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Electrostatic edge modes along a parabolic wedge
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We have calculated the electrostatic edge modes of a dielectric wedge whose boundary is a parabolic cylinder.
The spectrum of edge modes is found to be discrete, and to depend on the one-dimensional wave vector q
which characterizes the propagation of these modes along the wedge. This is in agreement with the results of
recent, similar calculations by Davis for a wedge whose boundary is a hyperbolic cylinder. The dispersion

curves for the first four mdoes are plotted for the case of a parabolic wedge characterized by a free-electron

metal dielectric constant. The relation of the present results to those of the original electrostatic edge mode

calculation by Dobrzynski and Maradudin and to those of Davis is discussed.
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The dielectric occupies the region 0~ Tl~ g„—~
~ $

~ ~ (see Fig. 1), and is characterized by an
isotropic dielectric constant e(~}. Outside the
wedge (rI ~ q, —~ —$ —~) there is vacuum (e = 1).

As in Ref. 1 we ignore nonlocal effects, and the
magnetic permeability is assumed to be unity

Several years ago Dobrzynski and one of the
authors of this paper obtained the dispersion re-
lation for the electrostatic edge modes of a di-
electric wedge. ' These are solutions of Laplace's
equation which propagate in a wavelike fashion
along the apex of a dielectric wedge formed by
the intersection of two semi-infinite planes, but
whose amplitudes decay exponentially with in-
creasing distance from the apex both into the
wedge and into the vacuum outside it. The fre-
quencies of these modes were found to depend on
a continuously varying parameter (the separation
constant in the solution of Laplace's equation by
separation of variables), and to be independent
of the one-dimensional wave vector q character-
izing their advance along the apex of the wedge.

Recently, Davis' has shown that rounding the
edge of the wedge by taking the boundary to be a
hyperbolic cylinder renders the spectrum of edge
modes discrete rather than continuous, and causes
it to be a function of q.

In the present paper we carry out a calculation,
similar to that of Davis, of the electrostatic edge
modes of a dielectric wedge whose boundary is a
parabolic cylinder. Unlike the case treated by
Davis, the present calculation can be carried out
analytically, and yields results in terms of tabu-
lated functions. The spectrum of edge modes is
found to be discrete and to depend on the wave
vector q.

We introduce parabolic cylinder coordinates'

everywhere. Furthermore, we work in the elec-
trostatic limit, in which effects due to the finite-
ness of the speed of light are ignored. Then, with
C (),q, z; t) = C ((,q, z)e '"' being the scalar poten-
tial of the electromagnetic field, we seek solutions
to Laplace's equation V'4=0 that decrease expo-
nentially with q as q- ~, increase exponentially
with q as g-g, from below, and also decrease
exponentially as

~
$

~

-~.
Because the system under consideration posses-

ses infinitesimal translational invariance along
the z axis, we choose for C an expression of the
form C(),q, z)= y($, q}e'". Writing the Laplacian
operator in parabolic cylinder coordinates and
making use of this expression for C, we obtain a
partial differential equation for p((, rI) which can
be solved by separation of variables. Setting
y( ,t)rI= F(g)G( )rl, the equations for F(() and G(rI)
are, respectively,
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FIG. 1. Parabolic cylinder coordinates. The figure
shows the cross section of the surfaces of constant j
and q. The z axis is perpendicular to the drawing. The
boundary of the dielectric medium is the surface g= rio.
The medium occupies the region g
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and

+ (E —q't')+(h) = o
d$

d'G q," —(E+q'rP)G(q) = 0.

(2)
outside the wedge, Tl~ q, the solution to Eq. (6)
that decreases exponentially as x —~ is denoted by
U(a„,x). Its asymptotic behavior is given by

g„(x)= u(n+-.',x)

In Eqs. (2}and (3), E is the separation constant.
We consider first the solution to Eq. (2}. The

similarity between this equation and the harmonic-
oscillator problem of quantum mechanics is ap-
parent. We can therefore immediately write the
solutions of Eq. (4) which tend to zero as

~
$ ~- ~,

e "'~'
(n + 1)(n + 2)

a+1 1—
2x2+~ co x (8)

In summary, the solutions to Laplace's equation
which are localized at the apex of our parabolic
wedge are

E„($)= C„,e~ H„(q' $), (4) A„,E„($)V[n +-,', (2q)' 'ri]e'",

corresponding to the following discrete values of
the separation constant E:

E„=(2n+1)q, n=0, 1, 2, 3, .. . .
In Eq. (4), H„(x) is the nth Hermite polynomial,
while C„, is a normalization constant.

