and e-Sn. In
the case of silicon two results are presented: nonlocal.
pseudopotential |'solid line) and local pseudopotential
(dashed hne). Spin-orbit corrections not included.

4.16
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The energy gradients required (Ref. 19) were
calculated from k ~ p perturbation theory.

E. Pseudocharge density

The pseudocharge density was calculated by
using the special point scheme of Chadi and

Cohen. " Instead of evaluating the sum"

p(r) = e g Q [ t}„k(r) ('
tl V

(17)

over a fine grid throughout the Brillouin zone as
performed by Walter and Cohen, "only a few rep-
resentative points need be considered. The two-
point scheme of Chadi and Cohen, with k,
=(2II/a}(~, ~, —,} and k, = (2w/a)( —'„~,~) yields a va-
lence-band pseudocharge density accurate to
within (1-2}%,"as compared to a sum throughout

the zone. Approximately 90 plane waves were
used in the calculation of the required pseudo-
wave-functions.

F. Spin-orbit interactions

For the heavier elements the atomic spin-orbit
splittings become rather large. An example is
CdTe where the energy bands split by nearly 1 eV
at the valence-band maximum. Since we are
interested in obtaining precise band structures
such interactions must be considered.

%e have included spin-orbit interactions by ex-
tension of a method first presented by Saravia
and Brust' for Ge. Following the work of Weisz, "
as modified by Bloom and Bergstresser, ' we may
write the spin-orbit matrix element contribution

0.8

0.6—

Si

1.0

0.5—
Si

—E, +ED E2
IE)—

0.4—

—0.5—

0.2—
—1.0

EXPERIM ENT

0 I I I I

0 1 2 3 4 5

0.6

I

6 7 0.5

0

R(EI

0.4 —0.5—

0.2— —1.0
2

0 I

0 1

0.6

3 4 5 6 7

2.0

1.0—
Ge

I

I
I

I

I

I

0.4

0.2—

—1.0—

—2.0
0

—THEORY
--- EXPERIMENT

I I

3 4
ENERGY (e'III')

0
0

I I

2 3 4

ENERGY (eVj

FIG. 2. Theoretical and experimental ref l.ectivity
spectra for Si, Ge, and ~-Sn. The experimental results
are from Ref. 30 for Si and Ge and Ref. 31 for ~-Sn.

FIG. 3. Calculated derivative ref lectivity spectra for
Si and Ge compared to experiment. The experimental
results are from Ref. 32 and Ref. 33, respectively.
In the case of Si two results are displayed: nonlocal
pseudopotential (sol.id line) and local pseudopotential.
(dotted line)
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TABLE III. Theoretical and experimental reflectivity structure and their identifications including location in the
Brillouin zone, energy (in eV) and symmetry of the calculated critical points for Si.

Reflectivity structure
Theory Experiment

Local Nonlocal 5 K ' 80 'K

Si
Associated critical points (cp)
location in the Brillouin zone

Local Nonlocal

Symmetry Critical-point
of CP ener gy

Local Nonlocal Local Nonlocal

3.48 3.49 3.40 3.36 L3 -L Mp Mp 3.46

3.45 3.41

Near
(0.1,0.02, 0.02)

I zs- I'i5

Near
(0.1,0.05, 0.05)

Mp

Mp

Mp 3.43

3.46

3.42

3.42

3.75

4.26

3 ~ 70

4.15

3.66 (3.88) ' Vol. along 6
4.30 4.38 Vol. near

(0.9, 0.1,0.1)

Vol. along 6
Vol. near

(0.9, 0.1, 0.1)

4.53 4.57 4.57 4.57 Large region near
(0.5, 0.25, 0.25) and
Z4-Z(

Large region near
(0.6, 0.3, 0.3) and
Z4- Zg

M2

Mp

4.53

4.49

4.47

4.60

5.32 5.58 5.48 Lg-L3
A3- A3 (0.4, 0.4, 0.4)

L3-L3 Mp
A3 A3 (0.45, 0.45, 0.45)

M2
-Mg

5.22
5.2 5

5.56
5 ' 57

~ From Ref. 32.
b From Ref. 34.
'Inferred from e&(~) data of Ref. 34.

to the pseudopotential Hamiltonian as

Ho q (k} =(KxK'} c, , (-iX'cos[(G —G') ~ 7]

+)."sin[(G —G') ~ ~]j,

where we define

V = —,'(~„+~,), ~" = —,'(z„

4 = vii. i(&)&."i(K'),

&s = nip, B„,(K)B„(K').

TABLE IV. Theoretical and experimental reflectivity structure at 5'K for Ge (from Ref.
33), and their identifications, including the location in the Brillouin zone, energy, and sym-
metry of the calculated critical points.

Theory

Ge
Reflectivity

structure
(eV)

Exper im ent

As soc iated
critical points,

location in
zone Symmetry

Critical-point ener gy
(eV)

2.20 2.22 L6-I.6 (0.5, 0.5, 0.5) 2.19

2.40 2.42 L4v 5 L6v Mi 2.39

3.20 r,"5—r f 5 complex
(0.0, 0.0, 0.0)

Mp 3.25

4.51 4.5 Region near
(0.75, 0.25, 0.25)

5.40

5.88

5.65

5.88

(0.5, 0.0, 0.0) M f

~7-~f

L4 5-Lf 5 (0.5, 0.5, 0.5) Mg

5.40

5 ~ 35

5.88

L6 -L6 M& 5.60
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TABLE V. Theoretical and experimental reflectivity structure for e-Sn and their identifica-
tions, including the location in the Brillouin zone, energy, and symmetry of the calculated
critical points.

e-Sn
Refl ectivity

structure
(eV)

Experiment
Theory (a) (b)

Assoc iated
critical points

location in
zone Symmetry

Cr itic al-point energy
(eV)

1.83

2.31

2.95

3.78

2.85

3.75

2.63

3.3

1.365 1.365

1.832 1.845

L,,"-L,f, (0.5, 0.5, 0.5)

L6-I 6

I"s-I 6 (0.0, 0.0, 0.0)

Is-Is
a",-~f (0.2, 0.0, 0.0)

I ~-I' s

Plateau near
(0.75, 0.25, 0.25)

M(

Mo

Mo

1.83

2.66

3.46

4.2

4.31

4.91

4.0

4.43

4.89

4.12

4.89

~6-Z) (0.6, 0.0, 0.0)

L4 g-Lf

4.13

4.25

~ Reflectivity measurement from Ref. 31.
ElectroreQectance measurement from Ref. 35.

