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The calculation of the electrostatic edge modes of a dielectric wedge by Dobrzynski and Maradudin is

reconsidered. It is shown that the electric fields are singular and the field energy is infinite near the edge.

Rounding the edge by taking the boundary to be a hyperbolic cylinder removes the singularity, but changes

the spectrum from continuous and independent of q (where $ ~ e'q') to discrete and dependent upon q. For
the rounded edge these modes possess an orthogonality property convenient for calculating the response of the

dielectric to an external charge.

Dobrzynski and Maradudin have calculated the
electrostatic edge modes of a dielectric wedge. '
The boundaries of the wedge were formed by the
intersection of two semi-infinite planes making an
interior angle 2n. As shown below, the electric
fields associated with the edge modes are singular.
The singularity is strong enough to make the field
energy (I/8x) f dV

~
Vp

~

' infinite in the neighbor-
hood of the edge. Hence, the fields violate the
Meixner criterion' and cannot be normalized. If
one were to attempt to quantize these edge modes,
the infinite field energy would cause difficulty.
The singular nature of the fields may also be im-
portant in the calculation of the optical ref lectivity
and absorption of solids with sharp edges. '

Rounding the edge of the wedge removes the
singularity. So in this paper we analyze a particu-
lar model of a rounded edge, namely, a dielectric
whose boundary is a hyperbolic cylinder (see Fig.
1). The distance from the origin to the focus is
a and the eccentricity is sec&. In the limit a-0,
we recover the wedge with the sharp edge.

After a brief statement of the problem for either
type of boundary, the solution for the wedge with
a sharp edge is reviewed. Next the solution for
the rounded edge is given. Lastly, the orthogonali-
ty of these solutions is discussed.

Following Dobrzynski and Maradudin, ' we neglect
retardation and nonlocal effects. Then the prob-
lem is to find solutions of Laplace's equation
V'p = 0, for which the potential ft) and the normal
component of the displacement are continuous
across the boundary. Also, (t) must vanish at in-
finity. Solutions are allowed only for certain,
negative values of the dielectric constant e.' For
example, when n =-,w (flat surfa, ce), only e = —1
is allowed (corresponding to the surface plasmon
for the case of a metal).

Let us examine the wedge with a sharp edge.
In this case cylindrical coordinates (r, 6, z) are
convenient with the dielectric occupying ~)0,

-n & g & a, and -~&z & ~.' For modes even in 8

(i.e., about the midplane of the wedge) the solu-
tions are'

p(r, 6, z) =AK, , (qx) c obeah,
e6"' ( n&6& n-)

=BK,, (qx) cosh'~(w —6)e'" (o.'&6 &2' —n),

(1b)

where

B =A coshpo. /cosh, g (x —n)

and

e = —tanhp, (m —o')/tanhpn, 0~ p, & ~.

(1c)

(1d)

A is a constant and K,„(x) is a, modified Bessel
function of the second kind with imaginary order.
The odd solutions can be found by replacing cosh
by sinh and e by I/e in Eq. (1). Note that the ur

dependence of E is suppressed. In fact, it is con-
venient to regard E as an eigenvalue. ' The actual
computation of frequencies of oscillation (such as
&uJW2 for the surface plasmon) can be done
straightforwardly by equating e(~) with the allowed
values of E. As x-0, it can be shown that

K,,(x) -- (x/p, sinhp, )' '

x sin[ p ln(-,'x) —argI'(1+i')], (2)

which remains finite although it is rapidly oscillat-
ing asx-0. The field -V'P, however, goes as
I/r times a rapidly oscillating function (sin[p, In(kr)
+phase angle]). So

~
Vp ~' goes essentially as

1/y' and frdr~VQ~' goes as Inr, r 0. The f-ield

energy, therefore, will be infinite unless ~ is cut
off at some nonzero value. The hyperbolic
boundary removes the singularity in this way, so
we consider it next.

It is convenient to introduce elliptic cylinder co-
ordinates'
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The boundary conditions are that P is continuous
across the boundary and that

—(vscuum) = e —(dielectric)8$ 8@
Bq Bg

at the boundary. Also Q
—0 as $ - ~.