We have thus shown that the solutions of Eq. (2),
and consequently of Eq. (3), can be labeled by the
discrete quantum number n. As a consequence of
this the potential function 4((, q, z) will be written
4„,($, rl, z) to indicate explicitly its dependence on
this quantum number, as well as on the contin-
uously varying quantum number q. We emphasize
that in the case of the edge modes studied by
Dobrzynski and Maradudin, ' there is no restric-
tion on the separation constant, which can thus
vary continuously. Furthermore, as they must,
the solutions of Eq. (1) have been shown to have
a definite parity under reflection in the plane de-
fined by the line ]= 0 and the z axis (the yz plane);
that is, if n is even then C (),q, z)=4„,(- (,q, z)
and if n is odd, then C „,($, ri, z) = —4„,(- $, q, z).

We proceed now to consider the solution to Eq.
(3). Making the change of variables x = (2q}'~'rl,
defining a„—= n+ 2 and g„(x)=G„(rl), we obtain the
equation

q (q oo( ( (oo ~

(9)
H„,S'„(()u[n+ —.', (2q)' "q]e'-,

q ) g oo ( (( oo

The two boundary conditions of the problem are
the continuity of C((, ri, z) and of eSC(), q, z)/Sq at
q = q, . Imposing them on the solutions (9) we ob-
tain, from the requirement that the coefficients
A and B„,be nonzero, the dispersion relation for
the electrostatic modes localized at the apex of a
parabolic wedge

V[n + ~z, (2q)' '7i ] U'[n + ,', (2q)—' 'q ]
V'[n + -', (2q)' 'r/ ] Ufn+ -', (2q)'~'q ]

In Eq. (10) the prime indicates differentiation with
respect to the argument.

In contrast to Ref. 2, the q -~ limit of the dis-
persion relation can be studied analytically. Using
Eqs. (7) and (8) one can show that when x,
[= (2q)'~'q, ] tends to infinity Eq. (10) reduces to

d2 x'
,g„(x) — a„+—g„(x}= 0. (6)

-05

The solutions to Eq. (6}are the parabolic cylinder
functions. ' Inside the wedge, rl —q, [x —x,
= rl, (2q)'~'], we keep the solution that increases
exponentially with x. This solution is usually de-
noted by V(a„,x). We shall need below its asymp-
totic behavior4 as x- ~ (physically, this is the
q- o limit):

—10

-2.0

-2.5

g„(x)= V(n+-,',x)
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FIG. 2. First five allowed values of e(cu) as functions

of (2q) q. Even values of n correspond to even modes,
and odd values to odd modes.
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(~ /v 2)x /(I+xa)&i& (x aa) (12)

In Fig. 2 we present the dispersion relation, Eq.
(10), for the first five values of n. In obtaining
these curves use was made of the tabulated4 values
of the parabolic cylinder functions and of the re-
currence relations satisfied by them. We remark
that for the even modes e(&o)- -~ as q - 0, where-
as for the odd modes e(e)-0 as q -0. These lim-
its follow from the expressions for V(a„,0) and
V'(a„, 0) given in Ref. 4.

In Fig. 3 we give the curves for u&/e~ as a func-

e(~) = -(1+2/x,'+ ) .
We emphasize that Eq. (11) holds for all n. Thus,
in the q = ~ limit, the dispersion relation of the
edge modes coincides with that (e = -1) for surface
plasmon modes bound to the plane interface be-
tween a dielectric medium and vacuum. This was
to be expected, since a fluctuation of vanishingly
small wavelength cannot probe the curvature of the
interface.

If we assume that the material composing the
wedge is a free-electron metal, then e(~) = 1

+~2/ur', where ~~ is the bulk plasma frequency of
the metal. Substituting this form for e(~) into Eq.
(11)we can solve explicitly for the frequency of
the edge modes in the q - ~ limit:
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FIG. 3 ~ Frequencies of electrostatic edge modes along
a parabolic wedge characterized by a free-electron di-
electric constant q(m) =1 —cup/cu . Only the first four
are shown. Even values of n correspond to even modes,
and odd values to odd modes.

tion of x, = (2q)'i'qo obtained from Eq. (10) and the
use of the free-electron gas dielectric constant.

The results of the present calculation confirm
the result obtained by Davis for a hyperbolic wedge
that rounding the tip of a dielectric wedge gives rise
to a discrete set of electrostatic edge modes whose
frequencies are functions of the (one-dimensional)
wave vector characterizing their propagation along
the apex of the wedge.
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