0' are the Pauli spin states and X', A.
" are the sym-

metric and antisymmetric contributions to the
spin-orbit Hamiltonian. p, is an adjustable param-
eter, and n is constrained such that the ratio of
the sp.n-orbit contributions for the atoms A and

8 are the same as the spin-orbit splitting ratio for
free atoms. '

The B„are defined by

B„,(K) =P j„,(Kr)R„,(r)r'dr,

where R„, is the radial part of core wave function.

p is a normalization constant as in Ref. 27. The
radial wave functions are taken from the Herman-
Skillman tables. "

We only include contributions from the outer-
most p-core states. Contributions from inner
core states or d-core states may be neglected. "'"

In the Saravia-Brust-method" spin-orbit inter-
actions are treated by perturbation theory. If at
some wave vector k we have bands n and m such
that

IE.(k)-E (k)l«. ,

then these bands are treated as "degenerate" and

degenerate perturbation theory is used to include
the spin-orbit correction. Otherwise nondegener-

ate perturbation theory is used.
In the degenerate perturbation technique we must

solve

detlH" (k) -E(k)5„,&.„l =O,

where

H"„'(k) = Q a (k)cP~-(k)Ho'
o, , (k)

+E (k)5 „d„..
E (k) is the band energy without spin orbit, H"
is given by (18), and the pseudo-wave-functions by

)&i(k+ I' &

E, is chosen such that it is large compared to the spin-
orbit splitting. By a direct comparison with cal-
culations which include spin orbit exactly, it is
found Eo= 2 eV is quite satisfactory for the case
at hand. Even with rather large spin-orbit split-
tings (e.g. , 1 eV), the perturbation technique is
accurate to within 5% and reduces the computation-
al time typically by almost an order of magnitude.
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III. RESULTS A. Diamond-structure semiconductors

The results of our pseudopotential calculations
are presented in this section for 11 diamond and
zinc-blende crystals. %e include results for Ge,
GaAs, and ZnSe for completeness although the
method we used for these crystals differs slightly
from the technique described above. '

THEORY

0
—14 —12 —10

& 1.0

Ge

~ 0.5—

—THEORY

—8 —6 —4 —2 0 2

0—14 —12 —10 —8
Z
w 15
Cl

4 6

1.0—

0 I I

—12 —10 —8 —6 —4 —2 0

ENERGY (eV)

FIG. 4. Calculated electronic densities of states com-
pared to experiment for Si, Ge, and O. -Sn. The exper-
imental results for Si and Ge are from Hefs. 2 and 3,
respectively. In the ease of Si two results are dis-
played: nonlocal pseudopotential (solid line) and local
pseudopotential (dashed line) .

In this subsection we shall discuss the diamond
structure semiconductors: Si, Qe, and z-Sn.
Results for Si have been presented elsewhere"
and are summarized below. The parameters used
in the calculations for these crystals are listed in
Table I. Si was examined with both a local and
nonlocal potential. The nonlocal potential was
required to alter the bonding charge and obtain
agreement with recent x-ray experimental data. '
This type of information was not considered in the

,caseof Qe or n-Sn, therefore, 3 comparison
between nonlocal terms is not appropriate.

Spin-orbit interactions were considered in Qe
and e-Sn, but not in Si where they are negligible
(e.g. , 60= 0.05 eV). The spin-orbit parameters
p. are 0.0009V and 0.00225 for Ge and e-Sn, re-
spectively.

The band structure for the three diamond semi-
conductors is given in Fig. 1. The most striking
feature of the three band structures is the ordering
of the first two conduction bands. In Si the lowest-
lying conduction band at I', I'», is p-like; however,
in Ge and a-Sn the s-like 7, band is the lowest
conduction band. A related effect is the decrease
in the optical gap of Si from 3.4 eV to identically
zero is the semimetallic a-Sn. This trend can be
understood in chemical terms as arising from an
increase in the promotion energy for the creation
of sp' orbitals in going from Si to o.-Sn. '

The energy eigenvalues at 1, X, and L, for the
valence bands and first few conduction bands are
given in Table II.

In Fig. 2 the ref lectivity spectra are presented.
Kith the exception of the magnitude of the experi-
mental and theoretical ref lectivities, especially
for energies larger than the most prominent (E2)
peak, the agreement is quite good. Modulated
ref lectivity spectra, which are a more sensitive
test, are given in Fig. 3 for Si and Qe. An equiv-
alent experimental curve for z-Sn is not available.
The experimental ref lectivity spectra were taken
at room temperature while the derivative spectra
were taken at lower temperatures (i.e., O'K).
This accounts for the small shifts in peak positions
between Figs. 2 and 3.

In Tables III-V the major reflectivity structure
is identified and associated with Van Hove singu-
larities (or critical points) in the joint density of
states. ' For Si numerous critical points are known
to exist for the leading absorption edge, and a
precise ordering of the energy levels is still in
question. " A major result in Ge and a-Sn is the
effect of the nonlocal pseudopotential on critical
point symmetries and location in the Brillouin
zone. '8 For example, in Ge the local pseudopo-
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TABLE VI. Calculated valence-band electronic densities of states for diamond-structure
semiconductors compared to experiment.