It is well known that Laplace's equation is sep-
arable in this coordinate system, so we write

Then Eq. (5) imp1ies that

CP

d$' + (E -q'a'sinh2$) f =0

FIG. 1. Cross section of dielectric whose boundary is
a hyperbolic cylinder. The & axis is perpendicular to
the drawing.

x=a cosh(cosq0, ~)&~, n~q~2w -n, (3a)

y =a sinh$ sing, (3b)

(3c)

The dielectric occupies $~0, -&&@&A'., and
—~& z & ~. The vacuum occupies $ ~ 0, n & q &2m —n,
and -~&z & . The upper-half of the boundary is
given by g = a and the lower-half by g = —n when

approached from the dielectric and g =2m —n when

approached from the vacuum. The gradient of P
is given by

dg
d'g , —(E+q'a'sin'q)g=0,

where E is the separation parameter.
Each solution will be either even or odd about

the midplane. For the even solutions, then both

f ($) and g(q) are even functions; and for the odd
solutions, f ($) and g(q) are odd. In both cases,
f($)-0 as (- ~.

Equation (7) is equivalent to finding the eigenval-
ues and eigenfunctions of a particle in the potential
well V($) = const sinh'$. Clearly, only discrete,
positive values of E are allowed. For example
when q'a'» 1, for the lowest eigenvalues sinh'(
can be replaced by $' and then the solutions are
the harmonic-oscillator solutions with E = (2n
+ 1)qa, n =0, 1, 2. . . . In general, we must use
numerical means to solve (7) although it is clear
that we can label the solutions with a discrete in-
dex n as in the harmonic-oscillator problem. The
solutions will be localized near the edge, mostly
within the classical turning point.

The discrete values E„are then inserted into
(8) to determine g„(q), which must also be calcu-
lated numerically. For the dielectric we write

(4a)

1
g .0-h(t ) s (4b)

8$
grad f =— (4c)

where

h($, q) = a(sinh'$ + sin'q)'~' . (4d) .000l
I
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Laplace's equation becomes
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FIG. 2. Allo~ed values of & vs qn. Only the first four
are shown. Higher n values cluster about —l. Even
values of n correspond to even modes and odd values
to odd modes.



and for the vacuum

P($, t), s) =Bf „($)g„(tt-t))e'", «t)&2s —a .

present paper for even modes] for the wedge with

no rounding.
From general considerations similar to those

given in Ref. 5, one can show that, independent of
the exact shape of the boundary, for any two solu-
tions Q„and Q„. ..

Matching f and the normal component of the dis-
placement at the boundary q = e gives dS v@„,P„*, =&„„.&(q-q'), (12)

8 =Ag„(ct)/g„(tt —n) (11a)

Nothing additional is gained from the other bounda-

ry when the even or odd nature of the solution is
taken into account. %'e see that the allowed values
of & are discrete for a given qa. %e denote them
by e„(qa). This is in contrast to Ref. 1 where the
allowed values are continuous and independent of
q. In Fig. 2 the first four allowed values are
plotted as a function of qg for a =&w. %'e note
that as qa- ~, for all n, e„(qa) ——1. This is to
be expected physically since curvature becomes
less important as the wavelength decreases, there-
by approaching the limit of a flat surface.

As qa-0, the potential well becomes more
shallow and the energy levels become closer to-
gether. Numerically, this occurs for qa & 0.01 in
Fig. 2. In fact at qQ =0, the spectrum of & ls con-
tinuous and is given by the same formulas as
found by Dobrzynski and Maradudin [Eq. (1d) of the

where the surface integral is over the boundary
and the gradient is evaluated just inside the dielec-
tric. a It is clear that the solutions found in this
paper satisfy (12). This rather unusual orthogona-
lity condition is useful if one wishes to quantize
the modes or to express the response of the dielec-
tric to an external charge in terms of the electxo-
static modes (analogous to finding the image force
in terms of surface plasmons'"). For the solu-
tions of Ref. 1 for the wedge with no rounding [Eq.
(1) of this paper), no such orthogonality condition
exists due to the peculiar behavior of the K,„(qr)
at small r.

The main conclusion from this work is that a
slight rounding of the sharp edge of a dielectric
has significant effects on the electrostatic modes.
Any property which is dependent upon these modes
is also affected.

The author wishes to thank Dr. John Lambe for
calling his attention to Ref. 1 and Dr. %'ilies Weber
for assistance in the numerical calculations.
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