Compound

Feature Theory
Si

Exper iment Theory
Ge

Exp er iment
o.-Sn

Theory

L(

+ min
1

L3

Local

—12.4

-10.2

—7.2

—4.5

-1.2

Nonloc al

—12.5

-9.5

—6.9

4 5

—1.2

—12.4 +0.6 ~

—12.5 ~0.6"
—9.3+0.4 h

—6.4 +0.4
—6.8 ~0.2 b

—4,4 c

—47~0 3'
1 2+0 2c

-12.6

—10.3

—7.5

—4.6

1 4

—12.6 + 0.3 ~

—12.8 + 0.4 ~

—10.6 +0.4
-10.5 ~0.4"

7 8 7
—7.4
—4.5
—4.5
—1.4 +0.2

—11.3

—9.4

—6.6

—1.2

'See Refs. 3 and 6.
See Refs. 2 and 5.
See Ref. 38.

tential yields an Mo critical point for L, —L' and
an M, critical point midway between I' and L.
The nonlocal potential displaces the M, critical
point to the zone edge, thus eliminating the Mo
critical point. Experimentally the nonlocal result
is favored. "'Another result of the nonlocal pseudo-
potential is the creation of a strong critical point
near the special point (—'„4, —,'}.' This region is
dominant in producing the E, ref lectivity peak:
a result suggested by recent modulated ref lectivity
measurements. ' ' "

A comparison of the optical spectra indicates
a striking similarity (especially considering that
the conduction band structure is quite different).
The principal difference between the spectra, a
shifting of analogous structure to lower energies
from Si to n-Sn, occurs because of the increase
in metallicity.

In Fig. 4 the electronic densities of states are dis-
played and compared to the results of''' XPS and''
UPS for the case of Si and Ge, respectively.
Unfortunately, a UPS or XPS spectrum for O. -Sn
does not exist. However, a comparison between a
recent orthogonalized-plane-wave calculation" and
the nonlocal pseudopotential for o.-Sn yields good
agreement. Unlike the conduction band structure
the electronic density of states for Si, Ge, and
n-Sn remains nearly constant. The various struc-
tures observed in the experimental spectra are
identified and compared with the theoretical re-
sults in Table VI. The agreement between theory
and experiment is quite good.

Valence charge densities for Si, Ge, and a-Sn

have been calculated. Comparisons with experi-
ment has ascertained that nonlocal pseudopoten-
tials can yield accurate bonding charge distribu-
tions. ' In Fig. 5 the valence charge density as
calculated using experimental data is compared
to the nonlocal pseudopotential results. The

FIG. 5. Valence charge density as determined by
Yang and Coppens (Ref. 9) from x-ray experimental data.
(b) Valence charge density as calculated by a nonlocal
pseudopotential. In both cases the contours are in
units of e/0, .
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FIG. 6. Calculated
valence charge densities
for Ge and n-Sn. The
contours are in units of
e/0, .

local pseudopotential calculation produces a
bond oriented perpendicular to the bonding di-
rection. " In Fig. 6 the calculated charge den-
sities for Ge and n-Sn are displayed. The
bonding charge maximum in units of e/0, are al-
most identical in Ge and a-Sn. However Ge has
a slightly more localized bond as to be expected
since it is more covalent than a-Sn. In Table VII
the Fourier coefficients of the valence charge
densities are given. If Hartree-Fock wave func-
tions are used to include the core charge densities,
these coefficients may be used to calculate the
x-ray structure factors.

B. III-V zinc-blende semiconductors

In this subsection we shall discuss six zinc-
blende semiconductors: GaP, GaAs, GaSb, InP,
InAs, and InSb. The parameters used in the cal-
culation are given in Table VIII. Spin-orbit inter-
actions were not included for GaP because of their
negligible size. For the cations ceo was constrained
to be identically zero, and the model radii" p
1

G
0~

.27 and 1.06 A were used for the cations and

anions, respectively. The band structures are
given in Fig. 7 for the Ga compounds and in Fig. 8
for the In compounds. As expected in both cases
the optical gap decreases with the heavier anionion.

s an example in GaP the optical gap is 2.9 eV
and in GaSb the gap is 0.9 eV. A cross comparison

TABLE VII. Fourier coefficients of the valence
charge densities for diamond-structure semiconductors.
The origin for this calculation is at the bond site.

Fourier coefficients (e/Qc)
Compound

Si
C(a/2~) Local Nonlocal Ge a-Sn

(000)
(111)
(220)
(311)
(222)
(400)
(331)

8.000
—1.748

0.270
0.412
0.481
0.206
0 ~ 018

8.000
—1.924

0.035
0.345
0.467
0.273
0.015

8.000
—1.807

0.109
0.373
0.466
0 ~ 243
0.025

8.000
—1.956
-0.098

0.262
0.364
0.223
0.011

with the In compounds shows the gap also decreases
with a heavier cation. As an example, the gap is
1.51 eV for GaAs and 0.37 eV in InAs. Consider-
able effort has been spent in interpreting trends
in the optical gaps in terms of the chemical bond-
ing and ionicity of the crystal. " Following the
pattern of spin-orbit interactions in the free
atoms, the spin-orbit splitting at the valence-
band maximum increases with the heavier ele-
ments. The eigenvalues at I', X, and L are given
in Table IX.

The ref lectivity spectra are given in Fig. 9 for
the Ga compounds and Fig. 10 for the In com-
pounds. The corresponding modulated reflec-
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TABLE VIII. Pseudopotential parameters for the III-V zinc-blende semiconductors. no
and A2 are in Ry.

C ompound V~(v 3 )

Form factors (Ry) Lattice
Vs(v8) Vs(~11) V (W3) V (W4) V (~11) constant (L)

GaP
GaAs
GaSb
InP
InAs
InSb

-0.230
-0.214
—0.220
—0.235
-0.230
-0.200

0.020
0.014
0.005
0.000
0.000

-0.010

0.057
0.067
0.045
0.053
0.045
0.044

0.100
0.055
0.040
0.080
0.055
0.044

0.070
0.038
0.030
0.060
0.045
0.030

0.025
0.001
0.000
0.030
0.010
0.015

5.45
5.65
6.10
5.86
6.05
6.47

Compound
Cation

A2

Nonlocal parameter s
Anion

A2

Spin orbit

GaP
GaAs ~

GaSb
InP
InAs
InSb

0.30
0
0.20
0.25
0.35
0.45

0.40
0.125
0.20
0.55
0.50
0.55

0.32
0
0
0.30
0
0

0.05
0
0.30
0.05
0.25
0.48

0.45
0.625
0 ~ 60
0.35
1.00
0.70

0.000 80
0.0011
0.0020
0.0012
0.0018

~ Gaussian nonlocal well.
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FIG. 7. Band structures for GaP, GaAs, and GaSb.
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FIG. 8. Band structures for InP, InAs, and InSb.
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TABLE IX. Eigenvalues at I', X, and L for III-V zinc-blende semiconductors. Energies
are in eV.

Point Level GaP ' GaAs
Compound

GaSb InP InAs InSb

rv
6

rv
8

r6"

rc

rc

-12.99

0.00

2.88

5.24

-12.55

-0.35

0.00

1 ~ 51

4.55

4.71

-12.00

-0.76

0.00

0.86

3.44

3.77

-11.42

-0.21

0.00

1.50

4.64

4.92

-12.69

-0.43

0.00

0.37

4.39

4.63

-11.71

-0.82

0.00

0.25

3.16

3.59

X"
6

X"
6

XV
6

X"
1

Xc
6

Xc
7

-9.46

—7.07

—2.73

2.16

2.71

-9.83

-6.88

-2.99

—2.89

2 ~ 03

2.38

-9.33

-6.76

-2.61

-2.37

1.72

1.79

-8.91

-6.01

-2.09

-2.06

2.44

2.97

-10.20

—6.64

-2.47

—2.37

2.28

2.66

-9.20

—6.43

-2.45

-2.24

1.71

1.83

L V
6

Lv
6

LV

gc

gc
6

Lfs

-10.60

-6.84

-1.10

2.79

5.74

—10.60

-6.83

—1.42

-1.20

1.82

5.47

5.52

-10.17

—6.25

-1.45

-1.00

1.22

4.43

4.59

-9.67

-5.84

-1.09

-0.94

2.19

5.58

5.70

-10.92

—6.23

—1.26

—1.00

1.53

5.42

5.55

-9.95

—5.92

—1.44

-0.96

1.03

4.30

4.53

Spin-orbit interactions not included.
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FIG. 9. Calculated reflectivity spectra for GaP,
GaAs, and GaSb compared to experiment. For GaP
and GaAs the experimental results are from Ref. 30.
For GaSb the dashed line is from Ref. 40 and the dotted
line is from Ref. 41.

0
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FIG. 10. Calculated ref1.ectivity spectra for InP, InAs,
and InSb compared to experiment. For InP the experi-
mental results are from Ref. 42 (dotted line) and Ref.
43 (dashed line). For InSb the experimental results
are from Ref. 44 (dashed line) and Ref. 40 (dotted line).
For InAs the experimental results are from Ref. 30.
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tivities are given in Figs. 11 and 12. The promi-
nent reflectivity structure is identified and com-
pared to experiment in Tables X-XV. The struc-
ture for all of the III-V compounds can be de-
composed, as true of the diamond semiconduc-
tors, into five distinct regions: E„E„EO,E„
and E,'.' The lowest-energy region Eo is domi-
nated by structure originating from the fundamental
optical gap at I'. Structure in this region is not
prominent because of the small phase space occur-
ring at I'. The E, peak originates from transitions

Gap—THEORY
—-- EXPERWlENT

occurring near or at L, . The line shape of this
structure has been modified strongly by the non-
local pseudopotential; the M, critical point occur-
ring at L for local pseudopotentials has been
eliminated. The E,' structure can arise from either
of two regions: near I' or along the 6 direction.
Recent work by Aspnes and Studna has given sup-
port to the I' transition. " The I' region has not
been considered of major importance because of
its small phase space. ' However, excitonic ef-
fects could enhance its contribution in the experi-
mental spectra. The E, peak arises from a well-
defined plateau region near the special point
(-,', —,', —,').' The transitions in this region dominate
the spectra because of the large phase space and

strong matrix elements. Following the E, peak,
structure arising from 6 transitions is often
present. The E,'structures arises from transi-
tions from the top valence band to the second

—3
0

THEORY
EXPERfMENT

li I /
I I /
I) iil
y li

i

I & I

3 4

U U0-
-l~
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2 I
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FIG. 11. Calculated derivative reflectivity spectra for
GaP, GaAs, and GaSb compared to experiment. The
experimental results are from Ref. 42 for GaP, and
Ref. 33 for GaAs and GaSb. For a discussion of the fine
structure in GaAs, labeled bye, B, C, see Ref. 13.

—2
0

I I i

3 4
ENERGY (eV}

FIG. 12. Calculated derivative reflectivity spectra for
InP, InAs, and InSb. The experimental results are from
Ref. 42 for InP and Ref. 33 for InAs and In81.
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TABLE X. Identification of transitions responsible for the prominent theoretical and exper-
imental reflectivity structure in GaP, including location in the Brillouin zone, energy, and
symmetry for calculated critical points. The experimental results are from Ref. 42 for 5 K.

Theory

GaP

Refl

ectivit
structure

(eV)
Experiment

Location in
Brillouin zone Symmetry

Cr itic al energy
(eV)

2.95

3.89

4.95

5.24

5.45

6.8

2.89
2 ~ 97

3.79

4 ~ 80

5.i9

5.42

6.7 "

r f s r,' (o.o, o.o, o.o)

L"-L (0.5, O. 5, 0.5)

a s -a; (O.7, O.O, O)

r,',—r,', (o.o, o.o, o.o)

Plateau near
(0.6, 0.2, 0.2)

Lg -L3 (0.5, 0.5, 0.5)

Mp

M&

2.88

3.89

4.9i

5.24

6.84

~ Spin-orbit splitting (not included in the calculation).
From Ref. 45.

conduction band at L. One of the effects of the d
well is to increase the energy of the E,' peak position
and also the E, peak. As discussed elsewhere the
main deficiency of ref lectivities described by local
pseudopotentials is the underestimation of the
optical gaps. ~

While a comparison of the calculated and experi-
mental ref lectivities yields good agreement, one no-
ticeable discrepancy occurs in all cases. This is the
relative strength of the ref lectivity peaks. In GaAs
the effect is quite apparent. At energies below the

E, peak, the theoretical ref lectivity is consider-

TABLE XI. Theoretical and experimental reflectivity structure for GaAs at 5'K (from Ref.
33), and their identifications, including the location in the Brillouin zone, energy, and sym-
metry of the calculated critical points.

Theory

GaAs

Refl ectivity
s true tur e

(eV)
Exper iment

Associated
critical points

location in
zone Symmetry

Critical-point energy
(eV)

3.03

3.25

4.55

4.70

5.i3

5 ~ 59

5.84

6.7

3.02

3.25

4 44

4.64

5.ii

5.64

5.9i

L4,-L; (O.5, O. 5, O. 5)

L6 L~c

~"s-z( (o.i, o.o, o.o)

&s-&s

Plateau near
(0.75, 0.25, 0.25)

x",-x,' (i.o, c.o, o.o)

X6-X7

~ "s-Zs (0.55, 0.0, 0.0)

L4,s-L4, s

L4,s-L4, s

M(

Mg

M(

Mp

M)

3.03

3.25

4.54

4.70

5.07

5.28

5,76

6.67

6.74

'From Ref. 30.
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TABLE XII. Identification of transitions responsible for the prominent theoretical and ex-
perimental reflectivity structure in GaSb, including location in the Brillouin zone, energy,
and symmetry of calculated critical points. The experimental results are from Ref. 33.

Theory

GaSb
Reflectivity

structure
(eV3

Experiment
Location in

Brillouin zone Symmetry
Critical-point energy

(eV3

2.22

2.86

2.$5 Lg5-Lf (0.5, 0.5, 0.5)

&F-&6 Mg

3.3 r,"-r7 (0 0 0,0 0 0) Mp 3.44

3.76 ra- I s~ (0.0, 0.0, 0.0) Mo 3.77

Plateau near
(o.7, o.2, o.2)

4.84 4 5-A f (0.6, 0.0, 0.0)

z~& 5-L( (o.5, o.5, o.5) 5.43

TABLE XIII. Identification of transitions responsible for the prominent theoretical and ex-
perimental reflectivity structure in InP, including location in the Brillouin zone, energy, and
symmetry of calculated critical points. The experimental results are from Ref. 42 (except
as noted).

Theory

InP
Reflectivity

s true tur e
(eV)

Experiment
Location in

Brill ouin zone
Critical-point energy

(eV)

1.42 r,"-rg (o.o, o.o, o.o)

3.13 L4 5-L$ (0.5, 0.5, 0.5) 3.i 3

3.28 L6-L6

4.76 r", —r', (o.o, o.o, o.o)

A g
-4 f (0.2, 0.0, 0.0)

Mo

4.80

Plateau near
(0.75, 0.25, 0.25)

5.00

5.44 r~v- ra~ (0.0, 0.0, 0.0)

5.73

6.55

5.77 Dg-45 (0.7, 0.0, 0.0)

L" -Lf (0.5, O.5, 0.5) 6 ~ 52

From Ref. 40.
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TABLE XIV. Identification of transitions responsible for the prominent theoretical and ex-
perimental ref lectivity structure in InAs, including location in the Brillouin zone, energy, and

symmetry of calculated critical points. The experimental results are from Ref. 33 (except as
noted).

Theory

InAs
Reflec tivity

s true tur e
(eV)

Exper iment
Location in

Brillouin zone Symmetry
Critical-point energy

(eV)

2.54 2.61 L4,s-Le (0 5. 0.5 0.5 2 ~ 53

2.81 2.88 Le -Le 2.79

4.39 r,"-r', (o.o, o.o, o.o) Mp 4.39

4.52 4.58 rs- rs Mp 4.63

4.85 4.74 Plateau near
(0.75, 0.25, 0.25)

5.36 5.31 (0.7, 0.0, 0.0) 5.24

5.45 5.5 5.34

6.49

6.92

6.5 L 4 5-Le (0.5, 0.5, 0.5)

Lg~-Lf 5 (0.5, 0.5, 0.5)

Mg 6.42

6.81

'See Ref. 44.

TABLE XV. Theoretical and experimental reflectivity structure for InSb and their identifi-
cations, including the location in the Brillouin zone, energy, and symmetry of the calculated
critical points.

Theory

InSb

Refl

ectivit
structure

(eV)
Exper iment '

Associated
critical points,

location in
zone Symmetry

Critical-point ener gy
(eV)

1.99

2.47

3.53

3.80

4.18

4.54

4.74

5.44

6.16

1.98

2.48

3.39

3.78

4.23

4.56

4.75

5.96

L4 5-Le (0.5, 0.5, 0.5)

Le -Le

rs. r., (oo oooo
rs-rs
&~5-D f (0.3, 0.0, 0.0)

Plateau near
(0.7, 0.2, 0.2)

D5-dl, 5 (0.5, 0.0, 0.0)

L4-Lf (0.5, 0.5, 0.5)

Le -Lf 5 (0.5, 0.5, 0.5)

Mg

Mp

Mg
Mp

M&

M&

Mi

1.99

2.47

3.16

3 ' 59

3.3
3.7

4.44

4.69

5.26

5.97

~See Ref. 33.
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TABLE XVI. Calculated valence-band electronic densities of states features compared to
experiment for Ga zinc blendes.

Compound
GaP GaAs GaSb

Feature Theory Exper iment Theory Experiment Theory Experiment

+ min
1

-13.0

—7.1

—4.2

-11.8+ 0.5
—13.2+0.4 '
—9.7+ 0.3

9.6+ 0.3

6.9 + 0.2
6.9+ 0.3

—4.1 + 0.2
—4.0+ 0.3
—2.7 + 0.2

0.8+ 0.2
—1.2+ 0.3

-12.1

—4.2

-12.9+ 0.5
-13.8 + 0.4

-10.0+ 0.2
—10.7 + 0.2
—6.9+ 0.2
—7.1~0.2
—4.1+0.2
—4,4+ 0.2

—0.8+ 0.2
—1.4~ 0.3 b

-12.0

—3.6

2 5

1 % 2

-11.6 + 0.3

9.4+ 0.2

6.9+ 0.3

—3.8 + 0.2

—2.7+ 0.2

1.3+ 0.2

See Hefs. 3 and 6.
See Hefs. 2 and 5.

ably lower in magnitude than experiment. At
higher energies, above the E„ the situation is
reversed, and the theoretical ref lectivity is higher
in magnitude than experiment. At present, the
situation has not been clearly resolved, although
considerable theoretical effort in this area has
been undertaken. 47

The electronic densities of states are displayed
in Figs. 13 and 14 for the Ga and In compounds,
respectively. In Tables XVI and XVII identif ications
of the structure are given and compared to the experi-
mental results of photoemission spectroscopy.
Qur results do not include transition-matrix
elements, therefore, only peak positions should
be compared. In general, the XPS and UPS mea-
surements are in good accord with respect to
peak positioning. A possible exception to this is
the placement of the lowest valence band. Dif-
ferences in XPS and UPS for this band can be
attributed, for the most part, to the methods used
in data reduction. ' In both techniques a rather
large secondary background must be subtracted
out to obtain the lowest band's position.

The overall agreement between the nonlocal
resuj, ts and experiment are a considerable im-
provement over the local pseudopotential results. '
Local pseudopotential calculations are in disagree-
ment with experimental data in some cases by
the order of several electron volts. 4 The local re-
sults yield in the majority of cases, valence-band
widths which are too narrow.

Two qualitative trends in the densities of states
can be ascertained from an overview of the Ga and
In compounds. As the lattice constant increases

the valence band width decreases and as the crys-
tal becomes more ionic, the gap occurring in the
valence band increases. This latter trend has
been related to changes in the antisymmetric part
of the pseudopotential, and "ionicity. "~ While this
approach has been somewhat successful, our
charge density calculations indicate a more com-
plicated situation.

In Figs. 15 and 16 the valence-charge densities
are given for Qa and In compounds, respectively.
These pseudoeharge densities have received new
interest not only because of recent experimental
advances in x-ray techniques, but also because
recent surface calculations have relied upon the
pseudopotential charge density to determine a
self-consistent pseudopotential. " In the case of
InSb structure factors for quasiforbidden reflec-
tions have been experimentally determined. '
These factors are a sensitive test of the aspher-
icity of the valence charge density. A comparison
of the experimental structure factors to the re-
sults as calculated by a local pseudopotential"
indicates the local results overestimates the
charge transfer from In to Sb. This comparison
is complimented by an examination of the elec-
tronic density of states for the local pseudopoten-
tial. Such an examination indicates the calculated
valence band widths are considerably narrower
than the photoemission measurements would sug-
gest. In turn this would also indicate an over-
estimation of the ionicity of the crystal. There-
fore, it is not surprising that the nonlocal pseudo-
potential results for InSb, which yield an accurate
valence band density of states, also yield an ac-
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curate valence charge density. " The decrease in
charge transfer for InSb with the nonlocal result
is also reflected in the other compounds. In'Tables
XVIII and Xlx the Fourier coefficients for the
valence charge densities are given.

C. II-VI zinc-blende semiconductors

ZnSe and CdTe results are presented in this
subsection. Local pseudopotential calculations
have been fairly successful in describing optical
ref lectivities for II-VI's, but produce valence-
band spectra in strong disagreement with experi-
mental photoemission results. A recent local
pseudopotential for CdTe, fit solely to ref lectivity

data, produced a valence-band width for the upper
three valence bands in error by over 2 eV com-
pared to experimental photoemission results. ~

One difficulty in obtaining an accurate pseudo-
potential for these compounds is the proximity of
the cation outermost d shell to the valence-band
structure. In the case of ZnSe these states lie
approximately 10 eV below the valence-band maxi-
mum. ' Since the nonlocal pseudopotential used
in the present calculation does not explicitly in-
clude these states, any effects of these states
may not be accurately accounted for. Neverthe-
less, in the case of ZnSe, we are able to sig-
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FIG. 13. Calculated electronic density of states, for
GaP, GaAs, and GaSb compared to the experimental re-
sults of Ref. 5.

FIG. 14. Calculated electronic density of states for
InP, InAs, and InSb compared to the experimental re-
sults of Ref. 5.
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FIG. 15. Valence
charge densities for
GaP, GaAs, and Ga%.
The contours are in
units of @/O~).

nificantl im ro
for

y p ve the electronic density f t to sacs
the top three valence bands d b

ectivity spectra giving satisfactory agreement
between experiment and theor " Io y. n the case of

e agreement is quite good for b th th d

s tes and the optical spectra.
The parameters for the pseudopotential are

listed in Table XX. - ' eSpm-orbit interactions are
included in both cases: h

are 0.00061
t e spin-orbit parameters

and 0.00137 for ZnSe and CdTe re-
spectivel . They. e band structures are given in Fi
17 and the eigenvalues for I' X,
XXI. As e

or, , and L in Table
. As expected, with the increased chac rge trans-

the II-VI s compared to the III-V's, the
bandwidths decrease, and the

InFi . 18
e optical gaps increase.

n ig. 18 we present the calculated and exe an experi-
ectivity spectra. Wavelength modula-

tion experimental results are not available for

these crystals. The overall agreement for ZnSe
is satisfactor buc ory, ut not as accurate as our III-V
results; however, the result f CdTor e is in good
accord with experiment. One discre

r o crystals, besides the magnitude of th
ref lee tivity eaks is

eo e

F., line sha e
pea s, is the lack of agreement f th

ape. Experimentally, weak doublet
or e

c ra, ut
rved m the theoretically calculated

For both ZnSe and
c a e spectra.

n e and CdTe a band by band calculated
absorption spectra indicate a weak M, critical

, pea along the 4point below the strong E k l
direction. This structure, however, is too weak
in the theoretical case to produce an

uc ure. However, excitonic effects in th
cr stal

in e
e m experi-y may enhance the structur
sop ya rolement. Excitonic effects could als la

in enhancing the E, structure which is consid-
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FIG. 16. Valence
charge densities for
InP, InAs, and InSb.
The contours are in
units of (e/0, ).

TABLLE XVII. Calculated valence-band electronic densities of states features corn a
experiment for In zinc blendes.

nsi ies o s a es eatures compared to

Feature

Compound
InP InAs

Theory Experiment Theory Experiment Theory
InSb

Exper i ment

g min
1

X)

—11.4

8.9

6 ~ 0

—2.1

1 0

—11.0+ 0.4

8.9+ 0.3

5.9& 0.2

3.2 6 0.2

2.0+ 0.2

1.0+ 0.3

—12.7

—10~ 2

6.2

3.4

2.4

1.1

—12.3+0.4 '

9.8 + 0.3

6.3+ 0.2

3.3 + 0.2

2.4 + 0.3

0.9 0.3

-11.7

9.2

6.4

3.4

2 3

1.2

—11.7+ 0.3
—11.2 + 0.2

9.5+ 0.2
9.0+ 0.3

6.4+ 0.2
6.5+ 0.3

3.4 + 0.2
—3.65+ O.3'
—2.4 6 0.4

1.4 + 0.3
—1.05+ 0 3

See Refs. 2 and 5 ~

b See Refs. 3 and 6.
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FIG. 18. Calculated ref lectivity spectra for ZnSe and
CdTe compared to experiment. The experimental re-
sults for ZnSe are from Ref. 49 (dashed line) and from
Pef. 50 (dotted line). For CdTe the experimental re-
sul, ts are from Ref. 51.
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FIG. 17. Band structures for ZnSe and CdTe.

TABLE XVIIL Fourier coefficients of the valence charge densities for the Ga zinc blendes.
The real part of the coefficient is listed first. The origin for this calculation is at the cation.

G(a/2x) Gap
Fourier coefficients (e/~~ )

GaAs GaSb

(000)
(111)
(200)
(220)
(311)
(222)
(400)
(331)
(420)
(422)

8.000
0.648

-0.924
-0.049
-0.219

0.095
-0.191

0.056
0.070

-0.037

0.000
-1.880

0.000
0.000

-0.198
-0.355

0.000
0.070
0.000
0.032

S.OOO

0.826
-0.656
-0.082
-0.256

Q.059
-0.259

0.053
0.050

-0.024

0.000
-1.755

0.000
0.000

—0.269
-0.452

0.000
0,026
0.000
0.020

8.000
1.000

—0.577
0.047

—0.210
0.044

-0.235
0.038
0.045

-0.033

0.000
-1.792

0.000
0.000

-0.215
-0.421

0.000
0,027
0.000
O.Q13
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TABLE XIX. Fourier coefficients of the valence charge densities for the In zinc blendes. The

real part of the coefficient is listed first. The origin for this calculation is at the cation site.

G(a/2x)
Fourier coefficients (e/O~)

InAs InSb

(000)
(111)
(200)
(220)
(311)
(222)
(400)
(331)
(420)
(422)

8.000
0.801

-1.013
0.097

—0.255
0.048

—0.237
0.071
0.069

-0.046

0.000
—2.067

0.000
0.000

—0.160
-0.439

0.000
0.063
0.000
0.043

8.000
0.885

—0.860
0.135

—0.200
0.030

—0.215
0.040
0.055

-0.042

O. OQO

—1.998
0.000
0.000

—0.151
-0.437

0.000
0.047
0.000
0.020

8.000
0.994

—0.718
0.144

-0.223
0.020

-0.245
0.045
0.048

-0.043

O. OOQ

—1.915
O. 000
0.000

—0.161
—0.409

0.000
0.038
0.000
0.024

1.5

1.0—

ZnSe

X)

THEORY

UP)
~-""-- XPS

0

0.5—

CdTe

0

0" I

—14 —12

10—
Z
Cl

0.5—

l I

—10 —8 —6 —4 —2 0

—THEORY
--- EXPERIMENT

0i I

—12 —10 —8

I
I
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I

—2 0

ENERGY (eVj
4 6

FIG. 19. Calculated valence-band electronic densities
of states for ZnSe and CdTe compared to experiment.
The experimental results for ZnSe are from Ref. 5
(dotted line) and Ref. 6 (dashed l.ine). For CdTe the ex-
perimental results are from Ref. 6.

erably stronger in experiment than the theoret-
ical result for either ZnSe or CdTe. The
prominent ref lectivity structures for both ZnSe
and CdTe are identified and compared with ex-
periment in Tables XXII and XXIII, respectively.

In Fig. 19 the theoretical electronic density of
states are compared to the experimental results
of photoemission. The outermost d-shell con-
tributions have been subtracted out of the experi-
mental spectra. Identifications and comparisons
of the experimental structure with the theoretical
results are listed in Table XXIV. While CdTe is
in good agreement with experiment, ZnSe is not
as satisfactory; the bottom valence band is in
strong discrepancy with the XPS placement. Un-
fortunately, the lowest valence band is not ob-
served in the UPS results. However, recent re-
flectivity data have suggested a higher placement
for this bottom valence band. Using synchrotron
radiation, studies have been made of II-VI re-
flectivity spectra. Structure for ZnSe has been
observed in the 15-16-eV range and attributed to
the onset of optical transitions from the lowest
valence band. ' If we accept this identification,
the ref lectivity result would be in accord with the
nonlocal pseudopotential placement.

The valence charge densities for ZnSe and
CdTe are displayed in Fig. 20; the Fourier co-
efficients of the charge densities are listed in
Table XXV. Our results are in contrast to the
local pseudopotential charge densities"; these
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TABLE XX PPseudopotential parameters for the II-VI z'e — I zinc-blende semiconductors.

Colllpound V (~3) V (W8) V (~11) VA(~3) VA(~4) VA (~11 )

Lattice
constant

-0.218
-0.220

0.029
0.00

0.064
0.062

0.139
0.060

0.062
0.050

0.016
0.025

5.65
6.48

Cation
&2(Hy)

Nonlocal parameters
Anion

A2(By)

ZnSe
CdTe

0
0 4

-0.125
0.00

0
1.37

0
0.4

0.925
2.00

0
1.06

Gaussian well.

results would suggest a nearly complete charge
transfer from cation to anion. The nonlocal
pseudopotential results indicate a stron b trong, ut not
comp ete, charge transfer. This result can be
attributed directly to the effect of the nonlocal
d well. The d-well correction term alters the
conduction bands without affecting the occupied
valence states. Thus it is possible for the d well
to alter the optical gaps and not alter the charge
density. The local pseudopotential yields optical
gaps which are too narrow, in general, as com-
pared to experiment. If an accurate fit is at-
tempted to these gaps, the antisymmetric form
factors must be increased. This procedure has

two defects: the valence-band widths decrease,
a trend not supported by XPS or UPS data and the
charge transfer increases„ the crystal becomes
unphysically ionic.

IV. CONCLUSION

Nonlocal pseudopotentials have been used to
calculate the electronic structure of 11 semicon-
ductors. Detailed comparisons have been pre-
sented for the theoretical ref 1 t 'tec ivy y spectra
and valence-band electronic d ense dies of states
and the experimental ref lectivity and photoemis-
sion results. In the case of Si and InSb recent

FIG. 20. Valence
charge densities for
ZnSe and CdTe. The
contours are in units
(e/0, ).
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-12.25

0.45

-11.07

—0.89

l.59

5.61

-10.72

—4.96

—2.17
—1.96

—9.12

—5.05

—l.98

—1.60

5.17

4y5

-11.08

5.08

1 04

—0.76

—9.64

—4.73

1.18

0.65

TABLE XXI. Eigenvalues for the II-VI zinc-blende
semiconductors at I', X, and J. Energies are in eV.

Compound
Znse CdTe

experimental results using x rays have allowed
us to assess the pseudocharge densities. We find
that numerous discrepancies which occur for local
pseudopotential calculations can be removed. The
discrepancies in the case of a local pseudopoten-
tial include obtaining incorrect valence-band
widths, optical critical point symmetries, optical
bRnd gRps, bonding charge topologies, Rnd vRlenee-
charge transfers.

While the nonlocal pseudopotential results do not
suffer from these defects, the method does re-
quire additional parameters. This requix ement
does not present any special problems provided
experimental data such as photoemission are in-
cluded in the parameter fitting. Further, various
trends in the nonlocal pseudopotential parameters
can be observed and correlated with model pseudo-
potential calculations. For example, in the Ge and
e-Sn row we find the d-well correction increases
from Zn to Se and fxom Cd to Te. This trend is
Rlso obsex'ved in the Heine-AbRvenkov model
pseudopotential. " Thus, while our approach has
been decidedly empix ical in nature, the great
success of our nonlocal results suggests other,
less empirical, methods may be refined to give
equally accurate results.

4gs 7.72

6.18

6, 35

Part of this work was done under the auspices
of the U. S. Energy Research and Development
Administration.

TABLE XXII. Theoretical and experimental ref lectivity structure at 300'K and their identi-
fications, including the location in the Brillouin zone, energy, and symmetry of the calcul. ated
critical points for Znse, The experimental results are from Ref. 49.

Znse reflectivity
structure. (eV)

Theory Exper iment
Associated transitions

located in the zone
Critical-point energy

(eV)

(6.6)

8.39

8.86

See text.

6.00

7.80

8.45

L 4 g -&6 (0.5, 0.5, 0.5)

Ie-I 6

&", -~', (o.5, o.o, o.o)

Plateau near
(o.8, o.2, o.2)

4) —&5 (0.6, 0.0, 0.0)

I'8 —I'8 (0.0, 0.0, 0.0)

I", —ra
L4 5

—44 5, &6 (0.5, 0.5, 0.5)
A4, s-~4, 5 ~6

(0.35, 0.35, 0.35)

~; -~4 „~; (o.5, o.5, o.5)
A~6 —A4 5, A~~

(O. 35, O. 35, O.35)

o

Mo

Mo

Mo

4.72

7.08

7.42

8.74
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TABLE XXIII. Theoretical and experimental reflectivity structure for CdTe and their identi-
fications, including the location in the Brillouin zone, energy, and symmetry of the calculated
critical. points. The experiment is from Bef. 51.

CdTe
Beflectivity

structure
(eV)

Theory Experiment

Associated
critical points

location in
zone Symmetry

Critical-point energy
(eV)

1.65

4.04

6.00

4.03

5.95

I'8 —I
p (0.0, 0.0, 0.0)

I 4 5
-L ce (0.5, 0.5, 0.5)

L6-&6
S", -Sc, (0.5, 0.0, 0.0)

Plateau near
(0.75, 0.25, 0.25)

&5 -&5 {0.75, 0.0, 0.0)

~0 ~C

L 4, -~', (0.5, 0.5, 0.5)

1.59

4.00

5.96

7.79 7.6 L6 -L4, (0.5, 0.5, 0.5)

TABLE XXIV. Calculated valence-band electronic
densities of states features compared to experiment for
II-VI z inc blendes.

Compound
ZnSe Cd Te

Feature Theory Exper iment Theory Experiment

TABLE XXV. Fourier coefficients of the valence charge
densities for the II-VI zinc-blende semiconductors. The
real part of the coefficient is'tabulated first. The origin
is at the cation site.

—12.3 -15.2 + 0.6

-1Q.7 -12.5 + 0.4
—F 1

3.4

202

1.0

—5.6+ 0.3
5.3+ 0.3

3.4+ 0.2
—3.4+ 0.3

2.1+0.3

—1.3+ 0.3
—0.7+ 0.2

~ See Befs. 2 and 5.
See Refs. 3 and 6.

-11.1
9.1

5.2

1 ' 7

—0.9

-8.8 + 0.3 b

-5,1+ Q.2
-4.7 + 0.2

-2.7 + 0.3
-2.8 + 0.2

-1.8 + 0.2

-0.9+ 0.3
-0.7 + 0.2

G(e/2x)

(000)
(111)
(200)
(220)
(311)
(222)
(400)
(331)
(420)
(422)

8.000
0.428

-1.235
0.004

-0.210
0.085

-0.225
0.069
0.096

-0.040

0.000
2+233
0.000
0.000

-0.216
-0.363

0.000
0.081
0.000
0.038

8.000
0.851

-1.063
0.130

-0.257
0.052

-0.296
0.058
0.080

-0.054

0.000
-2.210

0.000
0.000

-0.199
-0.470

0.000
0.060
0.000
0.022

Fourier coefficients (e/Qc)
ZnSe CdTe
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